Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 43(11): 2127-2165, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580776

RESUMO

The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic, but pericellular oxygen levels, which are affected by oxygen diffusivity and consumption, are rarely reported. Here, we provide evidence that several cell types in culture actually experience local hypoxia, with important implications for cell metabolism and function. We focused initially on adipocytes, as adipose tissue hypoxia is frequently observed in obesity and precedes diminished adipocyte function. Under standard conditions, cultured adipocytes are highly glycolytic and exhibit a transcriptional profile indicative of physiological hypoxia. Increasing pericellular oxygen diverted glucose flux toward mitochondria, lowered HIF1α activity, and resulted in widespread transcriptional rewiring. Functionally, adipocytes increased adipokine secretion and sensitivity to insulin and lipolytic stimuli, recapitulating a healthier adipocyte model. The functional benefits of increasing pericellular oxygen were also observed in macrophages, hPSC-derived hepatocytes and cardiac organoids. Our findings demonstrate that oxygen is limiting in many terminally-differentiated cell types, and that considering pericellular oxygen improves the quality, reproducibility and translatability of culture models.


Assuntos
Adipócitos , Diferenciação Celular , Oxigênio , Oxigênio/metabolismo , Adipócitos/metabolismo , Adipócitos/citologia , Humanos , Técnicas de Cultura de Células/métodos , Animais , Glicólise , Hepatócitos/metabolismo , Hipóxia Celular , Mitocôndrias/metabolismo , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células Cultivadas , Glucose/metabolismo , Macrófagos/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38643961

RESUMO

In fish, thermal and hypoxia tolerances may be functionally related, as suggested by the oxygen- and capacity-limited thermal tolerance (OCLTT) concept, which explains performance failure at high temperatures due to limitations in oxygen delivery. In this study the interrelatedness of hyperthermia and hypoxia tolerances in the Nile tilapia (Oreochromis niloticus), and their links to cardiorespiratory traits were examined. Different groups of O. niloticus (n = 51) were subjected to hypoxia and hyperthermia challenges and the O2 tension for aquatic surface respiration (ASR pO2) and critical thermal maximum (CTmax) were assessed as measurement endpoints. Gill filament length, total filament number, ventricle mass, length and width were also measured. Tolerance to hypoxia, as evidenced by ASR pO2 thresholds of the individual fish, was highly variable and varied between 0.26 and 3.39 kPa. ASR events increased more profoundly as O2 tensions decreased below 2 kPa. The CTmax values recorded for the O. niloticus individuals ranged from 43.1 to 44.8 °C (Mean: 44.2 ± 0.4 °C). Remarkably, there was a highly significant correlation between ASR pO2 and CTmax in O. niloticus (r = -0.76, p < 0.0001) with ASR pO2 increasing linearly with decreasing CTmax. There were, however, no discernible relationships between the measured cardiorespiratory properties and hypoxia or hyperthermia tolerances. The strong relationship between hypoxia and hyperthermia tolerances in this study may be related to the ability of the cardiorespiratory system to provide oxygen to respiring tissues under thermal stress, and thus provides some support for the OCLTT concept in this species, at least at the level of the entire organism.


Assuntos
Ciclídeos , Brânquias , Hipóxia , Animais , Brânquias/metabolismo , Ciclídeos/fisiologia , Hipóxia/fisiopatologia , Termotolerância , Oxigênio/metabolismo , Coração/fisiopatologia , Coração/fisiologia , Hipertermia/fisiopatologia
3.
Neurocrit Care ; 40(1): 349-363, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37081276

RESUMO

BACKGROUND: Cardiac arrest (CA) is a sudden event that is often characterized by hypoxic-ischemic brain injury (HIBI), leading to significant mortality and long-term disability. Brain tissue oxygenation (PbtO2) is an invasive tool for monitoring brain oxygen tension, but it is not routinely used in patients with CA because of the invasiveness and the absence of high-quality data on its effect on outcome. We conducted a systematic review of experimental and clinical evidence to understand the role of PbtO2 in monitoring brain oxygenation in HIBI after CA and the effect of targeted PbtO2 therapy on outcomes. METHODS: The search was conducted using four search engines (PubMed, Scopus, Embase, and Cochrane), using the Boolean operator to combine mesh terms such as PbtO2, CA, and HIBI. RESULTS: Among 1,077 records, 22 studies were included (16 experimental studies and six clinical studies). In experimental studies, PbtO2 was mainly adopted to assess the impact of gas exchanges, drugs, or systemic maneuvers on brain oxygenation. In human studies, PbtO2 was rarely used to monitor the brain oxygen tension in patients with CA and HIBI. PbtO2 values had no clear association with patients' outcomes, but in the experimental studies, brain tissue hypoxia was associated with increased inflammation and neuronal damage. CONCLUSIONS: Further studies are needed to validate the effect and the threshold of PbtO2 associated with outcome in patients with CA, as well as to understand the physiological mechanisms influencing PbtO2 induced by gas exchanges, drug administration, and changes in body positioning after CA.


Assuntos
Lesões Encefálicas , Parada Cardíaca , Hipóxia-Isquemia Encefálica , Humanos , Encéfalo , Oxigênio , Lesões Encefálicas/terapia , Parada Cardíaca/terapia , Parada Cardíaca/complicações , Hipóxia-Isquemia Encefálica/complicações
4.
Reprod Domest Anim ; 59(5): e14620, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38798166

RESUMO

This study examines the impact of oxygen tension and embryo kinetics on gene transcription dynamics in pathways crucial for embryonic preimplantation development, including lipid metabolism, carbohydrate transport and metabolism, mitochondrial function, stress response, apoptosis and transcription regulation. Bovine embryos were generated in vitro and allocated into two groups based on oxygen tension (20% or 5%) at 18 h post insemination (hpi). At 40 hpi, embryos were categorized into Fast (≥4 cells) or Slow (2 cells) groups, resulting in four experimental groups: FCL20, FCL5, SCL20 and SCL5. Embryo collection also occurred at 72 hpi (16-cell stage; groups FMO20, FMO5, SMO20 and SMO5) and at 168 hpi (expanded blastocyst (BL) stage; groups FBL20, FBL5, SBL20 and SBL5). Pools of three embryos per group were analysed in four replicates using inventoried TaqMan assays specific for Bos taurus, targeting 93 genes. Gene expression patterns were analysed using the K-means algorithm, revealing three main clusters: genes with low relative abundance at the cleavage (CL) and 16-cell morula (MO) stages but increased at the BL stage (cluster 1); genes with higher abundances at CL but decreasing at MO and BL (cluster 2); and genes with low levels at CL, higher levels at MO and decreased levels at BL (cluster 3). Within each cluster, genes related to epigenetic mechanisms, cell differentiation events and glucose metabolism were particularly influenced by differences in developmental kinetics and oxygen tension. Fast-developing embryos, particularly those cultured under low oxygen tension, exhibited transcript dynamics more closely resembling that reported in vivo-produced embryos.


Assuntos
Blastocisto , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Oxigênio , Animais , Bovinos/embriologia , Oxigênio/metabolismo , Técnicas de Cultura Embrionária/veterinária , Blastocisto/metabolismo , Transcrição Gênica , Fertilização in vitro/veterinária , Feminino
5.
J Biol Chem ; 298(11): 102600, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244456

RESUMO

Bacteria engulfed by phagocytic cells must resist oxidation damage and adapt to cellular hypoxia, but the mechanisms involved in this process are not completely elucidated. Recent work by Kim et al. in the Journal of Biological Chemistry investigated how the intracellular pathogen Salmonella enterica activates gene expression required to counteract oxidative damage. The authors show that this bacterium utilizes host oxidative molecules to activate regulatory proteins that enhance the production of effector molecules, counteracting the host weapon NADPH oxidase and inducing a protective response.


Assuntos
NADPH Oxidases , Salmonella enterica , NADPH Oxidases/metabolismo , Salmonella enterica/genética , Estresse Oxidativo , Oxirredução , Fagócitos/metabolismo , Proteínas de Bactérias/metabolismo
6.
J Cell Physiol ; 238(7): 1492-1506, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37051890

RESUMO

Low oxygen bone marrow (BM) niches (~1%-4% low O2 ) provide critical signals for hematopoietic stem/progenitor cells (HSC/HSPCs). Our presented data are the first to investigate live, sorted HSC/HSPCs in their native low O2 conditions. Transcriptional and proteomic analysis uncovered differential Ca2+ regulation that correlated with overlapping phenotypic populations consisting of robust increases of cytosolic and mitochondrial Ca2+ , ABC transporter (ABCG2) expression and sodium/hydrogen exchanger (NHE1) expression in live, HSC/HSPCs remaining in constant low O2. We identified a novel Ca2+ high population in HSPCs predominantly detected in low O2 that displayed enhanced frequency of phenotypic LSK/LSKCD150 in low O2 replating assays compared to Ca2+ low populations. Inhibition of the Ca2+ regulator NHE1 (Cariporide) resulted in attenuation of both the low O2 induced Ca2+ high population and subsequent enhanced maintenance of phenotypic LSK and LSKCD150 during low O2 replating. These data reveal multiple levels of differential Ca2+ regulation in low O2 resulting in phenotypic, signaling, and functional consequences in HSC/HSPCs.


Assuntos
Cálcio , Células-Tronco Hematopoéticas , Oxigênio , Medula Óssea/química , Medula Óssea/metabolismo , Cálcio/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Oxigênio/metabolismo , Proteômica , Animais , Camundongos
7.
Am J Physiol Heart Circ Physiol ; 325(4): H888-H891, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624098

RESUMO

Cardiovascular regulation of tissue oxygenation is generally viewed as an anti-drop process that prevents tissue oxygen concentration from falling below some minimum. I propose that cardiovascular regulation is predominately an anti-rise process designed to downregulate oxygen delivery. This maintains an evolutionarily conserved, reduced intracellular environment to prevent oxidation of redox-sensitive regulatory protein thiols. A number of points support this hypothesis. First, oxygen is the only nutrient with a positive, fourfold diffusion gradient from the environment to systemic tissues, minimizing the likelihood that oxygen delivery is limited. Second, hemoglobin (Hb) retains oxygen unless offloading is absolutely necessary. The allosteric properties of Hb keep oxygen tightly bound until absolutely needed, and the Bohr shift, which favors offloading, is only transient and lost when metabolism is restored. Third, a myoglobin-like Hb (xHb) would offload all of its oxygen and could easily have evolved, but it did not. Fourth, oxygen-sensitive vasoconstrictors and hyperoxic-rarefaction prevent acute and chronic over perfusion. Fifth, Fåhraeus and Fåhraeus-Lindqvist effects reduce capillary hematocrit to minimize microcirculatory oxygen content. Sixth, venous blood remains 75% saturated, wasting 75% of cardiac output were an oxygen reserve not needed. Finally, xHb-containing red blood cells could be considerably smaller and thereby decrease Fåhraeus and Fåhraeus-Lindqvist effects and cardiac load. In summary, the capacity of the cardiovascular system to deliver oxygen to the tissues generally exceeds demand, and although maintenance of an oxygen delivery reserve is important, it is more important to prevent excess oxygen delivery.


Assuntos
Eritrócitos , Coração , Humanos , Microcirculação , Caquexia , Oxigênio
8.
Biol Reprod ; 109(4): 432-449, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37531262

RESUMO

In vitro maturation (IVM) is an alternative assisted reproductive technology with reduced hormone-related side effects and treatment burden compared to conventional IVF. Capacitation (CAPA)-IVM is a bi-phasic IVM system with improved clinical outcomes compared to standard monophasic IVM. Yet, CAPA-IVM efficiency compared to conventional IVF is still suboptimal in terms of producing utilizable blastocysts. Previously, we have shown that CAPA-IVM leads to a precocious increase in cumulus cell (CC) glycolytic activity during cytoplasmic maturation. In the current study, considering the fundamental importance of CCs for oocyte maturation and cumulus-oocyte complex (COC) microenvironment, we further analyzed the bioenergetic profiles of maturing CAPA-IVM COCs. Through a multi-step approach, we (i) explored mitochondrial function of the in vivo and CAPA-IVM matured COCs through real-time metabolic analysis with Seahorse analyzer, and to improve COC metabolism (ii) supplemented the culture media with lactate and/or super-GDF9 (an engineered form of growth differentiation factor 9) and (iii) reduced culture oxygen tension. Our results indicated that the pre-IVM step is delicate and prone to culture-related disruptions. Lactate and/or super-GDF9 supplementations failed to eliminate pre-IVM-induced stress on COC glucose metabolism and mitochondrial respiration. However, when performing pre-IVM culture under 5% oxygen tension, CAPA-IVM COCs showed similar bioenergetic profiles compared to in vivo matured counterparts. This is the first study providing real-time metabolic analysis of the COCs from a bi-phasic IVM system. The currently used analytical approach provides the quantitative measures and the rational basis to further improve IVM culture requirements.

9.
Hum Reprod ; 38(8): 1538-1546, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37308325

RESUMO

STUDY QUESTION: Is there any difference between 20% and 5% oxygen (O2) tension in vitro culture (IVC) on the viability and quality of human follicles contained in cultured ovarian cortex? SUMMARY ANSWER: An O2 tension of 5% yields higher follicle viability and quality than does 20% O2 tension after 6 days of IVC. WHAT IS KNOWN ALREADY: The primordial follicle (PMF) pool resides within the ovarian cortex, where the in vivo O2 tension ranges between 2% and 8%. Some studies suggest that lowering O2 tension to physiological levels may improve in vitro follicle quality rates. STUDY DESIGN, SIZE, DURATION: This prospective experimental study included frozen-thawed ovarian cortex from six adult patients (mean age: 28.5 years; age range: 26-31 years) who were undergoing laparoscopic surgery for non-ovarian diseases. Ovarian cortical fragments were cultured for 6 days at (i) 20% O2 with 5% CO2 and (ii) 5% O2 with 5% CO2. Non-cultured fragments served as controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: Cortical fragments were used for the following analyses: hematoxylin and eosin staining for follicle count and classification; Ki67 staining to evaluate PMF proliferation; cleaved caspase-3 immunostaining to identify follicle apoptosis; 8-hydroxy-2-deoxyguanosine and gamma-H2AX (γH2AX) immunolabeling to detect oxidative stress damage and DNA double-strand breaks (DSBs) in oocytes and granulosa cells (GCs); and ß-galactosidase staining to assess follicle senescence. Droplet digital PCR was also performed to further explore the gene expression of superoxide dismutase 2 (SOD2) and glutathione peroxidase 4 (GPX4) from the antioxidant defense system and cyclin-dependent kinase inhibitors (p21 and p16) as tissue senescence-related genes. MAIN RESULTS AND THE ROLE OF CHANCE: Apoptosis (P = 0.002) and follicle senescence (P < 0.001) rates were significantly lower in the 5% O2 group than in the 20% O2 group. Moreover, GCs in follicles in the 20% O2 group exhibited significantly (P < 0.001) higher oxidative stress damage rates than those in the 5% O2 group. DNA DSB damage rates in GCs of follicles were also significantly higher (P = 0.001) in the 20% O2 group than in the 5% O2 group. SOD2 expression was significantly greater in the 5% O2 group compared to the 20% O2 group (P = 0.04) and the non-cultured group (P = 0.002). Expression of p21 was significantly increased in both the 20% O2 (P = 0.03) and 5% O2 (P = 0.008) groups compared to the non-cultured group. Moreover, the 20% O2 group showed significantly greater p16 expression (P = 0.04) than the non-cultured group, while no significant variation was observed between the 5% O2 and no culture groups. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This study focuses on improving follicle outcomes during the first step of ovarian tissue IVC, where follicles remain in situ within the tissue. The impact of O2 tension in further steps, such as secondary follicle isolation and maturation, was not investigated here. WIDER IMPLICATIONS OF THE FINDINGS: Our findings suggest that 5% O2 tension culture is a promising step toward potentially solving the problem of poor follicle viability after IVC. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS-PDR T.0064.22, CDR J.0063.20 and grant 5/4/150/5 awarded to M.M.D.). The authors have nothing to disclose.


Assuntos
Dióxido de Carbono , Ovário , Adulto , Feminino , Humanos , Estudos Prospectivos , Dióxido de Carbono/metabolismo , Ovário/metabolismo , Oxigênio/metabolismo , DNA
10.
Pharmacol Res ; 190: 106713, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36863427

RESUMO

In the retina, hypoxic condition leads to overgrowing leaky vessels resulting in altered metabolic supply that may cause impaired visual function. Hypoxia-inducible factor-1 (HIF-1) is a central regulator of the retinal response to hypoxia by activating the transcription of numerous target genes, including vascular endothelium growth factor, which acts as a major player in retinal angiogenesis. In the present review, oxygen urge by the retina and its oxygen sensing systems including HIF-1 are discussed in respect to the role of the beta-adrenergic receptors (ß-ARs) and their pharmacologic manipulation in the vascular response to hypoxia. In the ß-AR family, ß1- and ß2-AR have long been attracting attention because their pharmacology is intensely used for human health, while ß3-AR, the third and last cloned receptor is no longer increasingly emerging as an attractive target for drug discovery. Here, ß3-AR, a main character in several organs including the heart, the adipose tissue and the urinary bladder, but so far a supporting actor in the retina, has been thoroughly examined in respect to its function in retinal response to hypoxia. In particular, its oxygen dependence has been taken as a key indicator of ß3-AR involvement in HIF-1-mediated responses to oxygen. Hence, the possibility of ß3-AR transcription by HIF-1 has been discussed from early circumstantial evidence to the recent demonstration that ß3-AR acts as a novel HIF-1 target gene by playing like a putative intermediary between oxygen levels and retinal vessel proliferation. Thus, targeting ß3-AR may implement the therapeutic armamentarium against neovascular pathologies of the eye.


Assuntos
Receptores Adrenérgicos beta , Neovascularização Retiniana , Humanos , Receptores Adrenérgicos beta/metabolismo , Neovascularização Retiniana/metabolismo , Retina/metabolismo , Oxigênio/metabolismo , Hipóxia/metabolismo , Receptores Adrenérgicos beta 3/metabolismo
11.
Lung ; 201(3): 315-320, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086285

RESUMO

INTRODUCTION AND METHODS: We examined the relationship between 24-h pre- and post-cannulation arterial oxygen tension (PaO2) and arterial carbon dioxide tension (PaCO2) and subsequent acute brain injury (ABI) in patients receiving veno-venous extracorporeal membrane oxygenation (VV-ECMO) with granular arterial blood gas (ABG) data and institutional standardized neuromonitoring. RESULTS: Eighty-nine patients underwent VV-ECMO (median age = 50, 63% male). Twenty (22%) patients experienced ABI; intracranial hemorrhage (ICH) was the most common diagnosis (n = 14, 16%). Lower post-cannulation PaO2 levels were significantly associated with ICH (66 vs. 81 mmHg, p = 0.007) and a post-cannulation PaO2 level < 70 mmHg was more frequent in these patients (71% vs. 33%, p = 0.007). PaCO2 parameters were not associated with ABI. By multivariable logistic regression, hypoxemia post-cannulation increased the odds of ICH (OR = 5.06, 95% CI:1.41-18.17; p = 0.01). CONCLUSION: In summary, lower oxygen tension in the 24-h post-cannulation was associated with ICH development. The precise roles of peri-cannulation ABG changes deserve further investigation, as they may influence the management of VV-ECMO patients.


Assuntos
Oxigenação por Membrana Extracorpórea , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Oxigenação por Membrana Extracorpórea/efeitos adversos , Gasometria , Hipóxia , Hemorragias Intracranianas/etiologia , Hemorragias Intracranianas/terapia , Oxigênio , Estudos Retrospectivos
12.
J Assist Reprod Genet ; 40(11): 2591-2607, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37725178

RESUMO

In the last four decades, the assisted reproductive technology (ART) field has witnessed advances, resulting in improving pregnancy rates and diminishing complications, in particular reduced incidence of multiple births. These improvements are secondary to advanced knowledge on embryonic physiology and metabolism, resulting in the ability to design new and improved culture conditions. Indeed, the incubator represents only a surrogate of the oviduct and uterus, and the culture conditions are only imitating the physiological environment of the female reproductive tract. In vivo, the embryo travels through a dynamic and changing environment from the oviduct to the uterus, while in vitro, the embryo is cultured in a static fashion. Importantly, while culture media play a critical role in optimising embryo development, a large host of additional factors are equally important. Additional potential variables, including but not limited to pH, temperature, osmolality, gas concentrations and light exposure need to be carefully controlled to prevent stress and permit optimal implantation potential. This manuscript will provide an overview of how different current culture conditions may affect oocyte and embryo viability with particular focus on human literature.


Assuntos
Implantação do Embrião , Técnicas de Reprodução Assistida , Gravidez , Humanos , Feminino , Implantação do Embrião/fisiologia , Desenvolvimento Embrionário/genética , Embrião de Mamíferos , Meios de Cultura , Técnicas de Cultura Embrionária/métodos , Fertilização in vitro/métodos
13.
FASEB J ; 35(3): e21283, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33617050

RESUMO

The pathological characteristics of osteoarthritis are cartilage matrix degradation, chondrocytes apoptosis, and low-grade inflammation of the joint. Recent studies have shown that blood vessels grow from the subchondral bone to the articular cartilage. However, the relationship among inflammation, angiogenesis, and chondrocyte apoptosis is still unclear. We found that chondrocytes could secrete chemokines and VEGF to promote the migration of vascular endothelial cells in response to TNF-α stimulation. The invasion of blood vessels leads to increased oxygen tension in the local environment, which increased the expression of SETD7 in chondrocytes by activating the JAK-STAT5 pathway. The bond of phosphorylated STAT5 and the specific locus in the promoter of SETD7 directly increased the transcription of SETD7. On the one hand, SETD7-regulated chemokine expression by forming a positive loop; on the other hand, SETD7-mediated chondrocyte apoptosis by inhibiting the nuclear localization of HIF-1α. In this study, we discovered a novel function of chondrocytes as mediators of inflammation and angiogenesis. Our study demonstrates that SETD7 is a potential molecular target to prevent OA development and progression.


Assuntos
Apoptose , Cartilagem Articular/patologia , Condrócitos/patologia , Histona-Lisina N-Metiltransferase/fisiologia , Osteoartrite/patologia , Animais , Movimento Celular , Células Cultivadas , Condrócitos/fisiologia , Células Endoteliais/fisiologia , Feminino , Histona-Lisina N-Metiltransferase/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/fisiologia , Neovascularização Patológica/etiologia , Osteoartrite/etiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Fator de Transcrição STAT5/fisiologia
14.
FASEB J ; 35(8): e21758, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34245611

RESUMO

After birth, the alveolar epithelium is exposed to environmental pathogens and high O2 tensions. The alveolar type II cells may protect this epithelium through surfactant production. Surfactant protein, SP-A, an immune modulator, is developmentally upregulated in fetal lung with surfactant phospholipid synthesis. Herein, we observed that the redox-regulated transcription factor, NRF2, and co-regulated C/EBPß and PPARγ, were markedly induced during cAMP-mediated differentiation of cultured human fetal lung (HFL) epithelial cells. This occurred with enhanced expression of immune modulators, SP-A, TDO2, AhR, and NQO1. Like SP-A, cAMP induction of NRF2 was prevented when cells were exposed to hypoxia. NRF2 knockdown inhibited induction of C/EBPß, PPARγ, and immune modulators. Binding of endogenous NRF2 to promoters of SP-A and other immune modulator genes increased during HFL cell differentiation. In mouse fetal lung (MFL), a developmental increase in Nrf2, SP-A, Tdo2, Ahr, and Nqo1 and decrease in Keap1 occurred from 14.5 to 18.5 dpc. Developmental induction of Nrf2 in MFL was associated with increased nuclear localization of NF-κB p65, a decline in p38 MAPK phosphorylation, increase in the MAPK phosphatase, DUSP1, induction of the histone acetylase, CBP, and decline in the histone deacetylase, HDAC4. Thus, together with surfactant production, type II cells protect the alveolar epithelium through increased expression of NRF2 and immune modulators to prevent inflammation and oxidative stress. Our findings further suggest that lung cancer cells have usurped this developmental pathway to promote immune tolerance and enhance survival.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/imunologia , Pulmão , Fator 2 Relacionado a NF-E2 , Animais , Feminino , Humanos , Pulmão/embriologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/biossíntese , Fator 2 Relacionado a NF-E2/imunologia
15.
Transfus Apher Sci ; 61(6): 103452, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35525798

RESUMO

Hematopoietic stem cells (HSCs) which are characterized with CD34+ phenotype, have a pivotal role in blood cell regeneration. They are located in lowest hypoxic areas in the bone marrow niches. This microenvironment protects them from DNA damage and excessive proliferation, whereas the oxygenated area driving cells out of quiescent state into proliferation. Given the resistance of HSCs to hypoxia, it is reasonable to imagine that they can survive for some time in the absence of oxygen. Here, we evaluated CD34, Bax, Bcl-2, Bcl-xl, and p53 genes expression after death. Moreover, we established the ex-vivo development of HSCs using SCF, FLT3, IL-2, and IL-15 cytokines in culture system. Our finding indicated that although the most of the dead person's mononuclear cells were alive and adequately expressed the CD34 on their surfaces at the first day of isolation, the viability and CD34+/Ki-67 expression declined significantly after culture process. Taken together, our finding indicated that the viability and CD34+ expression was acceptable on day 0 and could be used as a novel method for therapeutic purposes.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células da Medula Óssea , Antígenos CD34/metabolismo , Células Cultivadas
16.
Appl Microbiol Biotechnol ; 106(21): 7099-7112, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36184690

RESUMO

Komagataeibacter xylinus is an aerobic strain that produces bacterial cellulose (BC). Oxygen levels play a critical role in regulating BC synthesis in K. xylinus, and an increase in oxygen tension generally means a decrease in BC production. Fumarate nitrate reduction protein (FNR) and aerobic respiration control protein A (ArcA) are hypoxia-inducible factors, which can signal whether oxygen is present in the environment. In this study, FNR and ArcA were used to enhance the efficiency of oxygen signaling in K. xylinus, and globally regulate the transcription of the genome to cope with hypoxic conditions, with the goal of improving growth and BC production. FNR and ArcA were individually overexpressed in K. xylinus, and the engineered strains were cultivated under different oxygen tensions to explore how their overexpression affects cellular metabolism and regulation. Although FNR overexpression did not improve BC production, ArcA overexpression increased BC production by 24.0% and 37.5% as compared to the control under oxygen tensions of 15% and 40%, respectively. Transcriptome analysis showed that FNR and ArcA overexpression changed the way K. xylinus coped with oxygen tension changes, and that both FNR and ArcA overexpression enhanced the BC synthesis pathway. The results of this study provide a new perspective on the effect of oxygen signaling on growth and BC production in K. xylinus and suggest a promising strategy for enhancing BC production through metabolic engineering. KEY POINTS: • K. xylinus BC production increased after overexpression of ArcA • The young's modulus is enhanced by the ArcA overexpression • ArcA and FNR overexpression changed how cells coped with changes in oxygen tension.


Assuntos
Celulose , Gluconacetobacter xylinus , Humanos , Celulose/metabolismo , Nitratos/metabolismo , Gluconacetobacter xylinus/genética , Gluconacetobacter xylinus/metabolismo , Oxigênio/metabolismo , Fumaratos/metabolismo , Hipóxia
17.
BMC Med Imaging ; 22(1): 121, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790918

RESUMO

BACKGROUND: The aims of this study were to evaluate the levels of preretinal oxygen tension in patients with diabetes who did not have hypertension by using three-dimensional spoiled gradient-recalled (3D-SPGR) echo sequence imaging and to explore the correlation between diabetic retinopathy (DR) and changes in preretinal oxygen tension. METHOD: This study involved 15 patients with type 2 diabetes without hypertension, who were divided into a diabetic retinopathy (DR) group (n = 10 eyes) and a diabetic non-retinopathy (NDR) group (n = 20 eyes), according to the results of a fundus photography test. Another healthy control group (n = 14 eyes) also participated in the study. The preretinal vitreous optic disc area, nasal side, and temporal side signal intensity of the eyes was assessed before and after oxygen inhalation with the use of 3D-SPGR echo magnetic resonance imaging (MRI). The signal acquisition time was 10, 20, 30, 40, and 50 min after oxygen inhalation. RESULTS: The results showed that, in the DR and NDR groups, the preretinal vitreous oxygen tension increased rapidly at 10 min after oxygen inhalation and peaked at 30-40 min, and the increased slope of the DR group was higher than that of the NDR group. The oxygen tension of the preretinal vitreous gradually increased after oxygen inhalation, and the difference between the DR and NDR groups and the control group was statistically significant (P < 0.05). The preretinal vitreous oxygen tension was higher in the optic disc, temporal side, and nasal side in the NDR group than in the control group, and the difference was statistically significant (P < 0.05). The maximum slope ratios of the optic disc and the temporal side of the DR group were greater than those of the control group, and the difference was statistically significant (P < 0.05). CONCLUSION: Three-dimensional-SPGR echo MRI sequencing technology is useful for detecting preretinal oxygen tension levels in patients with diabetes. It can be used as one of the functional and imaging observation indicators for the early diagnosis of DR.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Hipertensão , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Retinopatia Diabética/diagnóstico por imagem , Diagnóstico por Imagem , Humanos , Oxigênio
18.
BMC Pulm Med ; 22(1): 282, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858889

RESUMO

BACKGROUND: The prognostic value of mixed venous oxygen tension (PvO2) at pulmonary hypertension diagnosis treated with selective pulmonary vasodilators remains unclear. This study sought to investigate the association of PvO2 with long-term prognosis in pulmonary arterial hypertension (PAH) and medically treated chronic thromboembolic pulmonary hypertension (CTEPH) and to identify the distinct mechanisms influencing tissue hypoxia in patients with CTEPH or PAH. METHODS: We retrospectively analyzed data from 138 (age: 50.2 ± 16.6 years, 81.9% women) and 268 (age: 57.4 ± 13.1 years, 72.8% women) patients with PAH and CTEPH, respectively, diagnosed at our institution from 1983 to 2018. We analyzed the survival rates of patients with/without tissue hypoxia (PvO2 < 35 mmHg) and identified their prognostic factors based on the pulmonary hypertension risk stratification guidelines. RESULTS: Survival was significantly poorer in patients with tissue hypoxia than in those without it for PAH (P = 0.001) and CTEPH (P = 0.017) treated with selective pulmonary vasodilators. In patients with PAH, PvO2 more strongly correlated with prognosis than other hemodynamic prognostic factors regardless of selective pulmonary vasodilators usage. PvO2 was the only significant prognostic factor in patients with CTEPH treated with pulmonary hypertension medication. Patients with CTEPH experiencing tissue hypoxia exhibited significantly poorer survival than those in the intervention group (P < 0.001). PvO2 more strongly correlated with the cardiac index (CI) than the alveolar-arterial oxygen gradient (A-aDO2) in PAH; whereas in CTEPH, PvO2 was more strongly correlated with A-aDO2 than with CI. CONCLUSIONS: PvO2 may represent a crucial prognostic factor for pulmonary hypertension. The prognostic impact of tissue hypoxia affects different aspects of PAH and CTEPH, thereby reflecting their distinct pathogenesis.


Assuntos
Hipertensão Pulmonar , Embolia Pulmonar , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Crônica , Hipertensão Pulmonar Primária Familiar/tratamento farmacológico , Hipóxia/complicações , Oxigênio , Prognóstico , Embolia Pulmonar/tratamento farmacológico , Estudos Retrospectivos , Vasodilatadores/uso terapêutico
19.
J Clin Monit Comput ; 36(4): 1227-1232, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35113286

RESUMO

Controversy surrounds regional cerebral oximetry (rSO2) because extracranial contamination and unmeasured changes in cerebral arterial:venous ratio confound readings. Correlation of rSO2 with brain tissue oxygen (PbrO2), a "gold standard" for cerebral oxygenation, could help resolve this controversy but PbrO2 measurement is highly invasive. This was a prospective cohort study. The primary aim was to evaluate correlation between PbrO2 and rSO2 and the secondary aim was to investigate the relationship between changing ventilation regimens and measurement of PbrO2 and rSO2. Patients scheduled for elective removal of cerebral metastases were anesthetized with propofol and remifentanil, targeted to a BIS range 40-60. rSO2 was measured using the INVOS 5100B monitor and PbrO2 using the Licox brain monitoring system. The Licox probe was placed into an area of normal brain within the tumor excision corridor. FiO2 and minute ventilation were sequentially adjusted to achieve two set points: (1) FiO2 0.3 and paCO2 30 mmHg, (2) FiO2 1.0 and paCO2 40 mmHg. PbrO2 and rSO2 were recorded at each. Nine participants were included in the final analysis, which showed a positive Spearman's correlation (r = 0.50, p = 0.036) between PbrO2 and rSO2. From set point 1 to set point 2, PbrO2 increased from median 6.0, IQR 4.0-11.3 to median 22.5, IQR 9.8-43.6, p = 0.015; rSO2 increased from median 68.0, IQR 62.5-80.5 to median 83.0, IQR 74.0-90.0, p = 0.047. Correlation between PbrO2 and rSO2 is evident. Increasing FiO2 and PaCO2 results in significant increases in cerebral oxygenation measured by both monitors.


Assuntos
Circulação Cerebrovascular , Oximetria , Encéfalo , Humanos , Oximetria/métodos , Oxigênio , Estudos Prospectivos , Respiração
20.
J Anesth ; 36(1): 52-57, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34586496

RESUMO

PURPOSE: The aim of this study was to investigate the effects of end-tidal carbon dioxide tension (ETCO2) changes during remifentanil infusion on mandibular bone marrow tissue blood flow (BBF), masseter muscle tissue blood flow (MBF), mandibular bone marrow tissue oxygen tension (PbO2) and masseter muscle tissue oxygen tension (PmO2) in rabbits. METHODS: Ten male tracheotomized Japan White rabbits were anesthetized and ventilated with sevoflurane. ETCO2 was adjusted to 30 mmHg. After baseline measurement, CO2 was added to the inhaled air, and ETCO2 was increased to 40 and 60 mmHg. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), BBF, MBF, PbO2, and PmO2 were recorded with and without remifentanil infusion at 0.4 µg/kg/min. RESULTS: Two-way repeated measures analysis of variance showed no interaction between ETCO2 and remifentanil in all variables. Remifentanil infusion produced decreases in HR, SBP, MAP, BBF and MBF compared with those without remifentanil infusion, while it did not affect DBP, PbO2 and PmO2. Elevation of ETCO2 from 30 to 60 mmHg produced decreases in HR and MBF, and increases in SBP, DBP, MAP and BBF, while it did not affect PbO2 and PmO2. CONCLUSION: PbO2 and PmO2 remained unchanged despite changes in BBF and MBF during ETCO2 change with or without remifentanil infusion.


Assuntos
Dióxido de Carbono , Éteres Metílicos , Anestésicos Intravenosos/farmacologia , Animais , Pressão Sanguínea , Masculino , Oxigênio , Coelhos , Fluxo Sanguíneo Regional , Remifentanil/farmacologia , Língua
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA