Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pediatr ; 183(2): 769-778, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994931

RESUMO

During critical illness, children my experience various changes in their thyroid hormone levels. Such changes are termed non-thyroidal illness syndrome (NTI). The extent of change correlates with the severity of the illness and its outcomes in critically ill patients. This study aimed to investigate the correlation between the severity of shock and thyroid hormone derangement. This prospective observational study included forty patients aged one month to five years who were admitted to the pediatric intensive care unit (PICU) with shock. Thyroid function tests were conducted on admission, after shock reversal, and five days later. NTI patterns were observed in 70% of patients. The PIM2 score showed a significant negative correlation with T3 (r = - 0.353, p = 0.026) and FT3 levels on admission (r = - 0.417, p = 0.007). Furthermore, after shock reversal, the PIM2 score continued to exhibit significant negative correlations with T4 (r = - 0.444, p = 0.004), T3 (r = - 0.329, p = 0.038), FT3 (r = - 0.355, p = 0.025), and FT4 levels (r = - 0.379, p = 0.016).    Conclusion: This study underscores the high prevalence of NTI in PICU shock patients and suggests monitoring thyroid hormone levels for outcome prediction and treatment guidance. Further research is needed to optimize NTI management in critically ill children. What is Known: • Non-thyroidal illness syndrome (NTIS) is a condition observed in critically ill patients. • There has been limited research on NTI in children, and existing studies have generated conflicting results regarding the relationship between thyroid hormones and clinical outcomes in cases of sepsis and septic shock. What is New: • The study has revealed dynamic changes in free triiodothyronine (FT3) levels during the process of shock reversal and recovery in children who experienced shock. • A significant negative correlation was found between the Pediatric Index of Mortality 2 (PIM2) score and several thyroid hormone levels, including FT3 on admission and T4, FT3, and FT4 on shock reversal.


Assuntos
Síndromes do Eutireóideo Doente , Humanos , Criança , Síndromes do Eutireóideo Doente/complicações , Síndromes do Eutireóideo Doente/diagnóstico , Tiroxina , Estado Terminal , Países em Desenvolvimento , Hormônios Tireóideos , Unidades de Terapia Intensiva Pediátrica
2.
Arch Pharm (Weinheim) ; 357(4): e2300516, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263717

RESUMO

PIM2, part of the PIM kinase family along with PIM1 and PIM3, is often overexpressed in hematologic cancers, fueling tumor growth. Despite its significance, there are no approved drugs targeting it. In response to this challenge, we devised a thorough virtual screening workflow for discovering novel PIM2 inhibitors. Our process includes molecular docking and diverse scoring methods like molecular mechanics generalized born surface area, XGBOOST, and DeepDock to rank potential inhibitors by binding affinities and interaction potential. Ten compounds were selected and subjected to an adequate evaluation of their biological activity. Compound 2 emerged as the most potent inhibitor with an IC50 of approximately 135.7 nM. It also displayed significant activity against various hematological cancers, including acute myeloid leukemia, mantle cell lymphoma, and anaplastic large cell lymphoma (ALCL). Molecular dynamics simulations elucidated the binding mode of compound 2 with PIM2, offering insights for drug development. These results highlight the reliability and efficacy of our virtual screening workflow, promising new drugs for hematologic cancers, notably ALCL.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Humanos , Adulto , Simulação de Acoplamento Molecular , Reprodutibilidade dos Testes , Relação Estrutura-Atividade , Detecção Precoce de Câncer , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Serina-Treonina Quinases
3.
Mol Cancer ; 22(1): 18, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36694243

RESUMO

Decades of research has recognized a solid role for Pim kinases in lymphoproliferative disorders. Often up-regulated following JAK/STAT and tyrosine kinase receptor signaling, Pim kinases regulate cell proliferation, survival, metabolism, cellular trafficking and signaling. Targeting Pim kinases represents an interesting approach since knock-down of Pim kinases leads to non-fatal phenotypes in vivo suggesting clinical inhibition of Pim may have less side effects. In addition, the ATP binding site offers unique characteristics that can be used for the development of small inhibitors targeting one or all Pim isoforms. This review takes a closer look at Pim kinase expression and involvement in hematopoietic cancers. Current and past clinical trials and in vitro characterization of Pim kinase inhibitors are examined and future directions are discussed. Current studies suggest that Pim kinase inhibition may be most valuable when accompanied by multi-drug targeting therapy.


Assuntos
Neoplasias Hematológicas , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
4.
BMC Pediatr ; 23(1): 271, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37248480

RESUMO

BACKGROUND: To determine whether undernutrition affects 60-day mortality in pediatric acute respiratory failure. METHODS: Subjects with acute respiratory failure aged between two months and 13 years were included in the study. The Z-scores were calculated on admission and children were categorized into two groups of undernutrition and normal nutrition. The nutritional intake of the children was measured daily. The outcome was 60-day mortality. RESULTS: A total of 126 patients met the inclusion criteria; 41% were undernourished based on the Z-score of BMI and weight for height, 50% based on the Z-score of height and length for age and 45% based on the Z-score of weight for age. Overall, the 60-day mortality rate was 27.8%. The Cox regression analysis adjusted with PIM2, age and gender, showed that undernutrition has a significant relationship with 60-day mortality based on the weight for age Z-score (HR = 2.33; CI: 1.175-4.638). In addition, undernutrition has a significant relationship with 60-day mortality based on the BMI for age (HR = 3.04; CI:1.070-8.639) and weight for height (HR = 2.62; CI: 1.605-6.658) Z-scores. The mean calorie and protein intake of 72% of the children was less than 80% of their calorie needs. The time to start feeding in 63% of the children was more than 48 h. There was no relationship between the time of starting nutrition and nutritional intake during PICU admission and mortality. CONCLUSION: Undernutrition is prevalent in mechanically ventilated children in the PICU and may be associated with 60-day mortality.


Assuntos
Desnutrição , Insuficiência Respiratória , Criança , Humanos , Lactente , Estudos Prospectivos , Estado Terminal , Desnutrição/complicações , Estado Nutricional
5.
J Cell Physiol ; 237(8): 3381-3393, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35696529

RESUMO

Cytoplasmic serine/threonine Pim kinases have emerged as important modulators of immune regulation and oncology. However, their regulatory roles in bone remodeling remain obscure. Here, we aimed to determine the roles of Pim kinases in periodontal disease (PD), focusing on the regulation of osteoclastogenesis and bone resorptive activity. We investigated Pim kinases expression in PD by analyzing data from the online Gene Expression Omnibus database and using ligature-induced periodontitis mouse model. The expression of Pim kinases during receptor activator of nuclear factor kB ligand (RANKL)-induced osteoclastogenesis was assessed in mouse bone marrow-derived macrophages (BMMs) using reverse transcription polymerase chain reaction. Osteoclast differentiation and bone resorption activity were respectively verified by tartrate-resistant acid phosphatase staining and dentin disc-based bone resorption assays. We silenced and overexpressed Pim-2 using small interfering RNA (siRNA) and retroviral vector, respectively, to investigate the molecular mechanisms underlying Pim-2 regulation in RANKL-induced osteoclastogenesis and bone resorption activity. Upregulated expression of Pim-2 was observed in both patients with PD and periodontitis-affected mouse gingival tissues. siRNA-mediated silencing of Pim-2 in BMMs diminished RANKL-induced resorptive activity without affecting osteoclastogenesis. Moreover, RANKL-triggered stimulation of a3 isoform, which is a subunit of vacuolar-type ATPase, was selectively attenuated in BMMs on silencing Pim-2. The overexpression of Pim-2 with a retroviral vector stimulated the a3 subunit, thus inducing bone resorption activity. Taken together, these results suggest that Pim-2 acts as a major modulator of osteoclastic activity by regulating a3 isoform expression in PD.


Assuntos
Reabsorção Óssea , Doenças Periodontais , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , ATPases Vacuolares Próton-Translocadoras , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular , Inativação Gênica , Camundongos , Osteoclastos/metabolismo , Doenças Periodontais/genética , Doenças Periodontais/metabolismo , Periodontite/genética , Periodontite/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Ligante RANK/metabolismo , RNA Interferente Pequeno/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(21): 10482-10487, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31068472

RESUMO

A major obstacle to curing chronic myeloid leukemia (CML) is the intrinsic resistance of CML stem cells (CMLSCs) to the drug imatinib mesylate (IM). Prosurvival genes that are preferentially expressed in CMLSCs compared with normal hematopoietic stem cells (HSCs) represent potential therapeutic targets for selectively eradicating CMLSCs. However, the discovery of such preferentially expressed genes has been hampered by the inability to completely separate CMLSCs from HSCs, which display a very similar set of surface markers. To overcome this challenge, and to minimize confounding effects of individual differences in gene expression profiles, we performed single-cell RNA-seq on CMLSCs and HSCs that were isolated from the same patient and distinguished based on the presence or absence of BCR-ABL. Among genes preferentially expressed in CMLSCs is PIM2, which encodes a prosurvival serine-threonine kinase that phosphorylates and inhibits the proapoptotic protein BAD. We show that IM resistance of CMLSCs is due, at least in part, to maintenance of BAD phosphorylation by PIM2. We find that in CMLSCs, PIM2 expression is promoted by both a BCR-ABL-dependent (IM-sensitive) STAT5-mediated pathway and a BCR-ABL-independent (IM-resistant) STAT4-mediated pathway. Combined treatment with IM and a PIM inhibitor synergistically increases apoptosis of CMLSCs, suppresses colony formation, and significantly prolongs survival in a mouse CML model, with a negligible effect on HSCs. Our results reveal a therapeutically targetable mechanism of IM resistance in CMLSCs. The experimental approach that we describe can be generally applied to other malignancies that harbor oncogenic fusion proteins or other characteristic genetic markers.


Assuntos
Compostos de Bifenilo/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Tiazolidinas/uso terapêutico , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib , Leucemia Experimental/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Camundongos , Terapia de Alvo Molecular , Fosforilação , Inibidores de Proteínas Quinases , Fatores de Transcrição STAT/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo
7.
Molecules ; 26(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34770845

RESUMO

Proviral integration site of Moloney virus-2 (PIM2) is overexpressed in multiple human cancer cells and high level is related to poor prognosis; thus, PIM2 kinase is a rational target of anti-cancer therapeutics. Several chemical inhibitors targeting PIMs/PIM2 or their downstream signaling molecules have been developed for treatment of different cancers. However, their off-target toxicity is common in clinical trials, so they could not be advanced to official approval for clinical application. Here, we produced human single-chain antibody fragments (HuscFvs) to PIM2 by using phage display library, which was constructed in a way that a portion of phages in the library carried HuscFvs against human own proteins on their surface with the respective antibody genes in the phage genome. Bacterial derived-recombinant PIM2 (rPIM2) was used as an antigenic bait to fish out the rPIM2-bound phages from the library. Three E. coli clones transfected with the HuscFv genes derived from the rPIM2-bound phages expressed HuscFvs that bound also to native PIM2 from cancer cells. The HuscFvs presumptively interact with the PIM2 at the ATP binding pocket and kinase active loop. They were as effective as small chemical drug inhibitor (AZD1208, which is an ATP competitive inhibitor of all PIM isoforms for ex vivo use) in inhibiting PIM kinase activity. The HuscFvs should be engineered into a cell-penetrating format and tested further towards clinical application as a novel and safe pan-anti-cancer therapeutics.


Assuntos
Engenharia Genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Recombinantes , Anticorpos de Cadeia Única/farmacologia , Afinidade de Anticorpos , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Técnicas de Visualização da Superfície Celular , Cromatografia em Gel , Ativação Enzimática/efeitos dos fármacos , Modelos Moleculares , Biblioteca de Peptídeos , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Relação Estrutura-Atividade
8.
J Cell Sci ; 131(15)2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29976560

RESUMO

Although the kinase CHK1 is a key player in the DNA damage response (DDR), several studies have recently provided evidence of DDR-independent roles of CHK1, in particular following phosphorylation of its S280 residue. Here, we demonstrate that CHK1 S280 phosphorylation is cell cycle-dependent and peaks during mitosis. We found that this phosphorylation was catalyzed by the kinase PIM2, whose protein expression was also increased during mitosis. Importantly, we identified polo-like kinase 1 (PLK1) as a direct target of CHK1 during mitosis. Genetic or pharmacological inhibition of CHK1 reduced the activating phosphorylation of PLK1 on T210, and recombinant CHK1 was able to phosphorylate T210 of PLK1 in vitro Accordingly, S280-phosphorylated CHK1 and PLK1 exhibited similar specific mitotic localizations, and PLK1 was co-immunoprecipitated with S280-phosphorylated CHK1 from mitotic cell extracts. Moreover, CHK1-mediated phosphorylation of PLK1 was dependent on S280 phosphorylation by PIM2. Inhibition of PIM proteins reduced cell proliferation and mitotic entry, which was rescued by expressing a T210D phosphomimetic mutant of PLK1. Altogether, these data identify a new PIM-CHK1-PLK1 phosphorylation cascade that regulates different mitotic steps independently of the CHK1 DDR function.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Dano ao DNA/genética , Dano ao DNA/fisiologia , Células HeLa , Humanos , Camundongos Knockout , Mitose/genética , Fosforilação/genética , Fosforilação/fisiologia , Reação em Cadeia da Polimerase , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Espectrometria de Massas em Tandem , Quinase 1 Polo-Like
9.
Biochem Biophys Res Commun ; 533(4): 1419-1426, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33333710

RESUMO

Inflammation has an essential role in regulating the pathogenesis of acute respiratory distress syndrome (ARDS). The serine/threonine kinase PIM2 is highly expressed in human macrophages, and exhibits regulatory role in inflammatory response. However, its effect on ARDS progression has not been investigated and still remains unclear. In the study, we attempted to investigate the potential of PIM2 during ARDS progression, and to reveal the underlying molecular mechanisms. Here, we found that PIM2 expression was dramatically up-regulated in lipopolysaccharide (LPS)-exposed murine macrophages through a dose- and time-dependent manner. Additionally, we found that PIM2 knockdown greatly alleviated LPS-triggered activation of Caspase-1, interleukin (IL)-1ß, NOD-like receptor pyrin domain 3 (NLRP3) and apoptosis-associated speck-like protein (ASC) in macrophages, along with suppressed inflammatory response. Importantly, we identified that PIM2 could directly interact with NLRP3. PIM2 over-expression could further promote LPS-triggered inflammation and NLRP3 inflammasome in macrophages. Furthermore, PIM2 knockout significantly alleviated the severity of ARDS in LPS-challenged mice. Evidently decreased inflammatory response and NLRP3 inflammasome were detected in pulmonary tissues of LPS-treated mice with PIM2 deficiency. Together, our findings demonstrated that PIM2 as a promising therapeutic target for ARDS treatment through regulating NLRP3 inflammasome.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Síndrome do Desconforto Respiratório/genética , Animais , Modelos Animais de Doenças , Inflamassomos/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Células RAW 264.7 , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/metabolismo
10.
J Intensive Care Med ; 35(11): 1265-1270, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31185788

RESUMO

OBJECTIVE: To examine if fluid balance surrounding pediatric intensive care unit (PICU) admission in hematopoietic stem cell transplant (HSCT) patients was associated with mortality, ventilator-free days, and intensive care unit (ICU)-free days. To explore other population-specific factors associated with poor outcome. MATERIALS AND METHODS: Retrospective review of HSCT patients admitted to 2 quaternary PICUs, Children's Hospital Los Angeles and University of California San Francisco Benioff Children's Hospital from January 2009 to December 2014. RESULTS: Of 144 patients, 92 were identified with complete fluid balance data available. No difference in fluid balance between survivors and nonsurvivors in the 24 hours preceding PICU admission (P = .81) or when the first 24 hours of PICU stay were taken into account (P = .48) was identified. There was no difference in ventilator-free or ICU-free days. Comparing Pediatric Index of Mortality (PIM)-2, Pediatric Risk of Mortality (PRISM)-3, and a multivariable model using independent risk factors identified through multivariable analysis, the receiver operating characteristic plot for the multivariable model (area under the curve = 0.844 [95% confidence interval: 0.77-0.92]) was superior to both PIM-2 and PRISM-3 in discriminating mortality. CONCLUSIONS: Fluid balance immediately preceding and early in the course of admission was not associated with mortality in PICU HSCT patients. A subset of variables was identified which better discriminated mortality in this cohort than accepted PICU severity of illness scores.


Assuntos
Estado Terminal , Transplante de Células-Tronco Hematopoéticas , Criança , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Unidades de Terapia Intensiva Pediátrica , Estudos Retrospectivos , Fatores de Risco , Equilíbrio Hidroeletrolítico
11.
Br J Haematol ; 180(2): 246-258, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29327347

RESUMO

Proviral Integrations of Moloney virus 2 (PIM2) is overexpressed in multiple myeloma (MM) cells, and regarded as an important therapeutic target. Here, we aimed to validate the therapeutic efficacy of different types of PIM inhibitors against MM cells for their possible clinical application. Intriguingly, the thiazolidine-2,4-dione-family compounds SMI-16a and SMI-4a reduced PIM2 protein levels and impaired MM cell survival preferentially in acidic conditions, in contrast to other types of PIM inhibitors, including AZD1208, CX-6258 and PIM447. SMI-16a also suppressed the drug efflux function of breast cancer resistance protein, minimized the sizes of side populations and reduced in vitro colony-forming capacity and in vivo tumourigenic activity in MM cells, suggesting impairment of their clonogenic capacity. PIM2 is known to be subject to ubiquitination-independent proteasomal degradation. Consistent with this, the proteasome inhibitors bortezomib and carfilzomib increased PIM2 protein levels in MM cells without affecting its mRNA levels. However, SMI-16a mitigated the PIM2 protein increase and cooperatively enhanced anti-MM effects in combination with carfilzomib. Collectively, the thiazolidine-2,4-dione-family compounds SMI-16a and SMI-4a uniquely reduce PIM2 protein in MM cells, which may contribute to their profound efficacy in addition to their immediate kinase inhibition. Their combination with proteasome inhibitors is envisioned.


Assuntos
Antineoplásicos/farmacologia , Mieloma Múltiplo/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Tiazolidinedionas/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Inibidores de Proteassoma/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Proteínas Proto-Oncogênicas/metabolismo
12.
Biochem Biophys Res Commun ; 506(1): 145-152, 2018 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-30340823

RESUMO

Gastric cancer is one of the most fatal cancers worldwide. The incidence and death rates are still increasing for gastric cancer. Increasing studies have shown that proviral insertion in murine lymphomas 2 (PIM2) functions as critical regulator of multiple cancers. However, it remains unknown whether and how PIM2 regulates gastric cancer progression. In this study, PIM2 was increased in the gastric cancer tissues of patients. Patients with high PIM2 expression levels had significantly shorter survival than those with low PIM2 expression. PIM2 knockdown reduced proliferation, migration and invasion in vitro by up-regulating E-cadherin, and down-regulating N-cadherin and Vimentin. Knockdown of PIM2 induced apoptosis in gastric cancer cells, which was regulated by endoplasmic reticulum (ER) stress, as evidenced by the increased expression levels of Activating transcription factor (ATF) 6, ATF4, X-box- binding protein-1 (XBP-1) and C/EBP homologous protein (CHOP). In addition, our data showed that PIM2 silence induced reactive oxygen species (ROS) production, leading to the activation of c-Jun N-terminal kinase (JNK). Importantly, we found that PIM2 knockdown-induced apoptosis and ER stress could be abolished by reducing reactive oxygen species (ROS) generation. In vivo, PIM2 knockdown showed a significant reduction in SGC-7901 xenograft tumor size. In summary, our findings provided experimental evidence that PIM2 might function as an important oncogene in gastric cancer, which supplied promising target for developing new therapeutic strategy in gastric cancer.


Assuntos
Apoptose , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Neoplasias Gástricas/etiologia , Animais , Progressão da Doença , Estresse do Retículo Endoplasmático/fisiologia , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Linfoma , Camundongos , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Espécies Reativas de Oxigênio/metabolismo
13.
Arch Biochem Biophys ; 655: 26-36, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30096294

RESUMO

The p53 protein is an inducer of apoptosis, acting as a transcriptional regulator of apoptotic genes. In a previous study, we found that actinomycin D and nutlin-3a (A + N) synergistically activate p53. To better understand the molecular consequences of this synergism, we incubated arrays of antibodies against apoptotic proteins with extracts of A549 cells in which p53 had been activated. We found that strong activation of p53, marked by serine 46 and 392 phosphorylation, was associated with inactivating phosphorylation of proapoptotic BAD protein on serine 136. Investigation of the source of this phosphorylation revealed that activation of p53 was associated with accumulation of PIM2, a survival kinase. The accumulation of PIM2 following treatment with A + N was suppressed in p53-knockdown cells. Others discovered that PIM2 was activated by cooperatively acting p53 molecules. Our results are consistent with this finding. Moreover, we found that in A549 cells, the treatment with A + N stimulated in p53-dependent fashion the expression of other high cooperativity p53 target genes, DRAXIN and H19. Activation of antiapoptotic H19 can mechanistically explain relatively low rate of apoptosis of A549 cells exposed to A + N. We conclude that PIM2, DRAXIN and H19 are efficiently stimulated by strongly activated p53 molecules, probably acting cooperatively.


Assuntos
Camptotecina/farmacologia , Dactinomicina/farmacologia , Imidazóis/farmacologia , Piperazinas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Sinergismo Farmacológico , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Serina/química , Inibidores da Topoisomerase I/farmacologia , Proteína Supressora de Tumor p53/genética , Regulação para Cima , Proteína de Morte Celular Associada a bcl/química , Proteína de Morte Celular Associada a bcl/metabolismo
15.
J Biol Chem ; 290(33): 20211-20, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25987564

RESUMO

Regulation of the extent of immune responses is a requirement to maintain self-tolerance and limit inflammatory processes. CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells play a role in regulation. The Foxp3 transcription factor is considered a dominant regulator for Treg cell development and function. Foxp3 function itself is directly regulated by multiple posttranslational modifications that occur in response to various external stimuli. The Foxp3 protein is a component of several dynamic macromolecular regulatory complexes. The complexes change constituents over time and through different signals to regulate the development and function of regulatory T cells. Here we identified a mechanism regulating Foxp3 level and activity that operates through discrete phosphorylation. The Pim-2 kinase can phosphorylate Foxp3, leading to decreased suppressive functions of Treg cells. The amino-terminal domain of Foxp3 is modified at several sites by Pim-2 kinase. This modification leads to altered expression of proteins related to Treg cell functions and increased Treg cell lineage stability. Treg cell suppressive function can be up-regulated by either pharmacologically inhibiting Pim-2 kinase activity or by genetically knocking out Pim-2 in rodent Treg cells. Deficiency of Pim-2 activity increases murine host resistance to dextran sodium sulfate-induced colitis in vivo, and a Pim-2 small molecule kinase inhibitor also modified Treg cell functions. Our studies define a pathway for limiting the regulation of Foxp3 function because the Pim-2 kinase represents a potential therapeutic target for modulating the Treg cell suppressive activities in controlling immune responses.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Linfócitos T Reguladores/imunologia , Sequência de Aminoácidos , Animais , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética
16.
Cancer Sci ; 106(6): 718-725, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25854938

RESUMO

Metastasis of breast cancer is promoted by epithelial-mesenchymal transition (EMT). Emerging evidence suggests that STAT3 is a critical signaling node in EMT and is constitutively activated in many carcinomas, including breast cancer. However, its signaling mechanisms underlying persistent activation of STAT3 associated with EMT remain obscure. Here, we report that PIM2 promotes activation of STAT3 through induction of cytokines. Activation of STAT3 caused an increase in PIM2 expression, implicating a positive feedback loop between PIM2 and STAT3. In agreement, targeting of either PIM2, STAT3 or PIM2-dependent cytokines suppressed EMT-associated migratory and invasive properties through inhibition of ZEB1. Taken together, our findings identify the signaling mechanisms underlying the persistent activation of STAT3 and the oncogenic role of PIM2 in EMT in breast cancer.


Assuntos
Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Fator de Transcrição STAT3/fisiologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Feminino , Proteínas de Homeodomínio/fisiologia , Humanos , Interleucina-1alfa/metabolismo , Interleucina-8/metabolismo , Invasividade Neoplásica , Transdução de Sinais , Fatores de Transcrição/fisiologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco
17.
Int J Med Sci ; 12(6): 487-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26078709

RESUMO

Tumor cells have higher rates of glucose uptake and aerobic glycolysis to meet energy demands for proliferation and metastasis. The characteristics of increased glucose uptake, accompanied with aerobic glycolysis, has been exploited for the diagnosis of cancers. Although much progress has been made, the mechanisms regulating tumor aerobic glycolysis and energy production are still not fully understood. Here, we demonstrate that Pim-2 is required for glycolysis and energy production in colorectal tumor cells. Our results show that Pim-2 is highly expressed in colorectal tumor cells, and may be induced by nutrient stimulation. Activation of Pim-2 in colorectal cells led to increase glucose utilization and aerobic glycolysis, as well as energy production. While knockdown of Pim-2 decreased energy production in colorectal tumor cells and increased their susceptibility to apoptosis. Moreover, the effects of Pim-2 kinase on aerobic glycolysis seem to be partly dependent on mTORC1 signaling, because inhibition of mTORC1 activity reversed the aerobic glycolysis mediated by Pim-2. Our findings suggest that Pim-2-mediated aerobic glycolysis is critical for monitoring Warburg effect in colorectal tumor cells, highlighting Pim-2 as a potential metabolic target for colorectal tumor therapy.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Aerobiose/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Glicólise/genética , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética
18.
J Proteome Res ; 13(11): 4970-82, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25099161

RESUMO

Platinum-based chemotherapy is widely used to treat various cancers, but many patients ultimately relapse due to drug resistance. We employed phosphoproteomic analysis and functional assays of the response of SK-OV-3 ovarian cancer cells to cisplatin as a strategy to identify kinases as candidate druggable targets to sensitize cells to platinum. A SILAC-based approach combined with TiO2-based phosphopeptide enrichment allowed the direct identification of ERK1/2, p90RSK, and ERBB2 as kinases whose phosphorylation is regulated by cisplatin. Bioinformatic analysis revealed enrichment in linear phosphorylation motifs predicted to be targets of p38MAPK, CDK2, and PIM2. All three PIM kinases were found expressed in a panel of 10 ovarian cancer cell lines, with the oncogenic PIM2 being the most commonly induced by cisplatin. Targeting PIM2 kinase by either biochemical inhibitors or RNA interference impaired cell growth, decreased cisplatin-triggered BAD phosphorylation, and sensitized ovarian cancer cells to drug-induced apoptosis. Overexpression of PIM2 triggered anchorage-independent growth and resulted in increased BAD phosphorylation and cell resistance to DNA damaging agents. The data show that the PIM2 kinase plays a role in the response of ovarian cancer cells to platinum drugs and suggest that PIM inhibitors may find clinical application as an adjunct to platinum-based therapies.


Assuntos
Cisplatino/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas/metabolismo , Motivos de Aminoácidos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Espectrometria de Massas em Tandem/métodos , Proteína de Morte Celular Associada a bcl/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
J Biol Chem ; 288(30): 21770-83, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23760264

RESUMO

The oncogenic nature ascribed to the PIM-2 kinase relies mostly on phosphorylation of substrates that act as pro-survival/anti-apoptotic factors. Nevertheless, pro-survival effects can also result from activating DNA repair mechanisms following damage. In this study, we addressed the possibility that PIM-2 plays a role in the cellular response to UV damage, an issue that has never been addressed before. We found that in U2OS cells, PIM-2 expression and activity increased upon exposure to UVC radiation (2-50 mJ/cm(2)), and Pim-2-silenced cells were significantly more sensitive to UV radiation. Overexpression of PIM-2 accelerated removal of UV-induced DNA lesions over time, reduced γH2AX accumulation in damaged cells, and rendered these cells significantly more viable following UV radiation. The protective effect of PIM-2 was mediated by increased E2F-1 and activated ATM levels. Silencing E2F-1 reduced the protective effect of PIM-2, whereas inhibiting ATM activity abrogated this protective effect, irrespective of E2F-1 levels. The results obtained in this study place PIM-2 upstream to E2F-1 and ATM in the UV-induced DNA damage response.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição E2F1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Raios Ultravioleta , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Reparo do DNA , Proteínas de Ligação a DNA/antagonistas & inibidores , Fator de Transcrição E2F1/genética , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Morfolinas/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tioxantenos/farmacologia , Fatores de Tempo , Proteínas Supressoras de Tumor/antagonistas & inibidores
20.
Biochim Biophys Acta Biomembr ; 1866(8): 184378, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39163923

RESUMO

This work correlates the effects of benzohydroxamate (BH) and nitrobenzohydroxamate (NBH) anions in two membrane models which may be used for anti-tuberculosis (anti-TB) spectroscopic studies and/or computational studies. Firstly, the BH and NBH influence in the physico-chemical properties of soy asolectin (ASO)-based large multilamellar vesicles (MLVs) were evaluated by spectroscopic and calorimetric studies. In parallel, the BH and NBH interaction with a Mycobacterium tuberculosis (Mtb) inner membrane model, composed of phosphatidyl-myo-inositol-dimannoside (PIM2), was investigated by molecular dynamics (MD) simulations. Spectroscopic data showed a localization of BH close to the lipid phosphate group, while NBH was found close to the choline region. The BH ordered the ASO choline, phosphate and carbonyl regions and disrupted the acyl methylenes, reducing the membrane packing of the lipid hydrophobic region. On the other hand, NBH showed an ordering effect in all the lipid groups (polar, interface and hydrophobic ones). By MD studies, it was found that NBH enhanced the stability of the PIM2 membrane more than BH, while also being positioned closer to its mannosyl oxygens. As in ASO MLVs, BH was localized close to the PIM2 phosphate group and disrupted its acyl chains. However, higher values of lateral diffusion were observed for NBH than BH. Despite this, BH and NBH increased the membrane thickness by 35 %, which suggests a global ordering effect of both drugs. Findings of this work reinforce the accordance and complementarity between MLVs based on ASO and the PIM2 MD model results to study the drug effects in Mtb membrane properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA