Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.260
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(1): 209-229.e26, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608654

RESUMO

Transcription factors (TFs) regulate gene programs, thereby controlling diverse cellular processes and cell states. To comprehensively understand TFs and the programs they control, we created a barcoded library of all annotated human TF splice isoforms (>3,500) and applied it to build a TF Atlas charting expression profiles of human embryonic stem cells (hESCs) overexpressing each TF at single-cell resolution. We mapped TF-induced expression profiles to reference cell types and validated candidate TFs for generation of diverse cell types, spanning all three germ layers and trophoblasts. Targeted screens with subsets of the library allowed us to create a tailored cellular disease model and integrate mRNA expression and chromatin accessibility data to identify downstream regulators. Finally, we characterized the effects of combinatorial TF overexpression by developing and validating a strategy for predicting combinations of TFs that produce target expression profiles matching reference cell types to accelerate cellular engineering efforts.


Assuntos
Diferenciação Celular , Fatores de Transcrição , Humanos , Cromatina , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/metabolismo , Fatores de Transcrição/metabolismo , Atlas como Assunto
2.
Cell ; 176(4): 882-896.e18, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639098

RESUMO

T helper type 2 (Th2) cells are important regulators of mammalian adaptive immunity and have relevance for infection, autoimmunity, and tumor immunology. Using a newly developed, genome-wide retroviral CRISPR knockout (KO) library, combined with RNA-seq, ATAC-seq, and ChIP-seq, we have dissected the regulatory circuitry governing activation and differentiation of these cells. Our experiments distinguish cell activation versus differentiation in a quantitative framework. We demonstrate that these two processes are tightly coupled and are jointly controlled by many transcription factors, metabolic genes, and cytokine/receptor pairs. There are only a small number of genes regulating differentiation without any role in activation. By combining biochemical and genetic data, we provide an atlas for Th2 differentiation, validating known regulators and identifying factors, such as Pparg and Bhlhe40, as part of the core regulatory network governing Th2 helper cell fates.


Assuntos
Receptor Cross-Talk/imunologia , Células Th2/imunologia , Células Th2/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Cromatina , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/metabolismo , Fatores de Transcrição/metabolismo
3.
Mol Cell ; 74(5): 1086-1102.e5, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31101498

RESUMO

Kinase and phosphatase overexpression drives tumorigenesis and drug resistance. We previously developed a mass-cytometry-based single-cell proteomics approach that enables quantitative assessment of overexpression effects on cell signaling. Here, we applied this approach in a human kinome- and phosphatome-wide study to assess how 649 individually overexpressed proteins modulated cancer-related signaling in HEK293T cells in an abundance-dependent manner. Based on these data, we expanded the functional classification of human kinases and phosphatases and showed that the overexpression effects include non-catalytic roles. We detected 208 previously unreported signaling relationships. The signaling dynamics analysis indicated that the overexpression of ERK-specific phosphatases sustains proliferative signaling. This suggests a phosphatase-driven mechanism of cancer progression. Moreover, our analysis revealed a drug-resistant mechanism through which overexpression of tyrosine kinases, including SRC, FES, YES1, and BLK, induced MEK-independent ERK activation in melanoma A375 cells. These proteins could predict drug sensitivity to BRAF-MEK concurrent inhibition in cells carrying BRAF mutations.


Assuntos
Carcinogênese/genética , Melanoma/genética , Monoéster Fosfórico Hidrolases/genética , Fosfotransferases/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Melanoma/enzimologia , Melanoma/patologia , Mutação , Fosforilação/genética , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Transdução de Sinais/efeitos dos fármacos
4.
Plant J ; 117(5): 1432-1452, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38044809

RESUMO

Cells save their energy during nitrogen starvation by selective autophagy of ribosomes and degradation of RNA to ribonucleotides and nucleosides. Nucleosides are hydrolyzed by nucleoside N-ribohydrolases (nucleosidases, NRHs). Subclass I of NRHs preferentially hydrolyzes the purine ribosides while subclass II is more active towards uridine and xanthosine. Here, we performed a crystallographic and kinetic study to shed light on nucleoside preferences among plant NRHs followed by in vivo metabolomic and phenotyping analyses to reveal the consequences of enhanced nucleoside breakdown. We report the crystal structure of Zea mays NRH2b (subclass II) and NRH3 (subclass I) in complexes with the substrate analog forodesine. Purine and pyrimidine catabolism are inseparable because nucleobase binding in the active site of ZmNRH is mediated via a water network and is thus unspecific. Dexamethasone-inducible ZmNRH overexpressor lines of Arabidopsis thaliana, as well as double nrh knockout lines of moss Physcomitrium patents, reveal a fine control of adenosine in contrast to other ribosides. ZmNRH overexpressor lines display an accelerated early vegetative phase including faster root and rosette growth upon nitrogen starvation or osmotic stress. Moreover, the lines enter the bolting and flowering phase much earlier. We observe changes in the pathways related to nitrogen-containing compounds such as ß-alanine and several polyamines, which allow plants to reprogram their metabolism to escape stress. Taken together, crop plant breeding targeting enhanced NRH-mediated nitrogen recycling could therefore be a strategy to enhance plant growth tolerance and productivity under adverse growth conditions.


Assuntos
Arabidopsis , Nucleosídeos , Nucleosídeos/metabolismo , Nitrogênio/metabolismo , Melhoramento Vegetal , Plantas/metabolismo , Uridina/metabolismo , Arabidopsis/genética
5.
Plant Physiol ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39268871

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) system allows precise and easy editing of genes in many plant species. However, this system has not yet been applied to any fern species through gametophytes due to the complex characteristics of fern genomes, genetics, and physiology. Here, we established a protocol for gametophyte-based screening of single-guide RNAs (sgRNAs) with high efficiency for CRISPR/Cas9-mediated gene knockout in a model fern species, Ceratopteris richardii. We utilized the C. richardii ACTIN promoter to drive sgRNA expression and the enhanced CaMV 35S promoter to drive the expression of Streptococcus pyogenes Cas9 in this CRISPR-mediated editing system, which was employed to successfully edit a few genes, such as Nucleotidase/phosphatase 1 (CrSAL1) and Phytoene Desaturase (CrPDS), which resulted in an albino phenotype in C. richardii. Knockout of CrSAL1 resulted in significantly (P<0.05) reduced stomatal conductance (gs), leaf transpiration rate (E), guard cell length, and abscisic acid (ABA)-induced reactive oxygen species (ROS) accumulation in guard cells. Moreover, CrSAL1 overexpressing plants showed significantly increased net photosynthetic rate (A), gs, and E as well as most of the stomatal traits and ABA-induced ROS production in guard cells compared to the wild-type (WT) plants. Taken together, our optimized CRISPR/Cas9 system provides a useful tool for functional genomics in a model fern species, allowing the exploration of fern gene functions for evolutionary biology, herbal medicine discovery, and agricultural applications.

6.
Plant Physiol ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140753

RESUMO

Mitogen-activated protein kinase kinases (MAPKKs) play a critical role in the mitogen-activated protein kinase (MAPK) signaling pathway, transducing external stimuli into intracellular responses and enabling plant adaptation to environmental challenges. Most research has focused on the model plant Arabidopsis (Arabidopsis thaliana). The systematic analysis and characterization of MAPKK genes across different plant species, particularly in cotton (Gossypium hirsutum), are somewhat limited. Here, we identified MAPKK family members from 66 different species, which clustered into 5 different sub-groups, and MAPKKs from four cotton species clustered together. Through further bioinformatic and expression analysis, GhMAPKK5 was identified as the most responsive MAPKK member to salt and drought stress among the 23 MAPKKs identified in Gossypium hirsutum. Silencing GhMAPKK5 in cotton through virus-induced gene silencing (VIGS) led to quicker wilting under salt and drought conditions, while overexpressing GhMAPKK5 in Arabidopsis enhanced root growth and seed germination under these stresses, demonstrating GhMAPKK5's positive role in stress tolerance. Transcriptomics and Yeast-Two-Hybrid assays revealed a MAPK cascade signal module comprising GhMEKK (Mitogen-activated protein kinase kinase kinases)3/8/31-GhMAPKK5-GhMAPK11/23. This signaling cascade may play a role in managing drought and salt stress by regulating transcription factor genes, such as WRKYs, which are involved in the biosynthesis and transport pathways of ABA, proline, and RALF. This study is highly important for further understanding the regulatory mechanism of MAPKK in cotton, contributing to its stress tolerance and offering potential in targets for genetic enhancement.

7.
Mol Ther ; 32(7): 2113-2129, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38788710

RESUMO

Sepsis-associated encephalopathy (SAE) is a frequent complication of severe systemic infection resulting in delirium, premature death, and long-term cognitive impairment. We closely mimicked SAE in a murine peritoneal contamination and infection (PCI) model. We found long-lasting synaptic pathology in the hippocampus including defective long-term synaptic plasticity, reduction of mature neuronal dendritic spines, and severely affected excitatory neurotransmission. Genes related to synaptic signaling, including the gene for activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and members of the transcription-regulatory EGR gene family, were downregulated. At the protein level, ARC expression and mitogen-activated protein kinase signaling in the brain were affected. For targeted rescue we used adeno-associated virus-mediated overexpression of ARC in the hippocampus in vivo. This recovered defective synaptic plasticity and improved memory dysfunction. Using the enriched environment paradigm as a non-invasive rescue intervention, we found improvement of defective long-term potentiation, memory, and anxiety. The beneficial effects of an enriched environment were accompanied by an increase in brain-derived neurotrophic factor (BDNF) and ARC expression in the hippocampus, suggesting that activation of the BDNF-TrkB pathway leads to restoration of the PCI-induced reduction of ARC. Collectively, our findings identify synaptic pathomechanisms underlying SAE and provide a conceptual approach to target SAE-induced synaptic dysfunction with potential therapeutic applications to patients with SAE.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Hipocampo , Plasticidade Neuronal , Encefalopatia Associada a Sepse , Animais , Camundongos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/terapia , Disfunção Cognitiva/genética , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/etiologia , Encefalopatia Associada a Sepse/terapia , Encefalopatia Associada a Sepse/genética , Hipocampo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Dependovirus/genética , Masculino , Potenciação de Longa Duração , Receptor trkB/metabolismo , Receptor trkB/genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Sinapses/metabolismo
8.
Genesis ; 62(1): e23557, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37830136

RESUMO

Engrailed-1 (EN1) is a developmental gene that encodes En1, a highly conserved transcription factor involved in regionalization during early embryogenesis and in the later maintenance of normal neurons. After birth, EN1 still plays a role in the development and physiology of the body; for example, it exerts a protective effect on midbrain dopaminergic (mDA) neurons, and loss of EN1 causes mDA neurons in the ventral midbrain to gradually die approximately 6 weeks after birth, resulting in motor and nonmotor symptoms similar to those observed in Parkinson's disease. Notably, EN1 has been identified as a possible susceptibility gene for idiopathic Parkinson's disease in humans. EN1 is involved in the processes of wound-healing scar production and tissue and organ fibrosis. Additionally, EN1 can lead to tumorigenesis and thus provides a target for the treatment of some tumors. In this review, we summarize the effects of EN1 on embryonic organ development, describe the consequences of the deletion or overexpression of the EN1 gene, and discuss the pathways in which EN1 is involved. We hope to clarify the role of EN1 as a developmental gene and present potential therapeutic targets for diseases involving the EN1 gene.


Assuntos
Proteínas de Homeodomínio , Doença de Parkinson , Humanos , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neurônios/metabolismo , Regulação da Expressão Gênica , Genes Homeobox , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
9.
J Bacteriol ; 206(1): e0035623, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38169297

RESUMO

The termination factor Rho, an ATP-dependent RNA translocase, preempts pervasive transcription processes, thereby rendering genome integrity in bacteria. Here, we show that the loss of Rho function raised the intracellular pH to >8.0 in Escherichia coli. The loss of Rho function upregulates tryptophanase-A (TnaA), an enzyme that catabolizes tryptophan to produce indole, pyruvate, and ammonia. We demonstrate that the enhanced TnaA function had produced the conjugate base ammonia, raising the cellular pH in the Rho-dependent termination defective strains. On the other hand, the constitutively overexpressed Rho lowered the cellular pH to about 6.2, independent of cellular ammonia levels. Since Rho overexpression may increase termination activities, the decrease in cellular pH could result from an excess H+ ion production during ATP hydrolysis by overproduced Rho. Furthermore, we performed in vivo termination assays to show that the efficiency of Rho-dependent termination was increased at both acidic and basic pH ranges. Given that the Rho level remained unchanged, the alkaline pH increases the termination efficiency by stimulating Rho's catalytic activity. We conducted the Rho-mediated RNA release assay from a stalled elongation complex to show an efficient RNA release at alkaline pH, compared to the neutral or acidic pH, that supports our in vivo observation. Whereas acidic pH appeared to increase the termination function by elevating the cellular level of Rho. This study is the first to link Rho function to the cellular pH homeostasis in bacteria. IMPORTANCE The current study shows that the loss or gain of Rho-dependent termination alkalizes or acidifies the cytoplasm, respectively. In the case of loss of Rho function, the tryptophanase-A enzyme is upregulated, and degrades tryptophan, producing ammonia to alkalize cytoplasm. We hypothesize that Rho overproduction by deleting its autoregulatory DNA portion increases termination function, causing excessive ATP hydrolysis to produce H+ ions and cytoplasmic acidification. Therefore, this study is the first to unravel a relationship between Rho function and intrinsic cellular pH homeostasis. Furthermore, the Rho level increases in the absence of autoregulation, causing cytoplasmic acidification. As intracellular pH plays a critical role in enzyme function, such a connection between Rho function and alkalization will have far-reaching implications for bacterial physiology.


Assuntos
Transcrição Gênica , Triptofano , Triptofano/genética , Triptofano/metabolismo , Triptofanase/genética , Triptofanase/metabolismo , Amônia/metabolismo , Fator Rho/genética , Fator Rho/metabolismo , Escherichia coli/metabolismo , RNA/metabolismo , Homeostase , Trifosfato de Adenosina/metabolismo , Concentração de Íons de Hidrogênio
10.
BMC Genomics ; 25(1): 195, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373903

RESUMO

BACKGROUND: Lipoxygenase (LOX) is a multifunctional enzyme that is primarily related to plant organ growth and development, biotic and abiotic stress responses, and production of flavor-associated metabolites. In higher plants, the LOX family encompasses several isozymes with varying expression patterns between tissues and developmental stages. These affect processes including seed germination, seed storage, seedling growth, fruit ripening, and leaf senescence. LOX family genes have multiple functions in response to hormones such as methyl jasmonate (MeJA) and salicylic acid. RESULTS: In this study, we identified 30 and 95 LOX homologs in Medicago truncatula and Medicago sativa, respectively. These genes were characterized with analyses of their basic physical and chemical properties, structures, chromosomal distributions, and phylogenetic relationships to understand structural variations and their physical locations. Phylogenetic analysis was conducted for members of the three LOX subfamilies (9-LOX, type I 13-LOX, and type II 13-LOX) in Arabidopsis thaliana, Glycine max, M. truncatula, and M. sativa. Analysis of predicted promoter elements revealed several relevant cis-acting elements in MtLOX and MsLOX genes, including abscisic acid (ABA) response elements (ABREs), MeJA response elements (CGTCA-motifs), and antioxidant response elements (AREs). Cis-element data combined with transcriptomic data demonstrated that LOX gene family members in these species were most likely related to abiotic stress responses, hormone responses, and plant development. Gene expression patterns were confirmed via quantitative reverse transcription PCR. Several MtLOX genes (namely MtLOX15, MtLOX16, MtLOX20, and MtLOX24) belonging to the type I 13-LOX subfamily and other LOX genes (MtLOX7, MtLOX11, MsLOX23, MsLOX87, MsLOX90, and MsLOX94) showed significantly different expression levels in the flower tissue, suggesting roles in reproductive growth. Type I 13-LOXs (MtLOX16, MtLOX20, MtLOX21, MtLOX24, MsLOX57, MsLOX84, MsLOX85, and MsLOX94) and type II 13-LOXs (MtLOX5, MtLOX6, MtLOX9, MtLOX10, MsLOX18, MsLOX23, and MsLOX30) were MeJA-inducible and were predicted to function in the jasmonic acid signaling pathway. Furthermore, exogenous MtLOX24 expression in Arabidopsis verified that MtLOX24 was involved in MeJA responses, which may be related to insect-induced abiotic stress. CONCLUSIONS: We identified six and four LOX genes specifically expressed in the flowers of M. truncatula and M. sativa, respectively. Eight and seven LOX genes were induced by MeJA in M. truncatula and M. sativa, and the LOX genes identified were mainly distributed in the type I and type II 13-LOX subfamilies. MtLOX24 was up-regulated at 8 h after MeJA induction, and exogenous expression in Arabidopsis demonstrated that MtLOX24 promoted resistance to MeJA-induced stress. This study provides valuable new information regarding the evolutionary history and functions of LOX genes in the genus Medicago.


Assuntos
Acetatos , Arabidopsis , Ciclopentanos , Medicago truncatula , Oxilipinas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago sativa/genética , Estudo de Associação Genômica Ampla , Filogenia , Arabidopsis/genética , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
11.
BMC Genomics ; 25(1): 88, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254018

RESUMO

BACKGROUND: As a key regulatory enzyme in the glycolysis pathway, pyruvate kinase (PK) plays crucial roles in multiple physiological processes during plant growth and is also involved in the abiotic stress response. However, little information is known about PKs in soybean. RESULTS: In this study, we identified 27 PK family genes against the genome of soybean cultivar Zhonghuang13. They were classified into 2 subfamilies including PKc and PKp. 22 segmental duplicated gene pairs and 1 tandem duplicated gene pair were identified and all of them experienced a strong purifying selective pressure during evolution. Furthermore, the abiotic stresses (especially salt stress) and hormone responsive cis-elements were present in the promoters of GmPK genes, suggesting their potential roles in abiotic stress tolerance. By performing the qRT-PCR, 6 GmPK genes that continuously respond to both NaCl and ABA were identified. Subsequently, GmPK21, which represented the most significant change under NaCl treatment was chosen for further study. Its encoded protein GmPK21 was localized in the cytoplasm and plasma membrane. The transgenic Arabidopsis overexpressing GmPK21 exhibited weakened salinity tolerance. CONCLUSIONS: This study provides genomic information of soybean PK genes and a molecular basis for mining salt tolerance function of PKs in the future.


Assuntos
Arabidopsis , Piruvato Quinase , Glycine max/genética , Cloreto de Sódio , Genes Duplicados , Arabidopsis/genética
12.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696020

RESUMO

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Assuntos
Clorofila , Cucumis sativus , Regulação da Expressão Gênica de Plantas , Fotossíntese , Estresse Salino , Tolerância ao Sal , Plântula , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/fisiologia , Cucumis sativus/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Tolerância ao Sal/genética , Estresse Salino/genética , Clorofila/metabolismo , Fotossíntese/genética , Fotossíntese/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Antioxidantes/metabolismo , Malondialdeído/metabolismo , Plantas Geneticamente Modificadas , Inativação Gênica
13.
J Biomol NMR ; 78(3): 139-147, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38509441

RESUMO

We present an economic and straightforward method to introduce 13C-19F spin systems into the deuterated aromatic side chains of phenylalanine as reporters for various protein NMR applications. The method is based on the synthesis of [4-13C, 2,3,5,6-2H4] 4-fluorophenylalanine from the commercially available isotope sources [2-13C] acetone and deuterium oxide. This compound is readily metabolized by standard Escherichia coli overexpression in a glyphosate-containing minimal medium, which results in high incorporation rates in the corresponding target proteins.


Assuntos
Isótopos de Carbono , Deutério , Escherichia coli , Marcação por Isótopo , Ressonância Magnética Nuclear Biomolecular , Fenilalanina , Fenilalanina/química , Ressonância Magnética Nuclear Biomolecular/métodos , Marcação por Isótopo/métodos , Escherichia coli/metabolismo
14.
Biochem Biophys Res Commun ; 703: 149637, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38354464

RESUMO

The normal development of pollen grains and the completion of double fertilization in embryos are crucial for both the sexual reproduction of angiosperms and grain production. Actin depolymerizing factor (ADF) regulates growth, development, and responses to biotic and abiotic stress by binding to actin in plants. In this study, the function of the ZmADF1 gene was validated through bioinformatic analysis, subcellular localization, overexpression in maize and Arabidopsis, and knockout via CRISPR/Cas9. The amino acid sequence of ZmADF1 exhibited high conservation and a similar tertiary structure to that of ADF homologs. Subcellular localization analysis revealed that ZmADF1 is localized mainly to the nucleus and cytoplasm. The ZmADF1 gene was specifically expressed in maize pollen, and overexpression of the ZmADF1 gene decreased the number of pollen grains in the anthers of transgenic Arabidopsis plants. The germination rate of pollen and the empty seed shell rate in the fruit pods of the overexpressing plants were significantly greater than those in the wild-type (WT) plants. In maize, the pollen viability of the knockout lines was significantly greater than that of both the WT and the overexpressing lines. Our results confirmed that the ZmADF1 gene was specifically expressed in pollen and negatively regulated pollen quantity, vigor, germination rate, and seed setting rate. This study provides insights into ADF gene function and possible pathways for improving high-yield maize breeding.


Assuntos
Arabidopsis , Destrina , Pólen , Zea mays , Sequência de Aminoácidos , Arabidopsis/metabolismo , Destrina/genética , Destrina/metabolismo , Gelsolina/metabolismo , Regulação da Expressão Gênica de Plantas , Pólen/genética , Pólen/crescimento & desenvolvimento , Zea mays/metabolismo
15.
BMC Plant Biol ; 24(1): 216, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532340

RESUMO

BACKGROUND: Soil salinity is one of the primary environmental stresses faced in rice production. When plants are exposed to salt stress, a series of cellular balances will be disrupted. Dufulin is an immune-induced antiviral agent used in plants. The DUF gene family influences plant response to abiotic stress, and the functional role of OsDUF6(ABA98726.1) in rice response to salt stress is being investigated here. RESULTS: Based on the transcriptome analysis of Dufulin treatment in inducing salt tolerance in rice, we selected the OsDUF6 protein located on the cell membrane and studied its molecular function by overexpressing OsDUF6. Salt-induced decreases in root, stem, and leaf length and increased leaf yellowing rate and Na+ concentration in the wild-type plant were mitigated in the overexpressed lines. OsDUF6 overexpression increased the enzymatic antioxidant activities of superoxide dismutase, peroxidase, catalase, and phenylalanine ammonia-lyase. OsDUF6 also played a positive role in Na+ transport as reflected by the increased growth of a salt-sensitive yeast mutant complemented with OsDUF6 in the presence of salt stress. In addition, Reverse transcription quantitative PCR analysis confirmed that the overexpression of OsDUF6 significantly changed the expression level of other genes related to growth and stress tolerance. CONCLUSIONS: Combined with previously published data, our results supported the observation that OsDUF6 is an important functional factor in Dufulin-induced promotion of salt stress tolerance in rice.


Assuntos
Oryza , Tolerância ao Sal , Tolerância ao Sal/genética , Oryza/genética , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Estresse Salino , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
16.
J Neuroinflammation ; 21(1): 231, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300526

RESUMO

Viral encephalitis is characterized by inflammation of the brain parenchyma caused by a variety of viruses, among which the Japanese encephalitis (JE) virus (JEV) is a typical representative arbovirus. Neuronal death, neuroinflammation, and breakdown of the blood brain barrier (BBB) constitute vicious circles of JE progression. Currently, there is no effective therapy to prevent this damage. Growth arrest specific gene 6 (GAS6) is a secreted growth factor that binds to the TYRO3, AXL, and MERTK (TAM) family of receptor tyrosine kinases and has been demonstrated to participate in neuroprotection and suppression of inflammation in many central nervous system (CNS) diseases which has great potential for JE intervention. In this study, we found that GAS6 expression in the brain was decreased and was reversely correlated with viral load and neuronal loss. Mice with GAS6/TAM signalling deficiency showed higher mortality and accelerated neuroinflammation during peripheral JEV infection, accompanied by BBB breakdown. GAS6 directly promoted the expression of tight junction proteins in bEnd.3 cells and strengthened BBB integrity, partly via AXL. Mice administered GAS6 were more resistant to JEV infection due to increased BBB integrity, as well as decreased viral load and neuroinflammation. Thus, targeted GAS6 delivery may represent a strategy for the prevention and treatment of JE especially in patients with impaired BBB.


Assuntos
Encefalite Japonesa , Peptídeos e Proteínas de Sinalização Intercelular , Doenças Neuroinflamatórias , Animais , Camundongos , Receptor Tirosina Quinase Axl , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Modelos Animais de Doenças , Encefalite Japonesa/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neuroinflamatórias/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética
17.
Planta ; 260(4): 89, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254898

RESUMO

Plants produce secondary metabolites that serve various functions, including defense against biotic and abiotic stimuli. Many of these secondary metabolites possess valuable applications in diverse fields, including medicine, cosmetic, agriculture, and food and beverage industries, exhibiting their importance in both plant biology and various human needs. Small RNAs (sRNA), such as microRNA (miRNA) and small interfering RNA (siRNA), have been shown to play significant roles in regulating the metabolic pathways post-transcriptionally by targeting specific key genes and transcription factors, thus offering a promising tool for enhancing plant secondary metabolite biosynthesis. In this review, we summarize current approaches for manipulating sRNAs to regulate secondary metabolite biosynthesis in plants. We provide an overview of the latest research strategies for sRNA manipulation across diverse plant species, including the identification of potential sRNAs involved in secondary metabolite biosynthesis in non-model plants. We also highlight the potential future research directions, focusing on the manipulation of sRNAs to produce high-value compounds with applications in pharmaceuticals, nutraceuticals, agriculture, cosmetics, and other industries. By exploring these advanced techniques, we aim to unlock new potentials for biotechnological applications, contributing to the production of high-value plant-derived products.


Assuntos
MicroRNAs , Plantas , RNA de Plantas , Metabolismo Secundário , Plantas/metabolismo , Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA de Plantas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Planta ; 260(4): 78, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172243

RESUMO

MAIN CONCLUSION: Excess of KRP4 in the developing kernels in rice causes poor filling of the grains possibly through inhibition of CDKA;2 and CDKB;1 activity mediated by its interaction with CDKF;3. The potential yield of the rice varieties producing compact and heavy panicles bearing numerous spikelets is compromised because a high percentage of spikelets remain poorly filled, reportedly because of a high expression of KRPs that causes suppression of endosperm cell proliferation. To test the stated negative relationship between KRP expression and grain filling, Orysa;KRP4 was overexpressed under the control of seed-specific glutelin promoter in IR-64 rice variety that shows good grain filling. The transgenic lines showed more than 15-fold increase in expression of KRP4 in the spikelets concomitant with nearly 50% reduction in grain filling compared with the wild type without producing any significant changes on the other yield-related parameters like panicle length and the spikelets numbers that were respectively 30.23 ± 0.89 cm and 229.25 ± 33.72 per panicle in the wild type, suggesting a highly organ-targeted effect of the genetic transformation. Yeast two-hybrid test revealed CDKF;3 as the interacting partner of KRP4, and CDKF;3 was found to interact with CDKA;2, CDKB;1 and CDKD;1. Significant decrease in grain filling in the transgenic lines compared with the wild type due to overexpression of KRP4 could be because of suppression of the activity of CDKB;1 and CDKA;2 by inhibition of their phosphorylation directly by CDKF;3, or mediated through inhibition of phosphorylation of CDKD;1 by CDKF;3. The study thus indicated that suppression of expression of KRP(s) by genetic manipulation of their promoters could be an important way of improving the yield of the rice varieties bearing compact and heavy panicles.


Assuntos
Grão Comestível , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Plantas Geneticamente Modificadas , Sementes , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Regiões Promotoras Genéticas/genética , Técnicas do Sistema de Duplo-Híbrido , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética
19.
Plant Biotechnol J ; 22(1): 233-247, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37772738

RESUMO

Paclitaxel is one of the most effective anticancer drugs ever developed. Although the most sustainable approach to its production is provided by plant cell cultures, the yield is limited by bottleneck enzymes in the taxane biosynthetic pathway: baccatin-aminophenylpropanoyl-13-O-transferase (BAPT) and 3'-N-debenzoyltaxol N-benzoyltransferase (DBTNBT). With the aim of enhancing paclitaxel production by overcoming this bottleneck, we obtained distinct lines of Taxus baccata in vitro roots, each independently overexpressing either of the two flux-limiting genes, BAPT or DBTNBT, through a Rhizobium rhizogenes A4-mediated transformation. Due to the slow growth rate of the transgenic Taxus roots, they were dedifferentiated to obtain callus lines and establish cell suspensions. The transgenic cells were cultured in a two-stage system and stimulated for taxane production by a dual elicitation treatment with 1 µm coronatine plus 50 mm of randomly methylated-ß-cyclodextrins. A high overexpression of BAPT (59.72-fold higher at 48 h) and DBTNBT (61.93-fold higher at 72 h) genes was observed in the transgenic cell cultures, as well as an improved taxane production. Compared to the wild type line (71.01 mg/L), the DBTNBT line produced more than four times higher amounts of paclitaxel (310 mg/L), while the content of this taxane was almost doubled in the BAPT line (135 mg/L). A transcriptional profiling of taxane biosynthetic genes revealed that GGPPS, TXS and DBAT genes were the most reactive to DBTNBT overexpression and the dual elicitation, their expression increasing gradually and constantly. The same genes exhibited a pattern of isolated peaks of expression in the elicited BAPT-overexpressing line.


Assuntos
Paclitaxel , Taxus , Paclitaxel/metabolismo , Taxus/genética , Taxus/metabolismo , Células Cultivadas , Taxoides/farmacologia , Taxoides/metabolismo
20.
Appl Environ Microbiol ; 90(3): e0218723, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38307543

RESUMO

Streptocarbazoles are a class of indolocarbazole (ICZ) compounds produced by Streptomyces strains that feature unique cyclic N-glycosidic linkages between the 1,3-carbon atoms of the glycosyl moiety and the two indole nitrogen atoms. Although several streptocarbazole compounds display effective cytotoxic activity, their biosynthesis remains unclear. Herein, through the inactivation of the aminotransferase gene spcI in the staurosporine biosynthetic gene cluster spc followed by heterologous expression, two new streptocarbazole derivatives (1 and 3) and three known ICZs (2, 4, and 5) were generated. Their structures were determined by a combination of spectroscopic methods, circular dichroism measurements, and single-crystal X-ray diffraction. Compounds 1-4 displayed moderate cytotoxicity against HCT-116 cell line, and compounds 3 and 4 were effective against Huh 7 cell line. Double-gene knockout experiments allowed us to propose a biosynthetic pathway for streptocarbazole productions. Furthermore, by overexpression of the involving key enzymes, the production of streptocarbazoles 1 and 3 were improved by approximately 1.5-2.5 fold. IMPORTANCE: Indolocarbazoles (ICZs) are a group of antitumor agents, with several analogs used in clinical trials. Therefore, the identification of novel ICZ compounds is important for drug discovery. Streptocarbazoles harbor unique N-glycosidic linkages (N13-C1' and N12-C3'), distinguishing them from the representative ICZ compound staurosporine; however, their biosynthesis remains unclear. In this study, two new streptocarbazoles (1 and 3) with cytotoxic activities were obtained by manipulating the staurosporine biosynthetic gene cluster spc followed by heterologous expression. The biosynthetic pathway of streptocarbazoles was proposed, and their productions were improved through the overexpression of the key enzymes involved. This study enriches the structural diversity of ICZ compounds and would facilitate the discovery of new streptocarbazoles via synthetic biological strategies.


Assuntos
Carbazóis , Streptomyces , Estaurosporina/farmacologia , Carbazóis/farmacologia , Carbazóis/química , Carbazóis/metabolismo , Streptomyces/metabolismo , Família Multigênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA