Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Virol ; 96(13): e0053122, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35727032

RESUMO

Segmented RNA viruses are a taxonomically diverse group that can infect plant, wildlife, livestock and human hosts. A shared feature of these viruses is the ability to exchange genome segments during coinfection of a host by a process termed "reassortment." Reassortment enables rapid evolutionary change, but where transmission involves a biological arthropod vector, this change is constrained by the selection pressures imposed by the requirement for replication in two evolutionarily distant hosts. In this study, we use an in vivo, host-arbovirus-vector model to investigate the impact of reassortment on two phenotypic traits, virus infection rate in the vector and virulence in the host. Bluetongue virus (BTV) (Reoviridae) is the causative agent of bluetongue (BT), an economically important disease of domestic and wild ruminants and deer. The genome of BTV comprises 10 linear segments of dsRNA, and the virus is transmitted between ruminants by Culicoides biting midges (Diptera: Ceratopogonidae). Five strains of BTV representing three serotypes (BTV-1, BTV-4, and BTV-8) were isolated from naturally infected ruminants in Europe and ancestral/reassortant lineage status assigned through full genome sequencing. Each strain was then assessed in parallel for the ability to replicate in vector Culicoides and to cause BT in sheep. Our results demonstrate that two reassortment strains, which themselves became established in the field, had obtained high replication ability in C. sonorensis from one of the ancestral virus strains, which allowed inferences of the genome segments conferring this phenotypic trait. IMPORTANCE Reassortment between virus strains can lead to major shifts in the transmission parameters and virulence of segmented RNA viruses, with consequences for spread, persistence, and impact. The ability of these pathogens to adapt rapidly to their environment through this mechanism presents a major challenge in defining the conditions under which emergence can occur. Utilizing a representative mammalian host-insect vector infection and transmission model, we provide direct evidence of this phenomenon in closely related ancestral and reassortant strains of BTV. Our results demonstrate that efficient infection of Culicoides observed for one of three ancestral BTV strains was also evident in two reassortant strains that had subsequently emerged in the same ecosystem.


Assuntos
Vetores Artrópodes , Vírus Bluetongue , Bluetongue , Ceratopogonidae , Doenças dos Ovinos , Animais , Vetores Artrópodes/virologia , Bluetongue/transmissão , Bluetongue/virologia , Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Vírus Bluetongue/patogenicidade , Ceratopogonidae/virologia , Cervos , Fenótipo , Vírus Reordenados/metabolismo , Ovinos , Doenças dos Ovinos/transmissão , Doenças dos Ovinos/virologia , Replicação Viral
2.
J Virol ; 96(3): e0161421, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34787454

RESUMO

Bluetongue, caused by bluetongue virus (BTV), is a widespread arthropod-borne disease of ruminants that entails a recurrent threat to the primary sector of developed and developing countries. In this work, we report modified vaccinia virus Ankara (MVA) and ChAdOx1-vectored vaccines designed to simultaneously express the immunogenic NS1 protein and/or NS2-Nt, the N-terminal half of protein NS2 (NS21-180). A single dose of MVA or ChAdOx1 expressing NS1-NS2-Nt improved the protection conferred by NS1 alone in IFNAR(-/-) mice. Moreover, mice immunized with ChAdOx1/MVA-NS1, ChAdOx1/MVA-NS2-Nt, or ChAdOx1/MVA-NS1-NS2-Nt developed strong cytotoxic CD8+ T-cell responses against NS1, NS2-Nt, or both proteins and were fully protected against a lethal infection with BTV serotypes 1, 4, and 8. Furthermore, although a single immunization with ChAdOx1-NS1-NS2-Nt partially protected sheep against BTV-4, the administration of a booster dose of MVA-NS1-NS2-Nt promoted a faster viral clearance, reduction of the period and level of viremia and also protected from the pathology produced by BTV infection. IMPORTANCE Current BTV vaccines are effective but they do not allow to distinguish between vaccinated and infected animals (DIVA strategy) and are serotype specific. In this work we have develop a DIVA multiserotype vaccination strategy based on adenoviral (ChAdOx1) and MVA vaccine vectors, the most widely used in current phase I and II clinical trials, and the conserved nonstructural BTV proteins NS1 and NS2. This immunization strategy solves the major drawbacks of the current marketed vaccines.


Assuntos
Vírus Bluetongue/imunologia , Bluetongue/prevenção & controle , Vetores Genéticos/genética , Vaccinia virus/genética , Proteínas não Estruturais Virais/genética , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus Bluetongue/classificação , Vetores Genéticos/imunologia , Imunidade Celular , Imunização , Imunogenicidade da Vacina , Sorogrupo , Ovinos , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vaccinia virus/imunologia , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
3.
Vector Borne Zoonotic Dis ; 23(1): 35-43, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36595376

RESUMO

Background: In August 2013, a virus strain (DH13M98) was isolated from Culex tritaeniorhynchus Giles collected in Mangshi, the southwestern border area of Yunnan Province, China. The virus replicated and caused cytopathic effects (CPE) in Aedes albopictus (C6/36) cells, but not in baby hamster Syrian kidney (BHK-21) cells. Materials and Methods: Agarose gel electrophoresis (AGE) analysis revealed that the DH13M98 virus was a 10-segment double-stranded RNA (dsRNA) virus, with a "1-1-1-2-1-1-2-1" pattern. The full genome of the DH13M98 virus was sequenced by full-length amplification of complementary DNAs (FLAC). Results: Phylogenetic analysis of the viral RNA-dependent RNA polymerase (Pol), major subcore-shell (T2), and major core-surface (T13) protein showed that DH13M98 clustered with Umatilla virus (UMAV), and the amino acid (aa) sequences of DH13M98 shared more than 89.5% (Pol), 95% (T2), and 91.1% (T13) identity with UMAV. However, the aa identity of outer capsid protein one (OC1) of DH13M98 with other UMAV was 57.1-79.2%, suggesting that DH13M98 was UMAV, but distinct from other strains of UMAV from the United States, Japan, and Germany at OC1, and it may be a high variant strain of UMAV, even a new serotype. Conclusion: This is the first isolation of UMAV in China, which enriches the resources of virus species in China and provides new insights into the genetic diversity and geographical distribution of the virus.


Assuntos
Culex , Orbivirus , Cricetinae , Animais , China , Filogenia , Orbivirus/genética , Sequência de Bases
4.
Ticks Tick Borne Dis ; 12(2): 101612, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33291056

RESUMO

Wad Medani virus (WMV) belongs to the genus Orbivirus and is a poorly studied arbovirus with unclear medical significance. Presently, a limited number of WMV strains are characterized and available in NCBI GenBank, some isolated many years ago. A new WMV strain was isolated in 2012 from Dermacentor nuttalli ticks collected from sheep in the Tuva Republic, Russia, and sequenced using high-throughput methods. Complete coding sequences were obtained revealing signs of multiple intersegment reassortments. These point to a high variability potential in WMV that may lead to the formation of strains with novel properties. These new data on WMV can promote better understanding of: ecological features of its circulation; relationships within the genus Orbivirus; and the medical significance of the virus.


Assuntos
Dermacentor/virologia , Orbivirus/isolamento & purificação , Ovinos/parasitologia , Animais , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Conformação Molecular , Orbivirus/química , Filogenia , Análise de Sequência de RNA/veterinária , Ovinos/virologia , Sibéria
5.
Pathogens ; 10(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34451380

RESUMO

Bluetongue (BT) and epizootic hemorrhagic disease (EHD) cases have increased worldwide, causing significant economic loss to ruminant livestock production and detrimental effects to susceptible wildlife populations. In recent decades, hemorrhagic disease cases have been reported over expanding geographic areas in the United States. Effective BT and EHD prevention and control strategies for livestock and monitoring of these diseases in wildlife populations depend on an accurate understanding of the distribution of BT and EHD viruses in domestic and wild ruminants and their vectors, the Culicoides biting midges that transmit them. However, national maps showing the distribution of BT and EHD viruses and the presence of Culicoides vectors are incomplete or not available at all. Thus, efforts to accurately describe the potential risk of these viruses on ruminant populations are obstructed by the lack of systematic and routine surveillance of their hosts and vectors. In this review, we: (1) outline animal health impacts of BT and EHD in the USA; (2) describe current knowledge of the distribution and abundance of BT and EHD and their vectors in the USA; and (3) highlight the importance of disease (BT and EHD) and vector surveillance for ruminant populations.

6.
J Med Entomol ; 57(1): 25-32, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31602460

RESUMO

Laboratory rearing procedures of Culicoides stellifer Coquillett (Diptera: Ceratopogonidae) were evaluated with an aim towards colonization of this species. Eggs collected from field-collected gravid females were placed on 0.25% agar slants and given a diet of 1) nematodes (Panagrellus redivivus Linnaeus), 2) nematodes + lactalbumin and yeast (LY), 3) microbes from nematode medium, and 4) tap water (autoclaved). Complete larval development to adult stage occurred only in two treatments: 1) nematodes and 2) nematodes + LY. Culicoides stellifer larvae could not survive beyond 1 wk on a diet of microbes alone or in the sterile water treatment. Larval survival rates were high using nematode diet (79.2 ± 11.3% [mean ± SE]) but were slightly lower in the nematode + LY group (66.5 ± 19.6%). Larval stage lasted ~21 d in both treatments. Sex ratio of F1 adults was ~1:1 (M:F) using nematode diet but was male biased (~2:1) with nematode + LY diet. These findings collectively suggest that a microbial community is required for midge larvae, either to support invertebrate prey base or as a potential food source. But in the present study, the supplied microbes alone were not sufficient to support midge survival/development. It appears that other nutritional components may also be essential to support the larval survival/development of C. stellifer. Overall, a simple diet of bacterial feeding nematodes and their associated microorganisms can be used to rear C. stellifer larvae under laboratory conditions. However, captive mating in F1 adults poses a major obstacle for successful colonization of this species currently.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Ceratopogonidae/crescimento & desenvolvimento , Insetos Vetores/crescimento & desenvolvimento , Características de História de Vida , Animais , Dieta , Orbivirus , Estados Unidos
7.
Acta Trop ; 191: 24-28, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30590029

RESUMO

A cross-sectional study was conducted to explore the epidemiological situation in Mayotte regarding two orbiviruses: Bluetongue virus (BTV) and Epizootic Haemorrhagic Disease virus (EHDV). In all, 385 individual asymptomatic cattle were blood-sampled (one EDTA and one serum tube per animal) between February and June 2016. Antibody (ELISA) and genome prevalence (PCR) was assessed. Almost all the selected cattle showed antibodies against both BTV and EHDV, at 99.5% (CI95% [98.00, 100]) and 96.9% (CI95% [94.5, 98.3]), respectively. Most of the cattle acquired antibodies in their first years of age. EHDV and BTV genomes were detected in 25.2% (CI95% [21.1, 29.8]) and 18.2% (CI95% [14.6, 22.4]) of samples, respectively. Coinfection with BTV and EHDV was observed in 9.4% of samples (CI95% [6.8, 12.7]). Cattle under three years old were more frequently reported as positive for genome detection by PCR than older cattle. Five serotypes of BTV and one serotype of EHDV were identified from eight samples: BTV-4, BTV-9, BTV-11, BTV-15, BTV-19 and EHDV-6, of which some were reported in neighbouring areas. BTV and EHDV both circulate in Mayotte and in its surrounding territories.


Assuntos
Vírus Bluetongue/isolamento & purificação , Bluetongue/epidemiologia , Doenças dos Bovinos/epidemiologia , Vírus da Doença Hemorrágica Epizoótica/isolamento & purificação , Infecções por Reoviridae/epidemiologia , Ovinos/virologia , Animais , Bovinos , Comores/epidemiologia , Estudos Transversais
8.
Ecohealth ; 14(3): 518-529, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28634781

RESUMO

Wild populations of the critically endangered woylie (Bettongia penicillata) recently declined by 90% in southwest Western Australia. Increased predation is the leading hypothesis for decline, but disease may be playing a role increasing susceptibility to predation. To explore this possibility, we surveyed woylie populations in the wild, in captivity and in a predator-free sanctuary for exposure to, and infection with, four known pathogens of macropods: herpesviruses, Wallal and Warrego orbiviruses, and Toxoplasma gondii. Our study found two of 68 individuals positive for neutralizing antibodies against known macropodid alphaherpesviruses. Three of 45 individuals were PCR positive for a herpesvirus that was shown to be a novel gammaherpesvirus or a new strain/variant of Potoroid Herpesvirus 1. Further sequence information is required to definitively determine its correct classification. There was no evidence of antibodies to orbivirus Wallal and Warrego serogroups, and all serological samples tested for T. gondii were negative. This is the first report of PCR and serological detection of herpesviruses in the woylie. Positive individuals did not demonstrate clinical signs of herpesviral diseases; therefore, the clinical significance of herpesviruses to wild woylie populations remains unclear. Further monitoring for herpesvirus infections will be important to inform disease risk analysis for this virus and determine temporal trends in herpesvirus activity that may relate to population health and conservation outcomes.


Assuntos
Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , Herpesviridae/isolamento & purificação , Orbivirus/isolamento & purificação , Potoroidae/parasitologia , Potoroidae/virologia , Toxoplasma/isolamento & purificação , Animais , Austrália Ocidental
9.
Virus Res ; 182: 35-42, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24100234

RESUMO

Bluetongue is an arthropod-borne disease caused by a virus of the genus Orbivirus, the bluetongue virus (BTV), which affects ruminant livestock such as cattle, sheep, and goats and wild ruminants such as deer, and camelids. Recently, adult mice with gene knockouts of the interferon α/ß receptor (IFNAR-/-) have been described as a model of lethal BTV infection. IFNAR(-/-) mice are highly susceptible to BTV-1, BTV-4 and BTV-8 infection when the virus is administered intravenously or subcutaneosuly. Disease progression and pathogenesis closely mimics signs of bluetongue disease in ruminants. In the present paper we review the studies where IFNAR(-/-) mice have been used as an animal model to study BTV transmission, pathogenesis, virulence, and protective efficacy of inactivated and new recombinant marker BTV vaccines. Furthermore, we report new data on protective efficacy of different strategies of BTV vaccination and also on induction of interferon α/ß and proinflammatory immune responses in IFNAR(-/-) mice infected with BTV.


Assuntos
Vírus Bluetongue/imunologia , Vírus Bluetongue/fisiologia , Bluetongue/patologia , Bluetongue/virologia , Modelos Animais de Doenças , Receptor de Interferon alfa e beta/deficiência , Animais , Bluetongue/imunologia , Bluetongue/prevenção & controle , Vírus Bluetongue/patogenicidade , Camundongos , Camundongos Knockout , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA