Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 890
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genomics ; 18(1): 58, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840185

RESUMO

BACKGROUND: Liver transplantation (LT) is offered as a cure for Hepatocellular carcinoma (HCC), however 15-20% develop recurrence post-transplant which tends to be aggressive. In this study, we examined the transcriptome profiles of patients with recurrent HCC to identify differentially expressed genes (DEGs), the involved pathways, biological functions, and potential gene signatures of recurrent HCC post-transplant using deep machine learning (ML) methodology. MATERIALS AND METHODS: We analyzed the transcriptomic profiles of primary and recurrent tumor samples from 7 pairs of patients who underwent LT. Following differential gene expression analysis, we performed pathway enrichment, gene ontology (GO) analyses and protein-protein interactions (PPIs) with top 10 hub gene networks. We also predicted the landscape of infiltrating immune cells using Cibersortx. We next develop pathway and GO term-based deep learning models leveraging primary tissue gene expression data from The Cancer Genome Atlas (TCGA) to identify gene signatures in recurrent HCC. RESULTS: The PI3K/Akt signaling pathway and cytokine-mediated signaling pathway were particularly activated in HCC recurrence. The recurrent tumors exhibited upregulation of an immune-escape related gene, CD274, in the top 10 hub gene analysis. Significantly higher infiltration of monocytes and lower M1 macrophages were found in recurrent HCC tumors. Our deep learning approach identified a 20-gene signature in recurrent HCC. Amongst the 20 genes, through multiple analysis, IL6 was found to be significantly associated with HCC recurrence. CONCLUSION: Our deep learning approach identified PI3K/Akt signaling as potentially regulating cytokine-mediated functions and the expression of immune escape genes, leading to alterations in the pattern of immune cell infiltration. In conclusion, IL6 was identified to play an important role in HCC recurrence.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Transplante de Fígado , Recidiva Local de Neoplasia , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Transplante de Fígado/efeitos adversos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Regulação Neoplásica da Expressão Gênica/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Transdução de Sinais/genética , Redes Reguladoras de Genes/genética , Mapas de Interação de Proteínas/genética , Masculino , Feminino , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade
2.
Exp Cell Res ; 439(1): 114060, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719173

RESUMO

BACKGROUND: Tie1 orphan receptor has become a focus of research, Tie1 can form a polymer with Tie2, regulate the Ang/Tie2 pathway and play a vital role in pathological angiogenesis and tumor progression, the function of Tie1 has remained uncertain in the progression of cervical cancer (CC). Here, we investigated the functional influences of Tie1 overexpress on CC in vitro and in vivo. METHODS: We used Immunohistochemistry (IHC) analysis to detect the relative expression of Tie1 in CC, and we analyzed its connection with the overall survival (OS) and progression free survival (PFS)of CC patients. To prove the role of Tie1 in cell proliferation and metastatic, Tie1 expression in CC cell lines was upregulated by lentivirus. RESULTS: The high expression of Tie1 in tumor cells of cervical cancer tissues is significantly correlated with FIGO stage, differentiated tumors, tumors with diameters, deep stromal invasion. We found that cell progression was promoted in Tie1-overexpress CC cell lines in vivo and in vitro. Tie1 potentially exerts a commanding influence on the expression of markers associated with epithelial-mesenchymal transition (EMT) and the PI3K/AKT signaling pathway. CONCLUSIONS: Our research indicates that Tie1 is highly connected to CC progression as it may play a role in the EMT process through the PI3K/AKT signaling pathway.


Assuntos
Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptor de TIE-1 , Transdução de Sinais , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Receptor de TIE-1/metabolismo , Receptor de TIE-1/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo
3.
Cell Mol Life Sci ; 81(1): 133, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472560

RESUMO

Acute lung injury (ALI) is a common clinical syndrome, which often results in pulmonary edema and respiratory distress. It has been recently reported that phosphatidylethanolamine binding protein 4 (PEBP4), a basic cytoplasmic protein, has anti-inflammatory and hepatoprotective effects, but its relationship with ALI remains undefined so far. In this study, we generated PEBP4 knockout (KO) mice to investigate the potential function of PEBP4, as well as to evaluate the capacity of alveolar fluid clearance (AFC) and the activity of phosphatidylinositide 3-kinases (PI3K)/serine-theronine protein kinase B (PKB, also known as AKT) signaling pathway in lipopolysaccharide (LPS)-induced ALI mice models. We found that PEBP4 deficiency exacerbated lung pathological damage and edema, and increased the wet/dry weight ratio and total protein concentration of bronchoalveolar lavage fluid (BALF) in LPS-treated mice. Meanwhile, PEBP4 KO promoted an LPS-induced rise in the pulmonary myeloperoxidase (MPO) activity, serum interleuin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α levels, and pulmonary cyclooxygenase-2 (COX-2) expression. Mechanically, PEBP4 deletion further reduced the protein expression of Na+ transport markers, including epithelial sodium channel (ENaC)-α, ENaC-γ, Na,K-ATPase α1, and Na,K-ATPase ß1, and strengthened the inhibition of PI3K/AKT signaling in LPS-challenged mice. Furthermore, we demonstrated that selective activation of PI3K/AKT with 740YP or SC79 partially reversed all of the above effects caused by PEBP4 KO in LPS-treated mice. Altogether, our results indicated the PEBP4 deletion has a deterioration effect on LPS-induced ALI by impairing the capacity of AFC, which may be achieved through modulating the PI3K/AKT pathway.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/farmacologia , ATPase Trocadora de Sódio-Potássio/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
4.
Curr Issues Mol Biol ; 46(6): 5561-5581, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38921004

RESUMO

Gynostemma pentaphyllum (Thunb.) Makino (GP), a plant with homology of medicine and food, as a traditional Chinese medicine, possesses promising biological activities in the prevention and treatment of type 2 diabetes mellitus (T2DM). However, the material basis and the mechanism of action of GP in the treatment of T2DM have not been fully elucidated. This study aimed to clarify the active components, potential targets and signaling pathways of GP in treating T2DM. The chemical ingredients of GP were collected by combining UPLC-HRMS analysis and literature research. Network pharmacology revealed that GP had 32 components and 326 potential targets in treating T2DM. The results showed that GP affected T2DM by mediating the insulin resistance signaling pathway, PI3K/Akt signaling pathway and FoxO1 signaling pathway, which had a close relationship with T2DM. Molecular docking results showed that STAT3, PIK3CA, AKT1, EGFR, VEGFA and INSR had high affinity with the active compounds of GP. In vitro, GP extracts obviously increased the glucose uptake and glucose consumption in IR-HepG2 cells. GP extracts increased the levels of PI3K, p-AKT, p-GSK3ß and p-FoxO1 and decreased the expression of p-IRS1, p-GS, PEPCK and G6Pase, which indicated that GP could promote glycogen synthesis and inhibit gluconeogenesis by regulating the IRS1/PI3K/Akt signaling pathway. The results demonstrated that GP could improve insulin resistance by promoting glucose uptake and glycogen synthesis and inhibiting gluconeogenesis through regulating the IRS1/PI3K/Akt signaling pathway, which might be a potential alternative therapy for T2DM.

5.
Biochem Biophys Res Commun ; 726: 150264, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38905784

RESUMO

Non-alcoholic fatty liver disease (NAFLD) stands as the most prevalent hepatic disorder, with bariatric surgery emerging as the most effective intervention for NAFLD remission. Sleeve gastrectomy (SG) has notably ascended as the predominant procedure due to its comparative simplicity and consistent surgical outcomes. Nonetheless, the underlying mechanisms remain unclear. In this study, we probed the therapeutic potential of SG for NAFLD induced by a high-fat diet (HFD) in mice, with a focus on its impact on liver lipid accumulation, macrophage polarization, and the role of the histone methyltransferase Setdb2. SG prompted significant weight loss, diminished liver size and liver-to-body weight ratio, and enhanced liver function, evidenced by reduced serum levels of triglycerides (TG), total cholesterol (T-CHO), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Histological examination confirmed a reduction in liver lipid accumulation. Additionally, flow cytometry unveiled an increased proportion of M2 macrophages and a decrease in Setdb2 expression was shown in the SG group, suggesting an association between Setdb2 levels and postsurgical macrophage polarization. Furthermore, the conditional knockout of Setdb2 in mice further mitigated HFD-induced steatosis and promoted the M2 macrophage phenotype. Mechanistically, Setdb2 knockout in bone marrow-derived macrophages (BMDMs) favored M2 polarization, with RNA sequencing and western blotting analyses corroborating the upregulation of the PI3K/Akt signaling pathway. The effects of Setdb2 on macrophage activation were nullified by the PI3K inhibitor LY294002, suggesting that Setdb2 facilitates alternative macrophage activation through the PI3K/Akt signaling pathway. These comprehensive findings underscore the potential of SG as a therapeutic intervention for NAFLD by regulating the critical function of Setdb2 in macrophage polarization and activation, thereby offering novel insights into NAFLD pathogenesis and therapeutic targets.

6.
Biochem Biophys Res Commun ; 728: 150262, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959530

RESUMO

BACKGROUND AND OBJECTIVE: Colorectal cancer (CRC) is one of the most common malignancies in China. At present, there is a problem that the CRC treatment drugs SHP099, L-OHP and 5-FU are insensitive to tumor cells. Combination medication is an important means to solve the insensitivity of medication alone. The purpose of this project was to explore the effect and molecular mechanism of SHP099 combination on the malignant biological behavior of L-OHP/5-FU resistant strains of CRC. METHODS: HT29 and SW480 cells were cultured in media supplemented with L-OHP or 5-FU to establish drug-resistant strains. HT29 and SW480 drug-resistant cells were subcutaneously injected into the ventral nerves of nude mice at a dose of 5 × 106 to establish CRC drug-resistant animal models. CCK-8, Western blot, flow cytometry, Transwell and kit detection were used to detect the regulatory mechanism of energy metabolism reprogramming in drug-resistant CRC cells. RESULTS: Compared with nonresistant strains, L-OHP/5-FU-resistant strains exhibited greater metabolic reprogramming. Functionally, SHP099 can restrain the metabolic reprogramming of L-OHP/5-FU-resistant strains and subsequently restrain the proliferation, colony formation, migration and spheroid formation of L-OHP/5-FU-resistant strains. Downstream mechanistic studies have shown that SHP099 interferes with the metabolic reprogramming of L-OHP/5-FU drug-resistant strains by suppressing the PI3K/AKT pathway, thereby restraining the malignant biological behavior of L-OHP/5-FU drug-resistant strains and alleviating CRC. CONCLUSION: The combination of SHP099 can restrain the malignant biological behavior of L-OHP/5-FU-resistant CRC cells and alleviate the progression of CRC by interfering with the reprogramming of energy metabolism. This study explored the effect of SHP099 combination on dual-resistant CRC cells for the first time, and provided a new therapeutic idea for solving the problem of SHP099 insensitivity to CRC cells.

7.
Biol Reprod ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38938081

RESUMO

Ovarian theca cells produce testosterone, which acts as a vital precursor substance for synthesizing estrogens during follicular development. Nerve growth factor (NGF) has been shown to participate in reproductive physiology, specifically to follicular development and ovulation. There is currently no available data on the impact of NGF on testosterone synthesis in porcine theca cells. Furthermore, m6A modification is the most common internal modification in eukaryotic mRNAs that are closely associated with female gametogenesis, follicle development, ovulation, and other related processes. It is also uncertain whether the three main enzymes associated with m6A, such as Writers, Erasers and Readers, play a role in this process. The present study, with an in vitro culture model, investigated the effect of NGF on testosterone synthesis in porcine theca cells and the role of Writers-METTL14 in this process. It was found that NGF activates the PI3K/AKT signaling pathway through METTL14, which regulates testosterone synthesis in porcine theca cells. This study will help to further elucidate the mechanisms by which NGF regulates follicular development and provide new therapeutic targets for ovary-related diseases in female animals.

8.
Cell Biol Int ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812089

RESUMO

Type 2 diabetes mellitus (T2DM) is an immensely debilitating chronic disease that progressively undermines the well-being of various bodily organs and, indeed, most patients succumb to the disease due to post-T2DM complications. Although there is evidence supporting the activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway by insulin, which is essential in regulating glucose metabolism and insulin resistance, the significance of this pathway in T2DM has only been explored in a few studies. The current review aims to unravel the mechanisms by which different classes of PI3Ks control the metabolism of glucose; and also to discuss the original data obtained from international research laboratories on this topic. We also summarized the role of the PI3K/Akt signaling axis in target tissues spanning from the skeletal muscle to the adipose tissue and liver. Furthermore, inquiries regarding the impact of disrupting this axis on insulin function and the development of insulin resistance have been addressed. We also provide a general overview of the association of impaired PI3K/Akt signaling pathways in the pathogenesis of the most prevalent diabetes-related complications. The last section provides a special focus on the therapeutic potential of this axis by outlining the latest advances in active compounds that alleviate diabetes via modulation of the PI3K/Akt pathway. Finally, we comment on the future research aspects in which the field of T2DM therapies using PI3K modulators might be developed.

9.
J Fluoresc ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916633

RESUMO

AML is a highly aggressive malignant clonal disease of hematopoietic origin. Hesperidin as a polyphenol glycoside, Activates the apoptotic pathway and salinomycin as a k + selective ionophore. We examined how hesperidin and salinomycin induce pro-apoptotic effects in KG1a cells. Cells were divided into four groups; 1) control cells (CRTL), 2) cells treated with hesperidin 85 µM, 3) cells treated with 2 µM salinomycin, 4) cells treated with combination of salinomycin and hesperidin. The MTT assay was implemented to determine the IC50 of hesperidin and salinomycin in KG1a cell lines. Propidium iodide staining and flow cytometry were used to analyze the distribution of the cell cycle. The level of ROS was evaluated by fluorescent microscopy and spectrophotometry. Additionally, Akt, XIAP, Bad, and FOXO1 gene expression was analyzed by real-time PCR. Hesperidin/Salinomycin decreased the viability of KG1a leukemic cells more than Hesperidin and Salinomycin separately. Changes in the shape of apoptotic cells and rise in ROS levels were detected after Hesperidin/Salinomycin treatment. Our findings showed that following Hesperidin/Salinomycin treatment, the expression of PI3K/AKT signaling pathway related genes (AKT, PTEN and FOXO1), were in line with the destruction of KG-1a cells. Furthermore, XIAP and BAD mRNA were regulated to trigger apoptosis in cancer cells. The study discovered that hesperidin and salinomycin, could effectively hinder the PI3K/Akt signaling pathway in leukemia cancer cells. Also, the combination of hesperidin and salinomycin has the potential to be a treatment option for acute myeloid leukemia.

10.
BMC Nephrol ; 25(1): 192, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849771

RESUMO

OBJECTIVE: Contrast media (CM) is a commonly applied drug in medical examination and surgery. However, contrast-induced acute kidney injury (CIAKI) poses a severe threat to human life and health. Notably, the CUT-like homeobox 1 (CUX1) gene shows protective effects in a variety of cells. Therefore, the objective of this study was to provide a new target for the treatment of CIAKI through exploring the role and possible molecular mechanism of CUX1 in CIAKI. METHOD: Blood samples were collected from 20 patients with CIAKI and healthy volunteers. Human kidney 2 (HK-2) cells were incubated with 200 mg/mL iohexol for 6 h to establish a contrast-induced injury model of HK-2 cells. Subsequently, qRT-PCR was used to detect the relative mRNA expression of CUX1; CCK-8 and flow cytometry to assess the proliferation and apoptosis of HK-2 cells; the levels of IL(interleukin)-1ß, tumor necrosis factor alpha (TNF-α) and malondialdehyde (MDA) in cells and lactate dehydrogenase (LDH) activity in cell culture supernatant were detect; and western blot to observe the expression levels of CUX1 and the PI3K/AKT signaling pathway related proteins [phosphorylated phosphoinositide 3-kinase (p-PI3K), PI3K, phosphorylated Akt (p-AKT), AKT]. RESULTS: CUX1 expression was significantly downregulated in blood samples of patients with CIAKI and contrast-induced HK-2 cells. Contrast media (CM; iohexol) treatment significantly reduced the proliferation of HK-2 cells, promoted apoptosis, stimulated inflammation and oxidative stress that caused cell damage. CUX1 overexpression alleviated cell damage by significantly improving the proliferation level of HK-2 cells induced by CM, inhibiting cell apoptosis, and reducing the level of LDH in culture supernatant and the expression of IL-1ß, TNF-α and MDA in cells. CM treatment significantly inhibited the activity of PI3K/AKT signaling pathway activity. Nevertheless, up-regulating CUX1 could activate the PI3K/AKT signaling pathway activity in HK-2 cells induced by CM. CONCLUSION: CUX1 promotes cell proliferation, inhibits apoptosis, and reduces inflammation and oxidative stress in CM-induced HK-2 cells to alleviate CM-induced damage. The mechanism of CUX1 may be correlated with activation of the PI3K/AKT signaling pathway.


Assuntos
Injúria Renal Aguda , Apoptose , Meios de Contraste , Células Epiteliais , Proteínas de Homeodomínio , Túbulos Renais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Meios de Contraste/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Linhagem Celular , Fatores de Transcrição/metabolismo , Masculino , Iohexol , Feminino , Proliferação de Células/efeitos dos fármacos , Pessoa de Meia-Idade , Proteínas Repressoras
11.
Mar Drugs ; 22(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786619

RESUMO

Among female oncology patients, cervical cancer stands as the fourth most prevalent malignancy, exerting significant impacts on their health. Over 600,000 women received the diagnosis of cervical cancer in 2020, and the illness claimed over 300,000 lives globally. Curdepsidone A, a derivative of depsidone, was isolated from the secondary metabolites of Curvularia sp. IFB-Z10. In this study, we revised the molecular structure of curdepsidone A and investigated the fundamental mechanism of the anti-tumor activity of curdepsidone A in HeLa cells for the first time. The results demonstrated that curdepsidone A caused G0/G1 phase arrest, triggered apoptosis via a mitochondrial apoptotic pathway, blocked the autophagic flux, suppressed the PI3K/AKT pathway, and increased the accumulation of reactive oxygen species (ROS) in HeLa cells. Furthermore, the PI3K inhibitor (LY294002) promoted apoptosis induced by curdepsidone A, while the PI3K agonist (IGF-1) eliminated such an effect. ROS scavenger (NAC) reduced curdepsidone A-induced cell apoptosis and the suppression of autophagy and the PI3K/AKT pathway. In conclusion, our results revealed that curdepsidone A hindered cell growth by causing cell cycle arrest, and promoted cell apoptosis by inhibiting autophagy and the ROS-mediated PI3K/AKT pathway. This study provides a molecular basis for the development of curdepsidone A as a new chemotherapy drug for cervical cancer.


Assuntos
Apoptose , Autofagia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Transdução de Sinais , Humanos , Células HeLa , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Autofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Feminino , Antineoplásicos/farmacologia
12.
Biochem Genet ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502457

RESUMO

We aimed to investigate therapeutic effect of Bushenhuoxue recipe in intrauterine adhesions (IUA) and explore the underlying molecular mechanism via integrating network pharmacology and in vitro experimental verification. The active compounds and gene targets of Bushenhuoxue recipe were screened in the TCMSP database and the IUA-related genes were identified using GeneCards database by the keyword "Intrauterine adhesions". Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted to reveal the underlying molecular mechanism of Bushenhuoxue recipe treating IUA. T-HESC cells were inducted to fibrotic state using TGF-ß1 of 10 ng/ml concentration treating for 24 h. RT-qPCR or western blot was used to demonstrate the expression levels of fibrosis markers (COL1A1 and α-SMA) and KEGG pathway markers. Cell counting kit-8 (CCK8) assay was performed to illustrate the cell viability of endometrial stromal cell. The treatment of Bushenhuoxue recipe could significantly inhibit the proliferation and fibrosis of endometrial stromal cells. We obtained a total of 169 no-repeat ingredients of Bushenhuoxue recipe and 3044 corresponding targets. After taking intersection with 4230 no-repeat IUA-related genes, a total of 83 target genes related to both Bushenhuoxue recipe and IUA were finally identified. KEGG analysis found that PI3K-AKT signaling pathway might be the key pathway. Further experiment revealed that PI3K-AKT signaling pathway was significantly activated in endometrial stromal cells of fibrotic state and the treatment of Bushenhuoxue recipe could inhibit the PI3K-AKT signaling pathway. Further rescue assay demonstrated that Bushenhuoxue recipe suppressed the proliferation and fibrosis of endometrial stromal cells via PI3K-AKT signaling pathway. Bushenhuoxue recipe suppresses the proliferation and fibrosis of endometrial stromal cells via PI3K-AKT signaling pathway, eventually inhibiting the progression of IUA.

13.
Biochem Genet ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607540

RESUMO

There has been interested in the microRNAs' roles in pancreatic cancer (PC) cell biology, particularly in regulating pathways related to tumorigenesis. The study aimed to explore the hub miRNAs in PC and underlying mechanisms by bioinformatics and fundamental experiments. RNA datasets collected from the Gene Expression Omnibus were analysed to find out differentially expressed RNAs (DERNAs). The miRNA-mRNA and protein-protein interaction (PPI) networks were built. The clinicopathological features and expressions of hub miRNAs and hub mRNAs were explored. Dual-luciferase reporter gene assay was performed to assess the interaction between microRNA and target gene. RT-qPCR and western blot were employed to explore RNA expression. The roles of RNA were detected by CCK-8 test, wound healing, transwell, and flow cytometry experiment. We verified 40 DEmiRNAs and 1613 DEmRNAs, then detected a total of 69 final functional mRNAs (FmRNAs) and 23 DEmiRNAs. In the miRNA-mRNA networks, microRNA-130b (miR-130b) was the hub RNA with highest degrees. Clinical analysis revealed that miR-130b was considerably lower expressed in cancerous tissues than in healthy ones, and patients with higher-expressed miR-130b had a better prognosis. Mechanically, miR-130b directly targeted MET in PC cells. Cell functional experiments verified that miR-130b suppressed cell proliferation, migration, promoted apoptosis, and inhibited the PI3K/Akt pathway by targeting MET in PC cells. Our findings illustrated the specific molecular mechanism of miR-130b regulating PC progress. The miR-130b/MET axis may be an alternative target in the therapeutic intervention of PC and provide an opportunity to deepen our understanding of the pathogenesis of PC.

14.
Ecotoxicol Environ Saf ; 274: 116222, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503106

RESUMO

Previous studies have shown that early-life exposure to fine particulate matter (PM2.5) is associated with an increasing risk of autism spectrum disorder (ASD), however, the specific sensitive period of ASD is unknown. Here, a model of dynamic whole-body concentrated PM2.5 exposure in pre- and early-postnatal male offspring rats (MORs) was established. And we found that early postnatal PM2.5 exposed rats showed more typical ASD behavioral characteristics than maternal pregnancy exposure rats, including poor social interaction, novelty avoidance and anxiety disorder. And more severe oxidative stress and inflammatory responses were observed in early postnatal PM2.5 exposed rats. Moreover, the expression level of phosphatase and tensin homolog deleted on chromosome ten (PTEN) was down-regulated and the ratios of p-PI3K/PI3K and p-AKT/AKT were up-regulated in early postnatal PM2.5 exposed rats. This study suggests that early postnatal exposure to PM2.5 is more susceptible to ASD-like phenotype in offspring than maternal pregnancy exposure and the activation of PI3K-AKT signaling pathway may represent underlying mechanisms.


Assuntos
Transtorno do Espectro Autista , Material Particulado , Animais , Feminino , Masculino , Gravidez , Ratos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/metabolismo , Material Particulado/toxicidade , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
15.
Ecotoxicol Environ Saf ; 269: 115748, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029582

RESUMO

As common pathogenic agents in the world and widely distributed globally, T-2 toxin and selenium deficiency might exacerbate toxic effects by combined exposure, posing a dramatic health hazard to humans and animals. In this study, we aim to elucidate the underlying mechanisms of renal fibrosis triggered by T-2 toxin and selenium deficiency exposure. A total of thirty-two rats are randomly divided into the normal control, T-2 toxin, selenium deficiency, and combined intervention groups. T-2 toxin (100 ng/g) is intragastric gavaged to the rats in compliance with the body weight. Both the standard (containing selenium 0.20 mg/Kg) and selenium-deficient (containing selenium 0.02 mg/Kg) diets were manufactured adhering to the AIN-93 formula. After 12 weeks of intervention, renal tissue ultrastructural and pathological changes, inflammatory infiltration, epithelial mesenchymal transition (EMT), and extracellular matrix (ECM) deposition are evaluated, respectively. Metabolomics analysis is conducted to explore the underlying pathology of renal fibrosis, followed by the validation of potential mechanisms at gene and protein levels. T-2 toxin and selenium deficiency exposure results in podocyte foot process elongation or fusion, tubular vacuolization and dilatation, and collagen deposition in the kidneys. Additionally, it also increases inflammatory infiltration, EMT conversion, and ECM deposition. Metabolomics analysis suggests that T-2 toxin and selenium deficiency influence amino acid and cholesterol metabolism, respectively, and the estrogen signaling pathway is probably engaged in renal fibrosis progression. Moreover, T-2 toxin and selenium deficiency are found to regulate the expressions of the ERα/PI3K/Akt signaling pathway. In conclusion, T-2 toxin and selenium deficiency synergistically exacerbate renal fibrosis through regulating the ERα/PI3K/Akt signaling pathway, and inflammatory infiltration, EMT and ECM deposition are involved in this process.


Assuntos
Nefropatias , Selênio , Toxina T-2 , Animais , Ratos , Receptor alfa de Estrogênio/metabolismo , Fibrose , Nefropatias/induzido quimicamente , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Selênio/farmacologia , Selênio/toxicidade , Transdução de Sinais , Toxina T-2/toxicidade
16.
Phytother Res ; 38(2): 527-538, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37909161

RESUMO

Flaps are mainly used for wound repair. However, postoperative ischemic necrosis of the distal flap is a major problem, which needs to be addressed urgently. We evaluated whether tetrandrine, a compound found in traditional Chinese medicine, can prolong the survival rate of random skin flaps. Thirty-six rats were randomly divided into control, low-dose tetrandrine (25 mg/kg/day), and high-dose tetrandrine (60 mg/kg/day) groups. On postoperative Day 7, the flap survival and average survival area were determined. After the rats were sacrificed, the levels of angiogenesis, apoptosis, and inflammation in the flap tissue were detected with immunology and molecular biology analyses. Tetrandrine increased vascular endothelial growth factor and Bcl-2 expression, in turn promoting angiogenesis and anti-apoptotic processes, respectively. Additionally, tetrandrine decreased the expression of Bax, which is associated with the induction of apoptosis, and also decreased inflammation in the flap tissue. Tetrandrine improved the survival rate of random flaps by promoting angiogenesis, inhibiting apoptosis, and reducing inflammation in the flap tissue through the modulation of the PI3K/AKT signaling pathway.


Assuntos
Benzilisoquinolinas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular , Transdução de Sinais , Inflamação , Pele
17.
Phytother Res ; 38(7): 3594-3606, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38725104

RESUMO

Diabetic nephropathy (DN) is the most common and serious complication of diabetes, posing a significant threat to human health. Currently, safe and effective preventive strategies for DN are lacking. The study aimed to explore the preventive effect and the underlying mechanism of quercetin against DN. In the in vivo experiments, we established a mouse model of type 2 diabetes mellitus (T2DM) induced by a combination of high-fat diet (HFD) and streptozotocin (STZ) to explore the preventive effect of quercetin on DN and its protective role against renal tubular epithelial cell apoptosis. Subsequently, in vitro experiments using human tubular epithelial cells (HK-2 cells) were conducted to further validate the protective effects of quercetin on renal tubular epithelial cell apoptosis. Additionally, we employed RNA sequencing analysis (RNA-seq) and network pharmacology analysis to comprehensively elucidate the molecular mechanisms involved. In vivo, we observed a significant increase in the ratio of urinary microalbumin to creatinine in diabetic mice compared to control mice, accompanied by the activation of renal tubular epithelial cell apoptosis. Remarkably, all of these changes were reversed after quercetin treatment. In vitro, high-glucose-induced apoptosis in HK-2 cells was significantly attenuated by quercetin. Subsequent RNA sequencing analysis and network pharmacology analysis revealed that quercetin was most likely to inhibit high-glucose-induced HK-2 cell apoptosis through the PI3K/AKT signaling pathway. Western Blotting results further demonstrated that quercetin could inhibit the activation of the PI3K/AKT signaling pathway in HK-2 cells induced by high glucose. Our results supported that quercetin could prevent DN by inhibiting tubular epithelial cell apoptosis via the PI3K/AKT pathway. Quercetin might be a promising candidate for the prevention of DN.


Assuntos
Apoptose , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Células Epiteliais , Túbulos Renais , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Quercetina , Transdução de Sinais , Quercetina/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Células Epiteliais/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Túbulos Renais/efeitos dos fármacos , Masculino , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Estreptozocina
18.
Chem Biodivers ; : e202400892, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924251

RESUMO

Acute lung injury (ALI) is a prevalent organ injury in sepsis, characterized by an inflammatory reactive disorder. Both the incidence and mortality rates of ALI have been steadily increasing. Isothiazolinone derivatives have displayed anti-inflammatory activity and have shown effectiveness in treating pneumonia. The objective of the study is to assess the effects and mechanisms of the isothiazolinone derivative 4-benzoyl-2-butyl-5-(ethylsulfinyl)isothiazol-3(2H)-one (C6) on sepsis-induced ALI. The analysis of biological function and signal pathway enrichment demonstrated that C6 primarily exhibited anti-inflammatory effects. Administration of different doses of C6 through intraperitoneal injection significantly improved the survival rate, body temperature, and body mass of mice with ALI induced by cecal ligation and puncture (CLP). Additionally, it mitigated lung tissue injury, pulmonary edema, lung permeability, inflammatory cell infiltration, apoptosis, and the expression of inflammatory cytokines. Network targeting analysis and experimental validation in mouse leukemia cells of monocyte macrophage (RAW264.7) cells and CLP-induced ALI mice revealed that the anti-inflammatory effect of C6 was mediated by the inhibition of the PI3K-AKT signaling pathway.  The research suggest that C6 has protective effects against ALI by inhibiting the phosphatidylinositol 3 kinase -protein kinase B (PI3K-AKT) signaling pathway. This information could be valuable in developing potential treatments for ALI.

19.
Environ Toxicol ; 39(1): 409-420, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37782700

RESUMO

As a complex systemic disease, primary liver cancer ranks third in death rate for solid tumors worldwide. Family with sequence similarity 111 member B (FAM111B), which was found to be aberrantly mutated in multiple cancers, is a candidate oncogene. We aimed to determine the function and mechanism of FAM111B in hepatocellular carcinoma (HCC). The expression of FAM111B was evaluated in HCC tissues, adjacent tissues, HCC cell lines. The impact of FAM111B on proliferation, invasion, apoptosis and EMT of HCC cells were detected by CCK-8, Transwell, flow cytometry and Western blot assays. The relationship between FAM111B and transforming acidic coiled-coil protein 3 (TACC3) was assessed by CoIP and Immunofluorescence (IF) staining assays. The effect of FAM111B on tumor growth was detected by using xenograft model of nude mice. The expression of FAM111B was upregulated in HCC tissues and cell lines, and the prognosis of HCC patients was worse in the high FAM111B expression group, and its expression level was associated with the TNM stage of HCC. FAM111B silencing inhibited HCC cell proliferation and invasion, EMT and induced apoptosis. Besides, TACC3 served as an interactor for FAM111B, which could enhance TACC3 expression, thus activing PI3K/AKT pathway. Rescue experiments revealed that elevated of TACC3 restored the inhibitory effect of FAM111B overexpression on the cell functions via PI3K/AKT pathway. In vivo, FAM111B inhibition hampered tumor growth and metastasis of HCC. This study highlighted a key player of FAM111B in modulating the malignant biological progression of HCC via TACC3/PI3K/AKT signaling pathway, displaying a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Nus , Linhagem Celular Tumoral , Transdução de Sinais , Proliferação de Células/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo
20.
Environ Toxicol ; 39(2): 952-964, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37975621

RESUMO

Di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, is one of the most common plasticizers and is widely used in various plastic products. DEHP induces apoptosis and oxidative stress and has been shown to have androgenic toxicity. However, the methods to combat DEHP-induced testicular damage and the mechanisms involved remain to be elucidated. In the present study, we used melatonin, which has strong antioxidant properties, to intervene in prepubertal mice and mouse Leydig cells (TM3) treated with DEHP or its metabolite mono(2-ethylhexyl) phthalate (MEHP). The results showed that melatonin protected against DEHP-induced testicular damage in prepubertal mice, mainly by protecting against DEHP-induced structural destruction of the germinal tubules and by attenuating the DEHP-induced decrease in testicular organ coefficients and testosterone levels. Transcriptomic analysis found that melatonin may attenuate DEHP-induced oxidative stress and apoptosis in prepubertal testes. In vitro studies further revealed that MEHP induces oxidative stress injury and increases apoptosis in TM3 cells, while melatonin reversed this damage. In vitro studies also found that MEHP exposure inhibited the expression levels of molecules related to the PI3K/AKT signaling pathway, and melatonin reversed this change. In conclusion, these findings suggest that melatonin protects against DEHP-induced prepubertal testicular injury via the PI3K/AKT signaling pathway, and provide a theoretical basis and experimental rationale for combating male reproductive dysfunction.


Assuntos
Dietilexilftalato , Melatonina , Masculino , Camundongos , Animais , Testículo , Melatonina/farmacologia , Dietilexilftalato/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Oxidativo , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA