Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Fluoresc ; 33(1): 77-90, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36251202

RESUMO

Rapid and selective detection of nitroaromatic explosives is very important for public safety, life, and environmental health. Current instrumental techniques suffer from high cost and poor site used. In order to investigate fluorescence sensing of nitroaromatics, we prepare a new small fluorescence probe derived from pamoic acid. This study covers the synthesis of Pamoic acid based [diisopropyl 4,4'-methylenebis(3-methoxy-2-naphthoate)] (2) material and characterization of its structure. The methylation of Pamoic acid ester, which we have successfully synthesized in our previous studies, was carried out in this study. Determination of the photophysical and fluorescent nitroaromatic detection properties of the compound forms the basis of the study. Structural characterization of the synthesized compound [diisopropyl 4,4'-methylenebis(3-methoxy-2-naphthoate)] (2) was characterized using spectroscopic methods. In addition, Molecular structure of the synthesized compound was determined by single crystal X-ray diffraction studies. In the final step, compounds [diisopropyl 4,4'-methylenebis(3-hydroxy-2-naphthoate)] (1) and [diisopropyl 4,4'-methylenebis(3-methoxy-2-naphthoate)] (2) were tested as fluorescent probes for the detection of some nitroaromatic explosives. It is seen that Nitrobenzene provides the best quenching effect on the compound [diisopropyl 4,4'-methylenebis(3-hydroxy-2-naphthoate)] (1) containing the -OH group, with lowest the limit of detection (LOD) value. It was observed that Picric acid provided the best quenching effect with lowest the limit of detection (LOD) value in the compound [diisopropyl 4,4'-methylenebis(3-methoxy-2-naphthoate)] (2) obtained by methylation of the -OH group in the compound [diisopropyl 4,4'-methylenebis(3-hydroxy-2-naphthoate)] (1).

2.
Mol Pharm ; 19(5): 1389-1399, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35230851

RESUMO

Alzheimer's disease is a chronic disease, and the long-term treatment of chronic diseases has always been a concern. Memantine (Mem) is approved by the US Food and Drug Administration for the treatment of moderate to severe Alzheimer's disease. In this study, reactions of memantine (Mem) with pamoic acid (Pam) were carried out to form insoluble salts (Mem-Pam). Four polymorphic forms (Forms I-IV) of Mem-Pam were successfully obtained through polymorphic screening, which were systematically characterized by X-ray powder diffraction (PXRD), thermal analysis (TGA and DSC), single-crystal X-ray diffraction (SXRD), and solid-state fluorescence. Compared with the hydrochloride form, the dissolution and release rates of these four forms are lower. The presence of pamoic acid reduces the release rate of memantine and makes it possible to achieve a sustained release of the drug. Interestingly, because of the presence of memantine, each polymorphic solid crystal of Mem-Pam has unique fluorescence emission. Therefore, memantine and pamoic acid have a synergistic effect on the fluorescence performance and can be expected to be used for real-time monitoring in continuous and controlled release drug delivery systems. In addition, the polymorphic solid crystals also exhibit reversible mechanochromic luminescence under the fumigation of acetonitrile vapor, which has a guiding role in the fluorescence design and synthesis of Pam substances and is expected to be used for information security, visual inspection of organic substances, etc.


Assuntos
Doença de Alzheimer , Memantina , Doença de Alzheimer/tratamento farmacológico , Humanos , Pós , Cloreto de Sódio , Difração de Raios X
3.
Br J Pharmacol ; 180(23): 3059-3070, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37501600

RESUMO

BACKGROUND AND PURPOSE: Pruritic dermatitis is a disease with a considerable unmet need for treatment and appears to present with not only epidermal but also peripheral neuronal complications. Here, we propose a novel pharmacological modulation targeting both peripheral dorsal root ganglion (DRG) sensory neurons and skin keratinocytes. GPR35 is an orphan G-protein-coupled receptor expressed in DRG neurons and has been predicted to downregulate neuronal excitability when activated. Modulator information is currently increasing for GPR35, and pamoic acid (PA), a salt-forming agent for drugs, has been shown to be an activator solely specific for GPR35. Here, we investigated its effects on dermatitic pathology. EXPERIMENTAL APPROACH: We confirmed GPR35 expression in peripheral neurons and tissues. The effect of PA treatment was pharmacologically evaluated in cultured cells in vitro and in in vivo animal models for acute and chronic pruritus. KEY RESULTS: Local PA application mitigated acute non-histaminergic itch and, consistently, obstructed DRG neuronal responses. Keratinocyte fragmentation under dermatitic simulation was also dampened following PA incubation. Chronic pruritus in 1-chloro-2,4-dinitrobenzene and psoriasis models were also moderately but significantly reversed by the repeated applications of PA. Dermatitic scores in the 1-chloro-2,4-dinitrobenzene and psoriatic models were also improved by its application, indicating that it is beneficial for mitigating disease pathology. CONCLUSION AND IMPLICATIONS: Our findings suggest that pamoic acid activation of peripheral GPR35 can contribute to the improvement of pruritus and its associated diseases.


Assuntos
Dermatite , Dinitroclorobenzeno , Animais , Dinitroclorobenzeno/metabolismo , Dinitroclorobenzeno/farmacologia , Prurido/tratamento farmacológico , Prurido/metabolismo , Pele/metabolismo , Dermatite/metabolismo , Gânglios Espinais/metabolismo
4.
Pharmaceutics ; 13(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062883

RESUMO

Glaucoma is the leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) is one of the major risk factors for glaucoma onset and progression, and available pharmaceutical interventions are exclusively targeted at IOP lowering. However, degeneration of retinal ganglion cells (RGCs) may continue to progress despite extensive lowering of IOP. A complementary strategy to IOP reduction is the use of neuroprotective agents that interrupt the process of cell death by mechanisms independent of IOP. Here, we describe an ion complexation approach for formulating microcrystals containing ~50% loading of a protein kinase inhibitor, sunitinib, to enhance survival of RGCs with subconjunctival injection. A single subconjunctival injection of sunitinib-pamoate complex (SPC) microcrystals provided 20 weeks of sustained retina drug levels, leading to neuroprotection in a rat model of optic nerve injury. Furthermore, subconjunctival injection of SPC microcrystals also led to therapeutic effects in a rat model of corneal neovascularization. Importantly, therapeutically relevant retina drug concentrations were achieved with subconjunctival injection of SPC microcrystals in pigs. For a chronic disease such as glaucoma, a formulation that provides sustained therapeutic effects to complement IOP lowering therapies could provide improved disease management and promote patient quality of life.

5.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 5): 533-536, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31110779

RESUMO

The asymmetric unit of the title compound, trans-di-aqua-(3,10-dimethyl-1,3,5,8,10,12-hexa-aza-cyclo-tetra-decane-κ4 N 1,N 5,N 8,N 12)copper(II) 4,4'-methyl-ene-bis(3-hy-droxy-naphthalene-2-carboxyl-ate), [Cu(C10H26N6)(H2O)2](C23H14O6) {[Cu(L)(H2O)2](pam), where L = 3,10-dimethyl-1,3,5,8,10,12-hexa-aza-cyclo-tetra-decane and pam = dianion of pamoic acid} consists of two independent halves of the [Cu(L)(H2O)2]2+ cation and one di-carboxyl-ate anion. The CuII atoms, lying on inversion centres, are coordinated by the four secondary N atoms of the macrocyclic ligands and the mutually trans O atoms of the water mol-ecules in a tetra-gonally elongated octa-hedral geometry. The average equatorial Cu-N bond length is significantly shorter than the average axial Cu-O bond length [2.007 (10) and 2.486 (18) Å, respectively]. The macrocyclic ligand in the complex cations adopts the most energetically stable trans-III conformation. The complex cations and anions are connected via hydrogen-bonding inter-actions between the N-H groups of the macrocycles and the O-H groups of coordinated water mol-ecules as the proton donors and the O atoms of the carboxyl-ate as the proton acceptors into layers lying parallel to the (11) plane.

6.
Int J Pharm ; 561: 197-205, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30836151

RESUMO

The aim of this study was to evaluate the impact of stability of hydrophobic ion pairs (HIPs) in gastrointestinal (GI) fluids on their release from self-emulsifying drug delivery systems (SEDDS). HIPs of leuprolide (LEU), insulin (INS) and bovine serum albumin (BSA) were formed using various mono- and di-carboxylate surfactants i.e. sodium deoxycholate (SDC), sodium dodecanoate (SDD), sodium stearoyl glutamate (SSG) and pamoic acid di-sodium salt (PAM). HIPs were evaluated regarding precipitation efficiency, log Pn-butanol/water and dissociation behavior at various pH and ionic strength. Solubility studies of these HIPs were accomplished to identify suitable solvents for the formulation of SEDDS. Subsequently, HIPs were incorporated into SEDDS followed by characterization regarding zeta potential, stability and log DSEDDS/release medium. Independent from the type of (poly)peptides, PAM showed most efficient HIP properties among tested surfactants. The highest encapsulation efficiency with PAM was achieved at molar ratios of 1:1 for LEU, 1:3 for INS and 1:50 for BSA and log Pn-butanol/water of HIPs were increased at least 2.5 units. Dissociation studies showed that LEU-PAM, INS-PAM, BSA-PAM complexes were dissociated within 6 h up to 25%, 60% and 85% in GI fluids, respectively. These HIPs were successfully incorporated into SEDDS exhibiting negative zeta potential and high stability for 4 h. Log DSEDDS/release medium of LEU-PAM, INS-PAM, BSA-PAM complexes were 2.4 ±â€¯0.7, 2.1 ±â€¯0.62 and 1.6 ±â€¯0.45, respectively. Findings of this study showed that stability of HIPs has great impact on log DSEDDS/release medium and consequently on their release from SEDDS.


Assuntos
Emulsões/química , Insulina/química , Íons/química , Leuprolida/química , Soroalbumina Bovina/química , Tensoativos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Solubilidade
7.
Biochem Pharmacol ; 93(4): 506-18, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25542997

RESUMO

The G-protein-coupled receptor 35 (GPR35) was de-orphanized after the discovery that kynurenic acid (KYNA), an endogenous tryptophan metabolite, acts as an agonist of this receptor. Abundant evidence supports that GPR35 exists primarily in peripheral tissues. Here, we tested the hypothesis that GPR35 exists in the hippocampus and influences the neuronal activity. Fluorescence immunohistochemical staining using an antibody anti-NeuN (a neuronal marker), an antibody anti-GFAP (a glial marker), and an antibody anti-GPR35 revealed that neurons in the stratum oriens, stratum pyramidale, and stratum radiatum of the CA1 field of the hippocampus express GPR35. To determine the presence of functional GPR35 in the neurocircuitry, we tested the effects of various GPR35 agonists on the frequency of spontaneous action potentials recorded as fast current transients (CTs) from stratum radiatum interneurons (SRIs) under cell-attached configuration in rat hippocampal slices. Bath application of the GPR35 agonists zaprinast (1-10 µM), dicumarol (50-100 µM), pamoic acid (500-1000 µM), and amlexanox (3 µM) produced a concentration- and time-dependent reduction in the frequency of CTs. Superfusion of the hippocampal slices with the GPR35 antagonist ML145 (1 µM) increased the frequency of CTs and reduced the inhibitory effect of zaprinast. Bath application of phosphodiesterase 5 inhibitor sildenafil (1 or 5 µM) was ineffective, whereas a subsequent application of zaprinast was effective in reducing the CT frequency. The present results demonstrate for the first time that functional GPR35s are expressed by CA1 neurons and suggest that these receptors can be molecular targets for controlling neuronal activity in the hippocampus.


Assuntos
Região CA1 Hipocampal/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Animais , Animais Recém-Nascidos , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
8.
Nucl Med Biol ; 40(6): 816-22, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23915800

RESUMO

INTRODUCTION: Necrosis is a form of cell death that occurs in a variety of pathological conditions but can also be the result of therapy in cancer treatment. A radiotracer that could image necrotic cell death using PET could therefore be a useful tool to provide relevant information on the disease activity or therapeutic efficacy and assist in diagnosis and therapy management of several disorders. Pamoic acid derivatives have previously been reported to show a selective uptake in tissue undergoing cellular death via necrosis. In this study 4,4'-methylene-bis(2-hydroxy-3-naphthoic hydrazide) (pamoic acid bis-hydrazide) was conjugated to the macrocyclic ligand DOTA and labeled with the generator produced positron emitter (68)Ga. The resulting complex ((68)Ga-bis-DOTA-PA; (68)Ga-3) was evaluated as a potential radiotracer for imaging tissues undergoing cellular death via necrosis. METHODS: Bis-DOTA-PA was synthesized and labeled with (68)Ga. Biodistribution of (68)Ga-3 and analysis of plasma were studied in normal NMRI mice. Binding of the complex to necrotic tissue was first evaluated by in vitro autoradiography. Further evaluation of the uptake in necrotic tissue was performed in two different models of necrosis using microPET imaging in correlation with ex vivo autoradiography, biodistribution studies and histochemical staining. A biodistribution study in a mouse model of hepatic apoptosis was performed to study the selectivity of the uptake of (68)Ga-bis-DOTA-PA in necrotic tissue. RESULTS: (68)Ga-3 was obtained with a decay-corrected radiochemical yield of 51.8% ± 5.4% and a specific activity of about 12 GBq/µmol. In normal mice, the complex was slowly cleared from blood, mainly through the renal pathway, and showed high in vivo stability. (68)Ga-bis-DOTA-PA displayed high and selective uptake in necrotic tissue and allowed imaging of necrotic tissue using microPET. CONCLUSION: (68)Ga-3 was synthesized and characterized. In vitro, in vivo and ex vivo studies showed that the complex displays high and selective uptake in tissue undergoing cellular death via necrosis.


Assuntos
Compostos Heterocíclicos com 1 Anel/química , Fígado/patologia , Naftóis/química , Tomografia por Emissão de Pósitrons/métodos , Animais , Técnicas de Química Sintética , Radioisótopos de Gálio , Compostos Heterocíclicos com 1 Anel/farmacocinética , Fígado/diagnóstico por imagem , Masculino , Camundongos , Necrose/diagnóstico por imagem , Radioquímica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA