Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 247: 110053, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151779

RESUMO

The choroid embedded in between retina and sclera is essential for retinal photoreceptor nourishment, but is also a source of growth factors in the process of emmetropization that converts retinal visual signals into scleral growth signals. Still, the exact control mechanisms behind those functions are enigmatic while circadian rhythms are involved. These rhythms are attributed to daylight influences that are melanopsin (OPN4) driven. Recently, OPN4-mRNA has been detected in the choroid, and while its origin is unknown we here seek to identify the underlying structures using morphological methods. Human and chicken choroids were prepared for single- and double-immunohistochemistry of OPN4, vasoactive intestinal peptide (VIP), substance P (SP), CD68, and α-smooth muscle actin (ASMA). For documentation, light-, fluorescence-, and confocal laser scanning microscopy was applied. Retinal controls proved the reliability of the OPN4 antibody in both species. In humans, OPN4 immunoreactivity (OPN4-IR) was detected in nerve fibers of the choroid and adjacent ciliary nerve fibers. OPN4+ choroidal nerve fibers lacked VIP, but were co-localized with SP. OPN4-immunoreactivity was further detected in VIP+/SP + intrinsic choroidal neurons, in a hitherto unclassified CD68-negative choroidal cell population thus not representing macrophages, as well as in a subset of choroidal melanocytes. In chicken, choroidal nerve fibers were OPN4+, and further OPN4-IR was detected in clustered suprachoroidal structures that were not co-localized with ASMA and therefore do not represent non-vascular smooth-muscle cells. In the choroidal stroma, numerous cells displayed OPN4-IR, the majority of which was VIP-, while a few of those co-localized with VIP and were therefore classified as avian intrinsic choroidal neurons. OPN4-immunoreactivity was absent in choroidal blood vessels of both species. In summary, OPN4-IR was detected in both species in nerve fibers and cells, some of which could be identified (ICN, melanocytes in human), while others could not be classified yet. Nevertheless, the OPN4+ structures described here might be involved in developmental, light-, thermally-driven or nociceptive mechanisms, as known from other systems, but with respect to choroidal control this needs to be proven in upcoming studies.


Assuntos
Corioide , Opsinas de Bastonetes , Peptídeo Intestinal Vasoativo , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Actinas/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Galinhas , Corioide/metabolismo , Microscopia Confocal , Fibras Nervosas/metabolismo , Opsinas de Bastonetes/metabolismo , Substância P/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
2.
Exp Eye Res ; 215: 108897, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954202

RESUMO

In mammals, the retina is the photosensitive tissue that is responsible for the capture of light and the transduction of the light-initiated signals to the brain. These visual signals help to drive image and non-image forming behaviors. The pupillary light reflex (PLR) is an involuntary non-image forming behavior which involves the constriction of the iris muscle tissue in response to ambient light intensity. A subset of photosensitive retinal ganglion cells provides the principal pathway for all light input to the olivary pretectal nucleus which directs the neuronal input to drive iris constriction. Transient receptor potential melastatin 1 (Trpm1) knockout mice have a severe defect in PLR, but it remains unclear how the Trpm1 channel contributes to this behavior. We have demonstrated that the reduced PLR in Trpm1-/- mice at scotopic and photopic intensities is due to a functional loss of Trpm1 in the retina as well as the iris sphincter muscle. We have also tested constriction in isolated eyes and have shown that light-driven constriction independent of signaling from the brain also requires Trpm1 expression. In both the in vivo PLR and the iris photomechanical response, melanopsin is required for the light-dependent activation. Finally, pharmacological experiments using capsaicin to activate pain afferents in the eye demonstrate that Trpm1 expression is required for all sensory driven iris constriction. Our results demonstrate for the first time that Trpm1 has a novel and necessary role in iridial cells and is required for all sensory-driven constriction in the iris.


Assuntos
Visão de Cores , Canais de Cátion TRPM , Animais , Iris/metabolismo , Mamíferos , Camundongos , Camundongos Knockout , Dor/metabolismo , Reflexo Pupilar/fisiologia , Retina/metabolismo , Opsinas de Bastonetes/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
3.
Exp Eye Res ; 214: 108866, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838844

RESUMO

Myopia, or nearsightedness, is the most common form of refractive abnormality and is characterized by excessive ocular elongation in relation to ocular power. Retinal neurotransmitter signaling, including dopamine, is implicated in myopic ocular growth, but the visual pathways that initiate and sustain myopia remain unclear. Melanopsin-expressing retinal ganglion cells (mRGCs), which detect light, are important for visual function, and have connections with retinal dopamine cells. Here, we investigated how mRGCs influence normal and myopic refractive development using two mutant mouse models: Opn4-/- mice that lack functional melanopsin photopigments and intrinsic mRGC responses but still receive other photoreceptor-mediated input to these cells; and Opn4DTA/DTA mice that lack intrinsic and photoreceptor-mediated mRGC responses due to mRGC cell death. In mice with intact vision or form-deprivation, we measured refractive error, ocular properties including axial length and corneal curvature, and the levels of retinal dopamine and its primary metabolite, L-3,4-dihydroxyphenylalanine (DOPAC). Myopia was measured as a myopic shift, or the difference in refractive error between the form-deprived and contralateral eyes. We found that Opn4-/- mice had altered normal refractive development compared to Opn4+/+ wildtype mice, starting ∼4D more myopic but developing ∼2D greater hyperopia by 16 weeks of age. Consistent with hyperopia at older ages, 16 week-old Opn4-/- mice also had shorter eyes compared to Opn4+/+ mice (3.34 vs 3.42 mm). Opn4DTA/DTA mice, however, were more hyperopic than both Opn4+/+ and Opn4-/- mice across development ending with even shorter axial lengths. Despite these differences, both Opn4-/- and Opn4DTA/DTA mice had ∼2D greater myopic shifts in response to form-deprivation compared to Opn4+/+ mice. Furthermore, when vision was intact, dopamine and DOPAC levels were similar between Opn4-/- and Opn4+/+ mice, but higher in Opn4DTA/DTA mice, which differed with age. However, form-deprivation reduced retinal dopamine and DOAPC by ∼20% in Opn4-/- compared to Opn4+/+ mice but did not affect retinal dopamine and DOPAC in Opn4DTA/DTA mice. Lastly, systemically treating Opn4-/- mice with the dopamine precursor L-DOPA reduced their form-deprivation myopia by half compared to non-treated mice. Collectively our findings show that disruption of retinal melanopsin signaling alters the rate and magnitude of normal refractive development, yields greater susceptibility to form-deprivation myopia, and changes dopamine signaling. Our results suggest that mRGCs participate in the eye's response to myopigenic stimuli, acting partly through dopaminergic mechanisms, and provide a potential therapeutic target underling myopia progression. We conclude that proper mRGC function is necessary for correct refractive development and protection from myopia progression.


Assuntos
Miopia/metabolismo , Refração Ocular/fisiologia , Células Ganglionares da Retina/metabolismo , Opsinas de Bastonetes/fisiologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Comprimento Axial do Olho/patologia , Córnea/patologia , Modelos Animais de Doenças , Dopamina/metabolismo , Dopaminérgicos/farmacologia , Feminino , Levodopa/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miopia/fisiopatologia , Retina/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Vias Visuais/metabolismo
4.
Int J Mol Sci ; 23(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35897728

RESUMO

Recent technological development requires new approaches to address the problem of blindness. Such approaches need to be able to ensure that no cells with photosensitive capability remain in the retina. The presented model, Opn4-/- × Pde6brd10/rd10 (O×Rd) double mutant murine, is a combination of a mutation in the Pde6b gene (photoreceptor degeneration) together with a deletion of the Opn4 gene (responsible for the expression of melanopsin in the intrinsically photosensitive retinal ganglion cells). This model has been characterized and compared with those of WT mice and murine animal models displaying both mutations separately. A total loss of pupillary reflex was observed. Likewise, behavioral tests demonstrated loss of rejection to illuminated spaces and a complete decrease in visual acuity (optomotor test). Functional recordings showed an absolute disappearance of various wave components of the full-field and pattern electroretinogram (fERG, pERG). Likewise, visual evoked potential (VEP) could not be recorded. Immunohistochemical staining showed marked degeneration of the outer retinal layers and the absence of melanopsin staining. The combination of both mutations has generated an animal model that does not show any photosensitive element in its retina. This model is a potential tool for the study of new ophthalmological approaches such as optosensitive agents.


Assuntos
Potenciais Evocados Visuais , Degeneração Retiniana , Animais , Cegueira , Potenciais Evocados Visuais/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Fenótipo , Retina/metabolismo , Degeneração Retiniana/metabolismo
5.
Genes Cells ; 25(3): 215-225, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31989708

RESUMO

The human skin has previously been described to be affected by light; however, the underlying mechanism remains unknown. OPN4 (melanopsin) expression was first identified in the skin of amphibians; however, whether it is also expressed and functioned in the human skin has not yet been identified. Here, we show that OPN4 was expressed in the human skin tissue and cultures of isolated keratinocytes, melanocytes and fibroblasts. Additionally, Ca2+ influx in vitro and ex vivo and phosphorylation of extracellular signal-regulated kinases 1/2 in human fibroblasts were observed by stimulation of blue light irradiation. Notably, our findings showed that this Ca2+ influx and phosphorylation of extracellular signal-regulated kinases 1/2 are promoted in an intensity-dependent manner, indicating that the light signal is converted to an intracellular signal via OPN4 in the human skin. Overall, in this study we showed that the human skin functions as a photoreceptor by demonstrating that in human skin, the photoreceptive protein was expressed, and photoreception was conducted via photoreceptive protein.


Assuntos
Opsinas de Bastonetes/metabolismo , Pele/metabolismo , Células Cultivadas , Humanos , Transtornos de Fotossensibilidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Opsinas de Bastonetes/genética , Pele/citologia
6.
J Cell Sci ; 131(11)2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29712722

RESUMO

Melanopsin (Opn4), a ubiquitously expressed photoreceptor in all classes of vertebrates, is crucial for both visual and non-visual signaling. Opn4 supports visual functions of the eye by sensing radiance levels and discriminating contrast and brightness. Non-image-forming functions of Opn4 not only regulate circadian behavior, but also control growth and development processes of the retina. It is unclear how a single photoreceptor could govern such a diverse range of physiological functions; a role in genetic hardwiring could be one explanation, but molecular and mechanistic evidence is lacking. In addition to its role in canonical Gq pathway activation, here we demonstrate that Opn4 efficiently activates Gi heterotrimers and signals through the G protein ßγ. Compared with the low levels of Gi pathway activation observed for several Gq-coupled receptors, the robust Gαi and Gßγ signaling of Opn4 led to both generation of PIP3 and directional migration of RAW264.7 macrophages. We propose that the ability of Opn4 to signal through Gαi and Gßγ subunits is a major contributor to its functional diversity.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Opsinas de Bastonetes/metabolismo , Transdução de Sinais , Animais , Células HeLa , Humanos , Camundongos , Células RAW 264.7
7.
Mol Biol Rep ; 47(10): 8339-8345, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33006711

RESUMO

Among osteopontin splice variants (OPN-SV), the expression profile of osteopontin-4 (OPN4) and osteopontin-5 (OPN5) has not been addressed in distinct cancer types. We herein aimed to investigate their expression in several cancer cell lines, besides comparing it in relation to the three previously described OPN-SV: OPNa, OPNb and OPNc. Total RNA from cancer cell lines, including prostate (PC3 and DU145), ovarian (A2780), breast (MCF-7 and MDA-MB-231), colorectal (Caco-2, HT-29 and HCT-116), thyroid (TT, TPC1 and 8505c) and lung (A549 and NCI-H460) was extracted, followed by cDNA synthesis. OPN-SV transcript analysis by RT-PCR or RT-qPCR were performed using OPN-SV specific oligonucleotides and gapdh and actin transcripts were used as housekeeping controls. OPN4 and OPN5 transcripts displayed co-expression in most tested cell lines. OPN4 was found expressed in similar or higher levels in relation to OPN5. Moreover, in most tested cell lines, OPN4 is also expressed in similar levels to OPNa or OPNb. The expression of OPN5 is also generally variable in relation to the other OPN-SV, but expressed in similar or higher levels in relation to OPNc, depending on each tested cell line. OPN4 and OPN5 seem to be co-expressed in several tumor types and OPN4 is one of the most overexpressed OPN-SV in distinct tumor cell lines. Once both OPN4 and OPN5 are differentially expressed and also evidence tumor-specific expression patterns, we hypothesize that similarly to the other OPN-SV, they also possibly contribute to key aspects of tumor progression, what should be further functionally investigated in distinct tumor models.


Assuntos
Processamento Alternativo , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Neoplasias/metabolismo , Osteopontina/biossíntese , Células A549 , Células CACO-2 , Células HCT116 , Células HT29 , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Osteopontina/genética , Células PC-3 , Isoformas de Proteínas/biossíntese
8.
J Biol Chem ; 292(9): 3624-3636, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28119450

RESUMO

The intrinsically photosensitive M1 retinal ganglion cells (ipRGC) initiate non-image-forming light-dependent activities and express the melanopsin (OPN4) photopigment. Several features of ipRGC photosensitivity are characteristic of fly photoreceptors. However, the light response kinetics of ipRGC is much slower due to unknown reasons. Here we used transgenic Drosophila, in which the mouse OPN4 replaced the native Rh1 photopigment of Drosophila R1-6 photoreceptors, resulting in deformed rhabdomeric structure. Immunocytochemistry revealed OPN4 expression at the base of the rhabdomeres, mainly at the rhabdomeral stalk. Measurements of the early receptor current, a linear manifestation of photopigment activation, indicated large expression of OPN4 in the plasma membrane. Comparing the early receptor current amplitude and action spectra between WT and the Opn4-expressing Drosophila further indicated that large quantities of a blue absorbing photopigment were expressed, having a dark stable blue intermediate state. Strikingly, the light-induced current of the Opn4-expressing fly photoreceptors was ∼40-fold faster than that of ipRGC. Furthermore, an intense white flash induced a small amplitude prolonged dark current composed of discrete unitary currents similar to the Drosophila single photon responses. The induction of prolonged dark currents by intense blue light could be suppressed by a following intense green light, suggesting induction and suppression of prolonged depolarizing afterpotential. This is the first demonstration of heterologous functional expression of mammalian OPN4 in the genetically emendable Drosophila photoreceptors. Moreover, the fast OPN4-activated ionic current of Drosophila photoreceptors relative to that of mouse ipRGC, indicates that the slow light response of ipRGC does not arise from an intrinsic property of melanopsin.


Assuntos
Escuridão , Células Fotorreceptoras de Invertebrados/metabolismo , Opsinas de Bastonetes/metabolismo , Animais , Animais Geneticamente Modificados , Membrana Celular/metabolismo , Ritmo Circadiano/fisiologia , Cor , Drosophila , Expressão Ectópica do Gene , Imuno-Histoquímica , Cinética , Luz , Camundongos , Fótons , Células Fotorreceptoras , Pigmentação
9.
Gen Comp Endocrinol ; 256: 16-22, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28782536

RESUMO

Several light sensitive receptors have been described in the avian brain that are thought to regulate the reproductive axis independently from the eyes and pineal gland. Recently, our lab has described the presence of three of these photoneuroendocrine systems in the Pekin duck: opsin, opsin 5, & melanopsin. We set out to test the hypothesis that melanopsin receptive neurons are necessary to maintain seasonal reproductive status along with growth and development in the Pekin drake. To accomplish these goals we first investigated 50-week-old Pekin drakes that were housed in the aviary at Hope College under long day length (18h lights on) conditions in floor pens. To specifically lesion melanopsin-receptive neurons, 3µl of an anti-melanopsin-saporin conjugate (MSAP, 100ng/ul) was injected into the lateral ventricle (n=10). Control drakes were injected with 3µl of equimolar unconjugated anti-melanopsin and saporin (SAP, n=10). Reproductive behaviors were analyzed weekly in a test pen with adult hens and MSAP drakes showed a significant (p<0.01) reduction in reproductive behaviors after week 2. After 5weeks, drakes were euthanized and body weights were measured, and brains, pituitaries, and testes collected and stored for analyses. Mature MSAP-treated drakes had significantly (p<0.001) reduced relative teste weights compared to SAP controls. qRT-PCR analyses of hypothalamus showed a significant reduction (p<0.001) in GnRH and melanopsin mRNA levels, but not opsin 5, vertebrate ancient opsin, or opsin 2 (rhodopsin). Immunocytochemical analyses showed a significant reduction (p<0.01) in tyrosine hydroxylase-immunoreactivity in the PMM. These data suggest that although blue light alone is not able to maintain testicular function, the blue-light sensitive melanopsin activity is critical to maintain gonadal function.


Assuntos
Patos/metabolismo , Gônadas/patologia , Neurônios/metabolismo , Opsinas de Bastonetes/metabolismo , Animais , Comportamento Animal , Galinhas/genética , Masculino , Tamanho do Órgão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Inativadoras de Ribossomos Tipo 1/metabolismo , Saporinas , Testículo/crescimento & desenvolvimento
10.
BMC Biol ; 15(1): 4, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28122559

RESUMO

BACKGROUND: Animals use sensory cues to efficiently locate resources, but when sensory information is insufficient, they may rely on internally coded search strategies. Despite the importance of search behavior, there is limited understanding of the underlying neural mechanisms in vertebrates. RESULTS: Here, we report that loss of illumination initiates sophisticated light-search behavior in larval zebrafish. Using three-dimensional tracking, we show that at the onset of darkness larvae swim in a helical trajectory that is spatially restricted in the horizontal plane, before gradually transitioning to an outward movement profile. Local and outward swim patterns display characteristic features of area-restricted and roaming search strategies, differentially enhancing phototaxis to nearby and remote sources of light. Retinal signaling is only required to initiate area-restricted search, implying that photoreceptors within the brain drive the transition to the roaming search state. Supporting this, orthopediaA mutant larvae manifest impaired transition to roaming search, a phenotype which is recapitulated by loss of the non-visual opsin opn4a and somatostatin signaling. CONCLUSION: These findings define distinct neuronal pathways for area-restricted and roaming search behaviors and clarify how internal drives promote goal-directed activity.


Assuntos
Comportamento Animal , Encéfalo/metabolismo , Locomoção , Células Fotorreceptoras de Vertebrados/metabolismo , Transdução de Sinais , Somatostatina/metabolismo , Peixe-Zebra/metabolismo , Animais , Imageamento Tridimensional , Iluminação , Modelos Biológicos , Neurônios/metabolismo , Retinaldeído/metabolismo , Opsinas de Bastonetes/metabolismo , Natação
11.
Gen Comp Endocrinol ; 211: 106-13, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25486342

RESUMO

Three primitive photoreceptors [melanopsin (Opn4), neuropsin/opsin5 (Opn5) and vertebrate ancient opsin (VAOpn)] were reported as possible avian deep-brain photoreceptors (DBPs) involved in the perception of photoperiodic information affecting the onset and development of reproduction. The objective of this study was to determine the effect of long-day photostimulation and/or sulfamethazine treatment (SMZ, a compound known to advance light-induced testes development) on gene expression of DBPs and key hypothalamic and pituitary genes involved in avian reproductive function. Two-week old chicks were randomly selected into four experimental groups: short-day control (SC, LD8:16), short-day+SMZ (SS, LD8:16, 0.2% diet SMZ), long-day control (LC, LD16:8), and long-day+SMZ (LS, LD16:8, 0.2% diet SMZ). Birds were sampled on days 3, 7, and 28 after initiation of a long-day photoperiod and/or SMZ dietary treatments. Three brain regions [septal-preoptic, anterior hypothalamic (SepPre/Ant-Hypo) region, mid-hypothalamic (Mid-Hypo) region, posterior-hypothalamic (Post-Hypo) region], and anterior pituitary gland were dissected. Using quantitative real-time RT-PCR, we determined changes of expression levels of genes in distinct brain regions; Opn4 and Opn5 in SepPre/Ant-Hypo and Post-Hypo regions and, VAOpn in the Mid-Hypo region. Long-day treatment resulted in a significantly elevated testes weight on days 7 and 28 compared to controls, and SMZ augmented testes weight in both short- and long-day treatment after day 7 (P<0.05). Long-day photoperiodic treatment on the third day unexpectedly induced a large 8.4-fold increase of VAOpn expression in the Mid-Hypo region, a 15.4-fold increase of Opn4 and a 97.8-fold increase of Opn5 gene expression in the Post-Hypo region compared to SC birds (P<0.01). In contrast, on days 7 and 28, gene expression of the three DBPs was barely detectable. LC group showed a significant increase in GnRH-1 and TRH mRNA in the Mid-Hypo compared to SC on day 3. Pituitary LHß and FSHß mRNA were significantly elevated in LC and LS groups compared to SC on days 3 and 7 (P<0.05). On days 3 and 7, TSHß mRNA level was significantly elevated by long-day treatment compared to the SC groups (P<0.05). Results suggest that long-day photoperiodic activation of DBPs is robust, transient, and temporally related with neuroendocrine genes involved in reproductive function. Additionally, results indicate that two subsets of GnRH-1 neurons exist based upon significantly different gene expression from long-day photostimulation and long-day plus SMZ administration. Taken together, the data indicate that within 3 days of a long-day photoperiod, an eminent activation of all three types of DBPs might be involved in priming the neuroendocrine system to activate reproductive function in birds.


Assuntos
Encéfalo/metabolismo , Galinhas/metabolismo , Fotoperíodo , Células Fotorreceptoras de Vertebrados/metabolismo , Testículo/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Galinhas/genética , Dieta , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Luz , Hormônio Luteinizante Subunidade beta/genética , Hormônio Luteinizante Subunidade beta/metabolismo , Masculino , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sulfametazina/farmacologia , Testículo/efeitos dos fármacos , Testículo/crescimento & desenvolvimento , Testículo/efeitos da radiação , Tireotropina Subunidade beta/genética , Tireotropina Subunidade beta/metabolismo , Fatores de Tempo
12.
Front Neurosci ; 18: 1186677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694901

RESUMO

DNA aptamers can bind specifically to biomolecules to modify their function, potentially making them ideal oligonucleotide therapeutics. Herein, we screened for DNA aptamer of melanopsin (OPN4), a blue-light photopigment in the retina, which plays a key role using light signals to reset the phase of circadian rhythms in the central clock. Firstly, 15 DNA aptamers of melanopsin (Melapts) were identified following eight rounds of Cell-SELEX using cells expressing melanopsin on the cell membrane. Subsequent functional analysis of each Melapt was performed in a fibroblast cell line stably expressing both Period2:ELuc and melanopsin by determining the degree to which they reset the phase of mammalian circadian rhythms in response to blue-light stimulation. Period2 rhythmic expression over a 24-h period was monitored in Period2:ELuc stable cell line fibroblasts expressing melanopsin. At subjective dawn, four Melapts were observed to advance phase by >1.5 h, while seven Melapts delayed phase by >2 h. Some Melapts caused a phase shift of approximately 2 h, even in the absence of photostimulation, presumably because Melapts can only partially affect input signaling for phase shift. Additionally, some Melaps were able to induce phase shifts in Per1::luc transgenic (Tg) mice, suggesting that these DNA aptamers may have the capacity to affect melanopsin in vivo. In summary, Melapts can successfully regulate the input signal and shifting phase (both phase advance and phase delay) of mammalian circadian rhythms in vitro and in vivo.

13.
Antioxidants (Basel) ; 12(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37627589

RESUMO

Sodium iodate (NaIO3) has been shown to cause severe oxidative stress damage to retinal pigment epithelium cells. This results in the indirect death of photoreceptors, leading to a loss of visual capabilities. The aim of this work is the morphological and functional characterization of the retina and the visual pathway of an animal model of retinal neurodegeneration induced by oxidative stress. Following a single intraperitoneal dose of NaIO3 (65 mg/kg) to C57BL/6J mice with a mutation in the Opn4 gene (Opn4-/-), behavioral and electroretinographic tests were performed up to 42 days after administration, as well as retinal immunohistochemistry at day 57. A near total loss of the pupillary reflex was observed at 3 days, as well as an early deterioration of visual acuity. Behavioral tests showed a late loss of light sensitivity. Full-field electroretinogram recordings displayed a progressive and marked decrease in wave amplitude, disappearing completely at 14 days. A reduction in the amplitude of the visual evoked potentials was observed, but not their total disappearance. Immunohistochemistry showed structural alterations in the outer retinal layers. Our results show that NaIO3 causes severe structural and functional damage to the retina. Therefore, the current model can be presented as a powerful tool for the study of new therapies for the prevention or treatment of retinal pathologies mediated by oxidative stress.

14.
Vision Res ; 209: 108245, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290221

RESUMO

Melanopsin is a photopigment that plays a role in non-visual, light-driven, cellular processes such as modulation of circadian rhythms, retinal vascular development, and the pupillary light reflex (PLR). In this study, computational methods were used to understand which chromophore is harbored by melanopsin in red-eared slider turtles (Trachemys scripta elegans). In mammals, the vitamin A derivative 11-cis-retinal (A1) is the chromophore, which provides functionality for melanopsin. However, in red-eared slider turtles, a member of the reptilian class, the identity of the chromophore remains unclear. Red-eared slider turtles, similar to other freshwater vertebrates, possess visual pigments that harbor a different vitamin A derivative, 11-cis-3,4-didehydroretinal (A2), making their pigments more sensitive to red-light than blue-light, therefore, suggesting the chromophore to be the A2 derivative instead of the A1. To help resolve the chromophore identity, in this work, computational homology models of melanopsin in red-eared slider turtles were first constructed. Next, quantum mechanics/molecular mechanics (QM/MM) calculations were carried out to compare how A1 and A2 derivatives bind to melanopsin. Time dependent density functional theory (TDDFT) calculations were then used to determine the excitation energy of the pigments. Lastly, calculated excitation energies were compared to experimental spectral sensitivity data from responses by the irises of red-eared sliders. Contrary to what was expected, our results suggest that melanopsin in red-eared slider turtles is more likely to harbor the A1 chromophore than the A2. Furthermore, a glutamine (Q622.56) and tyrosine (Y853.28) residue in the chromophore binding pocket are shown to play a role in the spectral tuning of the chromophore.


Assuntos
Tartarugas , Animais , Tartarugas/fisiologia , Vitamina A/metabolismo , Opsinas de Bastonetes/metabolismo , Retina , Mamíferos
15.
Prog Brain Res ; 273(1): 117-143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35940712

RESUMO

Mammalian retinas contain three specialized photoreceptors: the rods and cones in the outer retina, whose primary function is to support visual perception in dim and bright environments, respectively, and a small subset of retinal ganglion cells ("intrinsically photosensitive" retinal ganglion cells; ipRGCs), which are directly light-responsive owing to their expression of the photopigment melanopsin. Melanopsin photoreception is optimized to encode low-frequency changes in the light environment and, as a result, extends the temporal and spatial range over which light is detected by the retina. ipRGCs innervate many brain areas, and this allows melanopsin light responses to be used for diverse purposes, ranging from the synchronization of the circadian clock with the solar day to light's regulation of mood, alertness, and neuroendocrine and cognitive functions. In this review, we discuss the methods and findings that have contributed to our understanding of melanopsin across biology. We particularly focus on the approaches that allow melanopsin to be studied at a systems/whole animal level and how these methods have illuminated the role of melanopsin in diverse physiological outputs.


Assuntos
Luz , Opsinas de Bastonetes , Animais , Mamíferos/metabolismo , Modelos Animais , Células Ganglionares da Retina/metabolismo , Opsinas de Bastonetes/metabolismo
16.
Cell Rep Methods ; 2(11): 100336, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36452866

RESUMO

We recently determined that the excitatory manipulation of Qrfp-expressing neurons in the preoptic area of the hypothalamus (quiescence-inducing neurons [Q neurons]) induced a hibernation-like hypothermic/hypometabolic state (QIH) in mice. To control the QIH with a higher time resolution, we develop an optogenetic method using modified human opsin4 (OPN4; also known as melanopsin), a G protein-coupled-receptor-type blue-light photoreceptor. C-terminally truncated OPN4 (OPN4dC) stably and reproducibly induces QIH for at least 24 h by illumination with low-power light (3 µW, 473 nm laser) with high temporal resolution. The high sensitivity of OPN4dC allows us to transcranially stimulate Q neurons with blue-light-emitting diodes and non-invasively induce the QIH. OPN4dC-mediated QIH recapitulates the kinetics of the physiological changes observed in natural hibernation, revealing that Q neurons concurrently contribute to thermoregulation and cardiovascular function. This optogenetic method may facilitate identification of the neural mechanisms underlying long-term dormancy states such as sleep, daily torpor, and hibernation.


Assuntos
Hibernação , Opsinas , Torpor , Animais , Humanos , Camundongos , Hibernação/fisiologia , Hipotálamo/fisiologia , Optogenética , Sono/fisiologia , Torpor/fisiologia , Opsinas/genética
17.
Front Genet ; 13: 896192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246649

RESUMO

Melanopsin (OPN4) is a blue light-sensitive opsin-type G-protein coupled receptor. It is highly expressed in photosensitive retinal ganglion cells which mediate responses to light, including regulation of sleep, circadian photoentrainment, and pupillary light response. Mutations in OPN4 were shown to affect responses to light, ultimately affecting the regulation of circadian rhythms and sleep. In this study, we describe a male carrier of the OPN4 missense variant diagnosed with delayed sleep-wake phase disorder (DSWPD), with a consistent recurrent pattern of delayed sleep onset The rs143641898 [NM_033282.4:c.502C>T p.(Arg168Cys)] variant in the OPN4 gene was shown in a functional study to render the OPN4 protein non-functional. The variant is rare and likely increases the risk of DSWPD via its direct effect on the melanopsin pathway. This study offers useful insights for the differential diagnosis and ultimately treatment of DSWPD risk in which patients carry pathogenic variants in the OPN4 gene.

18.
Poult Sci ; 101(4): 101699, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35176701

RESUMO

The Pekin duck is a valuable agricultural commodity globally and in the United States. Pekin ducks are seasonal breeders; they are sensitive to light and thus, research on the neuroendocrine and behavioral responses are needed to maximize production and to improve their welfare. There is compelling evidence that specific wavelengths of light may adversely alter the growth and welfare of meat (grow out) ducks. However, despite a birds' dependence upon light, in commercial poultry hatcheries, incubators almost exclusively hold eggs in the dark. Therefore, our objective was to determine the effects of lighting on the expression of retina photoreceptors (RPs) and deep brain photoreceptors (DBPs) during duck embryological development. Two groups of ducks were raised with and without light over 21 d from egg laying, embryonic day 0. Brain and retinal tissues were collected at embryonic days 3, 7, 11, 16, and 21 of a 24 d incubation period. qRT-PCR was performed on RPs (OPN1LW, OPN2SW, OPN1SW, MAFA, RHO, and RBP3) and the DBP OPN4M from retinal and brain samples, respectively. We find that the presence and absence of light during pre-hatch incubation, had no influence on the expression of any retinal photoreceptor. However, a late embryological increase in DBP OPN4M expression was observed. Taken together, the impact of light during pre-hatch incubation does not impact the overall post-hatch production. However, future directions should explore how OPN4M pre-hatch activation impacts Pekin duck post-hatch development and growth.


Assuntos
Patos , Opsinas , Animais , Galinhas , Patos/fisiologia , Desenvolvimento Embrionário , Incubadoras , Óvulo
19.
Front Neuroanat ; 16: 1054849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530520

RESUMO

Purpose: To identify and characterize numerically and topographically the population of alpha retinal ganglion cells (αRGCs) and their subtypes, the sustained-response ON-center αRGCs (ONs-αRGCs), which correspond to the type 4 intrinsically photosensitive RGCs (M4-ipRGCs), the transient-response ON-center αRGCs (ONt-αRGCs), the sustained-response OFF-center αRGCs (OFFs-αRGCs), and the transient-response OFF-center αRGCs (OFFt-αRGCs) in the adult pigmented mouse retina. Methods: The αRGC population and its subtypes were studied in flat-mounted retinas and radial sections immunodetected against non-phosphorylated high molecular weight neurofilament subunit (SMI-32) or osteopontin (OPN), two αRGCs pan-markers; Calbindin, expressed in ONs-αRGCs, and amacrines; T-box transcription factor T-brain 2 (Tbr2), a key transcriptional regulator for ipRGC development and maintenance, expressed in ipRGCs and GABA-displaced amacrine cells; OPN4, an anti-melanopsin antibody; or Brn3a and Brn3c, markers of RGCs. The total population of RGCs was counted automatically and αRGCs and its subtypes were counted manually, and color-coded neighborhood maps were used for their topographical representation. Results: The total mean number of αRGCs per retina is 2,252 ± 306 SMI32+αRGCs and 2,315 ± 175 OPN+αRGCs (n = 10), representing 5.08% and 5.22% of the total number of RGCs traced from the optic nerve, respectively. αRGCs are distributed throughout the retina, showing a higher density in the temporal hemiretina. ONs-αRGCs represent ≈36% [841 ± 110 cells (n = 10)] of all αRGCs and are located throughout the retina, with the highest density in the temporal region. ONt-αRGCs represent ≈34% [797 ± 146 cells (n = 10)] of all αRGCs and are mainly located in the central retinal region. OFF-αRGCs represent the remaining 32% of total αRGCs and are divided equally between OFFs-αRGCs and OFFt-αRGCs [363 ± 50 cells (n = 10) and 376 ± 36 cells (n = 10), respectively]. OFFs-αRGCs are mainly located in the supero-temporal peripheral region of the retina and OFFt-αRGCs in the mid-peripheral region of the retina, especially in the infero-temporal region. Conclusions: The combination of specific antibodies is a useful tool to identify and study αRGCs and their subtypes. αRGCs are distributed throughout the retina presenting higher density in the temporal area. The sustained ON and OFF response subtypes are mainly located in the periphery while the transient ON and OFF response subtypes are found in the central regions of the retina.

20.
Front Neurosci ; 15: 637221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163318

RESUMO

Innovations in LED lighting technology have led to tremendous adoption rates and vastly improved the metrics by which they are traditionally evaluated-including color quality, longevity, and energy efficiency to name a few. Additionally, scientific insight has broadened with respect to the biological impact of light, specifically our circadian rhythm. Indoor electric lighting, despite its many attributes, fails to specifically address the biological responses to light. Traditional electric lighting environments are biologically too dim during the day, too bright at night, and with many people spending much of their lives in these environments, it can lead to circadian dysfunction. The lighting industry's biological solution has been to create bluer days and yellower nights, but the technology created to do so caters primarily to the cones. A better call to action is to provide biologically brighter days and biologically darker nights within the built environment. However, current lighting design practices have specified the comfort and utility of electric light. Brighter intensity during the day can often be uncomfortable or glary, and reduced light intensity at night may compromise visual comfort and safety, both of which will affect user compliance. No single lighting solution will effectively create biologically brighter days and biologically darker nights, but rather a variety of parameters need to be considered. This paper discusses the contributions of spectral power distribution, hue or color temperature, spatial distribution, as well as architectural geometry and surface reflectivity, to achieve biologically relevant lighting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA