Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 119: 104434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225046

RESUMO

Ypt GTPases are the largest subfamily of small GTPases involved in membrane transport. Here, a PeYpt7 gene deletion mutant of P. expansum was constructed. The ΔPeYpt7 mutant showed reduced colony growth with abnormal mycelial growth, reduced conidiation, and insufficient spore development. The mutation rendered the pathogen susceptible to osmotic stress and cell wall stressors. In addition, the absence of PeYpt7 reduced patulin production in P. expansum and significantly limited gene expression (PatG, PatH, PatI, PatD, PatF, and PatL). In addition, the mutant showed attenuated virulence in infected fruit and reduced expression of pathogenic factors was (PMG, PG, PL, and GH1). Thus, PeYpt7 modulates the growth, morphology, patulin accumulation, and pathogenicity of P. expansum by limiting the expression of related genes.


Assuntos
Malus , Proteínas Monoméricas de Ligação ao GTP , Patulina , Penicillium , Virulência/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Frutas/metabolismo
2.
J Sci Food Agric ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767320

RESUMO

BACKGROUND: Fresh ginseng is typically accompanied by soil after harvest, leading to contamination with harmful fungi during storage and distribution. In this study, we investigated the incidence of fungal contamination in fresh ginseng (5-6 years old) purchased from 22 different stores in Geumsan, Korea. RESULTS: The incidence of fungal contamination in the samples was 67.4-111.5%. Fusarium solani was the most abundant species in the head (38.5%) and fine root (19.3%) parts of the ginseng samples, whereas F. oxysporum was the most abundant in the main root (22.0%) part. We isolated Aspergillus, Fusarium and Penicillium spp. (total number of isolates: 395) from the ginseng samples, and 138 isolates were identified using phylogenetic analysis. Polymerase chain reaction-based screening of 65 mycotoxin-producing species revealed that two P. expansum isolates were positive for citrinin and/or patulin, and five F. oxysporum isolates were positive for fumonisin biosynthesis gene. One P. expansum isolate produced 738.0 mg kg-1 patulin, and the other produced 10.4 mg kg-1 citrinin and 12.0 mg kg-1 patulin on potato dextrose agar (PDA) medium. Among the 47 representative F. oxysporum isolates, 43 (91.5%) produced beauvericin (0.1-15.4 mg kg-1) and four of them (8.5%) produced enniatin B and enniatin B1 (0.1-1.8 mg kg-1) as well. However, none of these toxins was detected in fresh ginseng samples. CONCLUSION: Fusarium solani and F. oxysporum were the most abundant species in fresh ginseng samples. Most F. oxysporum (43) and P. expansum (2) strains isolated from fresh ginseng produced beauvericin and enniatins (B and B1), and patulin or citrinin, respectively, on PDA medium. This is the first report of the mycotoxigenic potential of P. expansum and F. oxysporum strains isolated from fresh ginseng. © 2024 Society of Chemical Industry.

3.
Chemistry ; 29(38): e202300103, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-36893323

RESUMO

Communesins are rare alkaloids isolated from fungi of the genus Penicillium. In this work, the extract of a marine-derived Penicillium expansum strain was studied using targeted molecular networking approach allowing to detect 65 communesins including 55 new ones. A fragmentation pattern for dimethylvinyl communesins was established and a script was implemented allowing to predict the structure and map all communesins in a global molecular network. A semisynthetic strategy was carried out to obtain some minor congeners from the two isolated communesins A and B. Nine communesins were then synthetised: two of them were already described as produced by the studied strain; four are new natural products which occurrence in the extracts was confirmed; three are new semi-synthetic analogues never described so far. These communesins were evaluated for their cytotoxicity on two human cancer cell lines KB and MCF-7 leading to a preliminary study of their structure-activity relationships.


Assuntos
Alcaloides , Produtos Biológicos , Penicillium , Humanos , Alcaloides/química , Fungos , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo
4.
Crit Rev Food Sci Nutr ; 63(15): 2598-2611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34542350

RESUMO

One of the most significant challenges associated with postharvest apple deterioration is the blue mold caused by Penicillium expansum, which leads to considerable economic losses to apple production industries. Apple fruits are susceptible to mold infection owing to their high nutrient and water content, and current physical control methods can delay but cannot completely inhibit P. expansum growth. Biological control methods present promising alternatives; however, they are not always cost effective and have application restrictions. P. expansum infection not only enhances disease pathogenicity, but also inhibits the expression of host-related defense genes. The implementation of new ways to investigate and control P. expansum are expected with the advent of omics technology. Advances in these techniques, together with molecular biology approaches such as targeted gene deletion and whole genome sequencing, will lead to a better understanding of the P. expansum infectious machinery. Here, we review the progress of research on the blue mold disease caused by P. expansum in apples, including physiological and molecular infection mechanisms, as well as various methods to control this common plant pathogen.


Assuntos
Malus , Penicillium , Penicillium/metabolismo , Frutas , Plantas
5.
Plant Dis ; 107(4): 1177-1182, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36256742

RESUMO

Blue mold, caused primarily by Penicillium expansum, is a significant postharvest disease of apples. It not only causes economic losses but also produces mycotoxins that contaminate processed fruit products, which contributes to food waste and loss. Previous research has shown that packing and storage bins harbor Penicillium spores and that steam and hot water efficiently reduce spore inoculum levels. However, studies using wooden and plastic bins regarding their ability to harbor spores, the effect of chemical sanitation treatments on spore levels, and the impact of rinsate from treated bins on apple fruit decay have not been investigated for the Mid-Atlantic area (Okull et al. 2006; Rosenberger 2009). We evaluated different sanitation treatments (chemical and physical) to reduce P. expansum inoculum levels on wooden and plastic bins. We determined that wooden bins bound P. expansum spores four orders of magnitude higher than plastic. When both bin types were treated with steam (wooden) or sterile hot water (plastic), Thyme Guard, or Academy, all treatments resulted in significantly (P < 0.05) lower spore levels compared to untreated controls. Although, plastic bins retained lower numbers of spores after inoculation with contaminated spore rinsate and required much higher concentrations of P. expansum spores in rinsate to retain spores at levels that would lead to decay on apple fruit. Overall, we demonstrated that plastic bins retain fewer spores than wooden bins and that both can be sanitized by various physical or chemical treatments. We envision that our findings will be applicable in the future as the techniques implemented in this study were used to investigate industry-relevant questions. Our goal is that the research techniques and findings become feasible with advancements in technology and/or accompany other shifts in existing processes in commercial pome fruit packing and storage facilities.


Assuntos
Malus , Eliminação de Resíduos , Frutas , Madeira , Vapor , Saneamento , Fungos
6.
Curr Genet ; 68(3-4): 515-529, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35298666

RESUMO

Penicillium digitatum and Penicillium expansum are plant pathogenic fungi that cause the green and blue mold diseases, respectively, leading to serious postharvest economic losses worldwide. Moreover, P. expansum can produce mycotoxins, which are hazardous compounds to human and animal health. The development of tools that allow multiple and precise genetic manipulation of these species is crucial for the functional characterization of their genes. In this sense, CRISPR/Cas9 represents an excellent opportunity for genome editing due to its efficiency, accuracy and versatility. In this study, we developed protoplast generation and transformation protocols and applied them to implement the CRISPR/Cas9 technology in both species for the first time. For this, we used a self-replicative, recyclable AMA1-based plasmid which allows unlimited number of genomic modifications without the limitation of integrative selection markers. As test case, we successfully targeted the wetA gene, which encodes a regulator of conidiophore development. Finally, CRISPR/Cas9-derived ΔwetA strains were analyzed. Mutants showed reduced axenic growth, differential pathogenicity and altered conidiogenesis and germination. Additionally, P. digitatum and P. expansum ΔwetA mutants showed distinct sensitivity to fungal antifungal proteins (AFPs), which are small, cationic, cysteine-rich proteins that have become interesting antifungals to be applied in agriculture, medicine and in the food industry. With this work, we demonstrate the feasibility of the CRISPR/Cas9 system, expanding the repertoire of genetic engineering tools available for these two important postharvest pathogens and open up the possibility to adapt them to other economically relevant phytopathogenic fungi, for which toolkits for genetic modifications are often limited.


Assuntos
Edição de Genes , Penicillium , Sistemas CRISPR-Cas , Proteínas Fúngicas/genética , Humanos , Penicillium/genética , Penicillium/metabolismo
7.
Fungal Genet Biol ; 160: 103689, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339702

RESUMO

Filamentous fungi are prolific producers of secondary metabolites (SecMets), including compounds with antibiotic properties, like penicillin, that allows the producing fungus to combat competitors in a shared niche. However, the biological function of the majority of these small complex metabolites for the producing fungi remains unclear (Macheleidt et al., 2016). In an effort to address this lack of knowledge, we have chosen to study the microbial community of moldy apples in the hope of shedding more light on the role of SecMets for the dynamics of the microbial community. Penicillium expansum is one of the prevalent fungal species in this system, and in co-culture experiments with other apple fungal pathogens, we have observed up- and downregulation of several SecMets when compared to monocultures. However, molecular genetic dissection of the observed changes is challenging, and new methodologies for targeted genetic engineering in P. expansum are needed. In the current study, we have established a CRISPR-Cas9 dependent genetic engineering toolbox for the targeted genetic manipulation of P. expansum to allow for single-step construction of marker-free strains. The method and effect of different combinations of a Cas9-sgRNA expressing plasmids and repair template substrates in the NHEJ-proficient WT strain is tested by targeted deletion of melA, encoding a PKS responsible for pigment formation, which upon deletion resulted in white mutants. Co-transformation with a linear double-stranded DNA fragment consisting of two 2 kb homology arms flanking the PKS gene proved to be the most efficient strategy with 100% confirmed deletions by diagnostic PCR. Shorter homology arms (500-1000 bp) resulted in 20-30% deletion efficiency. Furthermore, we demonstrate the application of the CRISPR-Cas9 method for targeted deletion of biosynthetic genes without a visible phenotype, insertion of a visual reporter-encoding gene (mRFP), and overexpression of biosynthetic genes. Combined, these tools will advance in enabling the deciphering of SecMet biosynthetic pathways, provide in situ insight into when and where SecMets are produced, and provide an avenue to study the role of P. expansum SecMets in shaping the microbial community development on moldy apples via marker-free targeted genetic engineering of P. expansum.


Assuntos
Malus , Penicillium , Sistemas CRISPR-Cas , Engenharia Genética , Penicillium/genética , Penicillium/metabolismo
8.
J Appl Microbiol ; 132(2): 1239-1249, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34251734

RESUMO

AIMS: This research sought to improve the ability of biocontrol yeast to suppress postharvest fungal disease and explore possible mechanisms of action. METHODS AND RESULTS: The addition of 2% sodium glutamate (SG), which is edible and recognized as safe, enhances the inhibitory effect of Rhodosporidium paludigenum Fell & Tallman on Penicillium expansum in vivo and in vitro. Rhodosporidium paludigenum cells grown in medium with a final concentration of 2% SG, displayed viability under a variety of stress conditions, including sodium chloride (NaCl), calcofluor white (CFW), Congo red (CR) and sodium dodecyl sulphate (SDS). Activity and relative gene expression levels of antioxidant-related enzymes in R. paludigenum, including peroxisomal catalase (CAT), thioredoxin reductase (TrxR), glutathione peroxidase (GSH-PX), glutathione reductase (GR) and superoxide dismutase (SOD) were altered in the presence of SG. Levels of reactive oxygen species (ROS) increased in cells grown in the presence of SG as well as the content of several amino acids. CONCLUSIONS: In the presence of 2% SG R. paludigenum inhibited P. expansum and exhibited tolerance to a number of stressful conditions which may involve the upregulation of antioxidant enzymes and amino acids. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability of culture conditions to enhance the fungal suppressive abilities of yeast has the potential to enhance the management of postharvest disease in fruit.


Assuntos
Penicillium , Pyrus , Frutas , Rhodotorula , Glutamato de Sódio
9.
Plant Dis ; 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324204

RESUMO

Apios americana Medikus, a perennial vine legume native to North America, is known as 'Indian potato' or 'Apios' for their underground tubers that are used for human consumption in Korea (Choi et al., 2017). These tubers are known to be rich in isoflavones as well as other secondary products to have known several medicinal properties (Chu et al., 2019). The harvested tubers in 2020 were observed to rot during storage of tubers for 4 months at 4°C in the genetic resource storage room at the Bioenergy Crop Research Institute, National Institute of Crop Science, Muan, Jeollanam-do, South Korea. The incidence of rot symptoms with blue mold was less than 1% per 20 kg box. Ten infected tubers were collected from several boxes and the lesions were cut into small pieces, and then surface sterilized in 1.5% NaClO for 2 minutes, followed by rinsing 3 times with sterilized water. To investigate their morphological characteristics, ten isolates were cultured in Malt Extract Agar (MEA) medium at 25° C for 5 days (Pitt and Hocking, 1988). The surface morphology of the mycelium had white or light green fluffy, and completely blue spores were formed after about 5 days. The conidia were one-stage branched with an elliptical shape, about 3.5 to 4.3 × 2.9 to 3.6 (mean 3.8 ± 0.3 × 3.2 ± 0.2) ㎛ in diameter (n=30). Genomic DNAs of the isolates were extracted using Solgent DNA Extraction Kit (Solgent, Daejeon, Korea), and then PCR products of the internal transcribed spacer (ITS1/ITS4) region and the beta-tubulin gene (Bt2a/Bt2b) were sequenced and analyzed (Glass and Donaldson, 1995). The BLASTn showed that the representative isolate had 99% homology with reference Penicillium expansum strain ICMP 2708 (ITS region and TUB2 gene) in NCBI GenBank. The sequences of the isolate were deposited in GenBank as accession numbers MZ636667 and MZ702813 for ITS and TUB2 genes, respectively. Based on the morphological characteristics and molecular analysis, the isolate was identified as P. expansum. Pathogenicity assays of the isolate were also performed using three tubers in three replicates inoculated with spore suspension (concentration, 1×106 conidia/mL) and compared with a control group inoculated with sterilized water. The inoculated Apios tubers were placed in a plastic box maintained in conditions of high humidity at 25°C. Five days after inoculation, the typical symptoms were observed on inoculated tubers, and no symptoms were observed in the control one. P. expansum was again isolated from artificially inoculated tubers to complete Koch's assumption. This is the first report of P. expansum causing tuber rot in A. americana in South Korea. As the cultivated area of Apios is increasing in Korea, it will be necessary to develop effective storage methods and management strategies for the control of storage diseases such as blue mold.

10.
Plant Dis ; 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133183

RESUMO

Polygonatum odoratum var. pluriflorum, called "Dunggulle", is cultivated in East Asia to obtain rhizomes. In Korea and China, these rhizomes are used in traditional teas, health beverages, and herbal medicines (Zhao and Li, 2015). In 2019, Dunggulle was cultivated in 47 hectares, with an annual output of 120M/T in Korea. In November 2020, Dunggulle rhizomes with symptoms of blue mold rot were observed at a Dunggulle farm storage (36°06'01''N, 127°29'20''E) in Geuman, Korea, where the temperature ranged from 9 to 13°C, with an average humidity of 70%. The disease incidence was 2 to 3% out of 200 rhizomes across all markets surveyed. The disease begins with a greenish blue mold covering the rhizome surface (30 to 60%), followed by rhizome rot with a dark brown color as the disease progresses. Leading edges of the rotten rhizome pieces were sterilized with 1% NaOCl and 70% ethanol and placed on MEA (Malt Extract Agar) with penicillin G and streptomycin (both 50 µg/mL). After 7 days of incubation at 25°C, greenish-blue colonies appeared, from which a monospore was isolated. A representative isolated strain was deposited in the Korean Agricultural Culture Collection (KACC, Wanju, Korea) with Acc. No. KACC 49832. The strain grew slowly on MEA at 25°C (8 to 18 mm diam. after 7 days), producing greenish blue conidia. The conidiophores were hyaline and mostly terverticillate; the branches were appressed against the main axis; the stipes were smooth-walled; and the metulae were cylindrical, 10 to 13 × 2.7 to 3.2 µm, with 6 to 10 flask-shaped phialides, measured 9 to 12 × 2.7 to 3.1 µm. The conidia were globose or subglobose and 2.8 to 4.1 µm diam. These morphological characteristics fit well with the description of Penicillium expansum (Frisvad & Samson, 2004). Genomic DNA was extracted from the mycelia of the KACC 49832 MEA plate. ITS rDNA, beta-tubulin (BenA), and calmodulin (CaM) gene regions were sequenced for identification (Houbraken et al., 2020), and the rsulting sequences were deposited in GenBank (Acc. Nos. MZ189258, MZ226688, and MZ226689, respectively). Comparison with the GenBank sequences revealed that the Korean isolate was highly similar to P. expansum (ITS rDNA 99.8%, BenA 98.6%, and CaM 97.8%). Phylogenetic results based on the maximum-likelihood analysis revealed that KACC 49832 was grouped with P. expansum. To demonstrate pathogenicity, 10 µL of conidial suspension (1.3 × 105 conidia/mL) was dropped on the surface of three Dunggulle rhizomes scratched with a syringe needle. For the control, sterile water was applied on three control rhizomes. All rhizomes were surface-sterilized as referred above before being sprayed and dried. All inoculated and control rhizomes were kept in incubator at 25°C and 90-95% relative humidity. After a week, the inoculated points showed symptoms similar to those of the initial infection, whereas controls remained symptomless. The re-isolated fungus matched KACC 49832 based on morphological and sequence analyses, thereby fulfilling Koch's postulates. The experiment was performed three times. To our knowledge, this is the first report of P. expansum as a Dunggulle rhizome pathogen in Korea. As this pathogen is known to produce patulin, a carcinogenic fungal metabolite, further studies on the mycotoxicity of the infected rhizomes are required. This report might help manage the storage conditions of Dunggulle rhizomes to prevent the blue mold rot.

11.
Molecules ; 27(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35807503

RESUMO

Blue mold caused by Penicillium expansum is one of the most common apple diseases, and it is becoming a serious threat in apple production. The strain Bacillus amyloliquefaciens Ba168 showed high levels of antimicrobial activity in our previous study. To analyze the antimicrobial protein of Ba168, a high-resolution LC-MS/MS proteomic analysis was performed. A total of 1155 proteins were identified from 5233 unique peptides. A total of 16 potential antimicrobial-activity-related proteins were identified; 10 of these proteins have direct antimicrobial effects, while 6 of these proteins are associated with the formation of antimicrobial substances. Then, an antifungal protein of Ba168 was isolated and purified by the sequential chromatography of DEAE Bio-sep FF anion exchange and Sephadex G-75. The single protein, named BP8-2, showed antifungal activity towards Penicillium expansum. The peptide mass fingerprinting of the protein band of BP8-2 had a high similarity with the amino acid sequences of flagellin protein. The results showed that BP8-2 significantly inhibited the growth of P. expansum and slowed the spread of apple blue mold. The results indicated that flagellin is one of the important antimicrobial substances from Ba168.


Assuntos
Bacillus amyloliquefaciens , Malus , Penicillium , Antifúngicos/farmacologia , Cromatografia Líquida , Flagelina/farmacologia , Frutas , Proteômica , Espectrometria de Massas em Tandem
12.
Molecules ; 27(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432209

RESUMO

Salicylic acid (SA) is a natural inducer of disease resistance in fruit, but its application in the food industry is limited due to low water solubility. Here, SA was encapsulated in ß-cyclodextrin (ß-CD) via the host-guest inclusion complexation method, and the efficacy of SA microcapsules (SAM) against blue mold caused by Penicillium expansum in postharvest apple fruit was elucidated. It was observed that SAM was the most effective in inhibiting the mycelial growth of P. expansum in vitro. SAM was also superior to SA for control of blue mold under in vivo conditions. Enzyme activity analysis revealed that both SA and SAM enhanced the activities of superoxide dismutase (SOD) and phenylalanine ammonia lyase (PAL) in apple fruit, whereas SAM led to higher SOD activities than SA. Total phenolic contents in the SAM group were higher than those in the SA group at the early stage of storage. SAM also improved fruit quality by retarding firmness loss and maintaining higher total soluble solids (TSS) contents. These findings indicate that microcapsules can serve as a promising formulation to load SA for increasing P. expansum inhibition activity and improving quality attributes in apple fruit.


Assuntos
Malus , Frutas , Ácido Salicílico/farmacologia , Cápsulas , Superóxido Dismutase
13.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33452020

RESUMO

Fungal attacks on stored fruit and vegetables are responsible for losses of products. There is an active research field to develop alternative strategies for postharvest disease management, and the use of biocontrol agents represents a promising approach. Understanding the molecular bases of the biocontrol activity of these agents is crucial to potentiate their effectiveness. The yeast Papiliotrema terrestris is a biocontrol agent against postharvest pathogens. Phenotypic studies suggest that it exerts its antagonistic activity through competition for nutrients and space, which relies on its resistance to oxidative and other cellular stresses. In this study, we developed tools for genetic manipulation in P. terrestris to perform targeted gene replacement and functional complementation of the transcription factors Yap1 and Rim101. In vitro phenotypic analyses revealed a conserved role of Yap1 and Rim101 in broad resistance to oxidative stress and alkaline pH sensing, respectively. In vivo analyses revealed that P. terrestris yap1Δ and rim101Δ mutants display decreased ability to colonize wounded fruit compared to that of the parental wild-type (WT) strain; the yap1Δ mutant also displays reduced biocontrol activity against the postharvest pathogens Penicillium expansum and Monilinia fructigena, indicating an important role for resistance to oxidative stress in timely wound colonization and biocontrol activity of P. terrestris In conclusion, the availability of molecular tools developed in the present study provides a foundation to elucidate the genetic mechanisms underlying biocontrol activity of P. terrestris, with the goal of enhancing this activity for the practical use of P. terrestris in pest management programs based on biological and integrated control.IMPORTANCE The use of fungicides represents the most effective and widely used strategy for controlling postharvest diseases. However, their extensive use has raised several concerns, such as the emergence of plant pathogens' resistance as well as the health risks associated with the persistence of chemical residues in fruit, in vegetables, and in the environment. These factors have brought attention to alternative methods for controlling postharvest diseases, such as the utilization of biocontrol agents. In the present study, we developed genetic resources to investigate at the molecular level the mechanisms involved in the biocontrol activity of Papiliotrema terrestris, a basidiomycete yeast that is an effective biocontrol agent against widespread fungal pathogens, including Penicillium expansum, the etiological agent of blue mold disease of pome fruits. A deeper understanding of how postharvest biocontrol agents operate is the basic requirement to promote the utilization of biological (and integrated) control for the reduction of chemical fungicides.


Assuntos
Basidiomycota/genética , Agentes de Controle Biológico/metabolismo , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Fatores de Transcrição/genética , Ascomicetos/fisiologia , Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Marcadores Genéticos , Higromicina B/farmacologia , Malus/microbiologia , Penicillium/fisiologia , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Fatores de Transcrição/metabolismo
14.
Food Microbiol ; 100: 103863, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34416963

RESUMO

In the present work, we evaluated the effects of a mixture of biocontrol agents against two toxigenic strains of Penicillium expansum isolated in Argentine Patagonia from pome fruits. The two strains, INTA-5 and INTA-10, were previusly selected among ten strains coming from the Alto Valle (Rio Negro-Argentina) for their high production of patulin. For the biocontrol, Kosakonia radicincitans, Cryptococcus laurentii, and Rhodosporidium fluviale were tested in vitro experiments on Potato Dextrose Agar (PDA) dishes against the INTA-5 and INTA-10 strains. The bacterium K. radicincitans and the yeast C. laurentii were selected to be used in a mixture due to their capacity to control the fungus and reduce the mycotoxin severely. In vitro assays with the mixture showed a high antagonism against P. expansum INTA-5 and INTA-10, at 21 d of incubation at 25 °C and a patulin reduction of 98%. The mixture of microorganisms was also effective in apples stored at 25 °C for 10 d and 4 °C for 30 d. At cold storage, the mixture controlled moderately the development of rot and decreased patulin concentration. At 25 °C, the pathogen's optimal growth temperature, the mixture of Biological Control Agent (BCAs) assured both the control of rot and decrease of patulin concentration. The combination of two microorganisms, with different requirements and abilities, resulted in a mix with a strong antagonism against P. expansum with the capability to decrease the patulin concentration. Treatment with the selected mixture could be a good option for controlling strains with different behaviours and in different environmental conditions.


Assuntos
Antibiose , Agentes de Controle Biológico/farmacologia , Cryptococcus/fisiologia , Enterobacteriaceae/fisiologia , Malus/microbiologia , Patulina/biossíntese , Penicillium/efeitos dos fármacos , Penicillium/metabolismo , Doenças das Plantas/microbiologia , Frutas/microbiologia
15.
Food Microbiol ; 97: 103760, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33653530

RESUMO

The global challenge to prevent fungal spoilage and mycotoxin contamination on foods and feeds require the development of new antifungal strategies. Filamentous fungi encode diverse antifungal proteins (AFPs), which offer a great potential for the control of contaminant fungi. In this study, four AFPs from Penicillium digitatum (PdAfpB) and Penicillium expansum (PeAfpA, PeAfpB and PeAfpC) belonging to classes A, B and C, were tested against a representative panel of mycotoxin-producing fungi. They included a total of 38 strains representing 32 different species belonging to the genera Alternaria, Aspergillus, Byssochlamys, Fusarium and Penicillium. PeAfpA exhibited a potent antifungal activity, since the growth of all tested fungi was completely inhibited by concentrations ranging from 0.5 to 16 µg/mL. PdAfpB and PeAfpB, although less effective than PeAfpA, showed significant activity against most of the mycotoxigenic fungi tested. Importantly, PeAfpC previously described as inactive, showed a powerful inhibition against B. spectabilis strains, which are important spoilage and mycotoxin fungi in pasteurized foods. Although less effective than in liquid media, AFPs affected fungal growth on solid media. This study also underlines the potential of these AFPs, in particular PeAfpA, as future antifungal agents for applications in foods, on growing crops or during postharvest storage.


Assuntos
Antifúngicos/farmacologia , Proteínas Fúngicas/farmacologia , Fungos/efeitos dos fármacos , Micotoxinas/metabolismo , Penicillium/metabolismo , Antifúngicos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Penicillium/química , Penicillium/genética
16.
Food Microbiol ; 95: 103681, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33397614

RESUMO

Penicillium expansum is the main cause of Blue Mold Decay, which is the economically most significant postharvest disease on fruits. It occurs especially on pomaceous fruits such as apples and pears but also on a wide range of other fruits such as grapes or strawberries. Besides its negative economic effects on the industry, the fungus is also of health concern as it produces patulin, a mycotoxin known to provoke harmful effects in humans. A specific and rapid detection of this fungus therefore is required. In the current study, a loop-mediated isothermal amplification (LAMP) assay was developed and optimized for the species-specific detection of P. expansum. The assay showed high specificity during tests with genomic DNA of 187 fungal strains. The detection limit of the developed assay was 25 pg genomic DNA of P. expansum per reaction. The assay was successfully applied for the detection of the fungus on artificially contaminated apples, grapes, apple juice, apple puree, and grape juice. The developed assay is a promising tool for rapid, sensitive, specific, and cost-efficient detection of P. expansum in quality control applications in the food and beverage industry.


Assuntos
Frutas/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Penicillium/isolamento & purificação , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Fragaria/microbiologia , Sucos de Frutas e Vegetais/microbiologia , Malus/microbiologia , Patulina/metabolismo , Penicillium/classificação , Penicillium/genética , Penicillium/metabolismo , Pyrus/microbiologia , Vitis/microbiologia
17.
Plant Dis ; 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34018812

RESUMO

Lemon (Citrus limon) is one of the most important commercial (both dried and fresh) citrus fruits in China. In the spring of 2019, postharvest blue mold decay was observed at an incidence of 3-5% on lemon fruit at the local markets in Beijing, China. Fruit lesions were circular, brown, soft, and watery, and rapidly expanded at 25°C. To isolate the causal organism, small pieces (2 mm3) were cut from the lesions, surface-sterilized for 1 min in 1.5% NaOCl, rinsed three times with sterilized water, dried with sterile filter paper, placed onto potato dextrose agar (PDA) medium, and incubated at 25°C for 6 days. Eight morphologically similar single-colony fungal isolates were recovered from six lemon fruit. Colony surfaces were bluish-green on the upper surface and cream to yellow-brown one the reverse. Hyphae on colony margins were entirely subsurface and cream in color. Mycelium was highly branched, septate, and colorless, and conidiophores were 250 to 450 × 3.0 to 4.0 µm in size. Stipe of conidiophores were smooth-walled, bearing terminal penicilli, typically terverticillate or less commonly birverticillate, rami occurring singly, 16 to 23 × 3.0 to 4.0 µm, metulae in 3 to 6, measuring 12 to 15 × 3.0 to 4.0 µm. Phialides were ampulliform to almost cylindrical, in verticils of 5 to 8, measuring 8 to 11 × 2.5 to 3.2 µm with collula. Conidia were smooth-walled, ellipsoidal, measuring 3.0 to 3.5 × 2.5 to 3.0 µm. According to morphological characteristics, the fungus was identified as Penicillium expansum (Visagie et al. 2014). For molecular identification, genomic DNA of eight fungal isolates was extracted, regions of the beta-tubulin (TUB), and calmodulin (CAL) genes and ITS region, were amplified using Bt2a/Bt2b, CAL-228F/ CAL-737, and ITS1/ITS4 primers respectively. Obtained sequences of all isolates were identical to sequences of the representative isolate YC-IK12, which was submitted in the GenBank. BLAST results of YC-IK12 sequences (ITS; MT856700: TUB; MT856958: CAL; MT856959) showed 98 to 100% similarity with P. expansum accessions (NR-077154, LN896428, JX141581). For pathogenicity tests, 10 µl of conidial suspension (10 × 105 conidia/ml) from seven-day-old YC-IK12 culture was inoculated using a sterilized needle into the surface of each five asymptomatic disinfected lemons. As a control, three lemons were inoculated using sterile distilled water. All inoculated lemons were placed in plastic containers and incubated at 25°C for 7 days. Decay lesions, identical to the original observations, developed on all inoculated lemons, while control lemons remained asymptomatic. Fungus re-isolated from the inoculated lemon was identified as P. expansum on the basis morphology and Bt2a/Bt2b, CAL-228F/ CAL-737, and ITS1/ITS4 sequences. Previously, Penicillium spp. including P. expansum have been reported as post-harvest pathogens on various Citrus spp. (Louw & Korsten 2015). However, P. digitatum has been reported on lemons and P. expansum has been reported on stored Kiwifruit (Actinidia arguta), Malus, and Pyrus species in China (Tai, 1979; Wang et al. 2015). To our knowledge, this is the first report of blue mold caused by P. expansum on lemons in China. References Louw, J. P., Korsten, L. 2015. Plant Dis. 99:21-30. Tai, F.L. 1979. Sylloge Fungorum Sinicorum. Sci. Press, Acad. Sin., Peking, 1527 pages. 8097 Visagie, C.M. et al. 2014. Studies. Mycol.78: 343. Wang, C. W. et al. 2015. Plant Dis. 99:1037.

18.
Plant J ; 100(6): 1148-1162, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31436867

RESUMO

Terpenes are important compounds in plant trophic interactions. A meta-analysis of GC-MS data from a diverse range of apple (Malus × domestica) genotypes revealed that apple fruit produces a range of terpene volatiles, with the predominant terpene being the acyclic branched sesquiterpene (E,E)-α-farnesene. Four quantitative trait loci (QTLs) for α-farnesene production in ripe fruit were identified in a segregating 'Royal Gala' (RG) × 'Granny Smith' (GS) population with one major QTL on linkage group 10 co-locating with the MdAFS1 (α-farnesene synthase-1) gene. Three of the four QTLs were derived from the GS parent, which was consistent with GC-MS analysis of headspace and solvent-extracted terpenes showing that cold-treated GS apples produced higher levels of (E,E)-α-farnesene than RG. Transgenic RG fruit downregulated for MdAFS1 expression produced significantly lower levels of (E,E)-α-farnesene. To evaluate the role of (E,E)-α-farnesene in fungal pathogenesis, MdAFS1 RNA interference transgenic fruit and RG controls were inoculated with three important apple post-harvest pathogens [Colletotrichum acutatum, Penicillium expansum and Neofabraea alba (synonym Phlyctema vagabunda)]. From results obtained over four seasons, we demonstrate that reduced (E,E)-α-farnesene is associated with decreased disease initiation rates of all three pathogens. In each case, the infection rate was significantly reduced 7 days post-inoculation, although the size of successful lesions was comparable with infections on control fruit. These results indicate that (E,E)-α-farnesene production is likely to be an important factor involved in fungal pathogenesis in apple fruit.


Assuntos
Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Doenças das Plantas/imunologia , Sesquiterpenos/metabolismo , Colletotrichum/patogenicidade , Resistência à Doença , Regulação para Baixo , Fungos/patogenicidade , Cromatografia Gasosa-Espectrometria de Massas , Ligação Genética , Genótipo , Penicillium/patogenicidade , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Locos de Características Quantitativas , Interferência de RNA/imunologia , Terpenos/metabolismo
19.
Mol Genet Genomics ; 295(6): 1415-1429, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32656702

RESUMO

Penicillium expansum is a destructive phytopathogen causing postharvest decay on many stored fruits. To develop effective and safe management strategies, it is important to investigate its pathogenicity-related mechanisms. In this study, a bioinformatic pipeline was constructed and 50 core effector genes were identified in P. expansum using multiple RNA-seq data sets and their putative functions were implicated by comparatively homologous analyses using pathogen-host interaction database. To functionally characterize P. expansum LysM domain proteins during infection, null mutants for the 15 uncharacterized putative LysM effectors were constructed and the fungal growth rate on either PDA or Cazpek medium or lesion expansion rate on the infected apple fruits was evaluated. The results showed the growth rate of knockout mutants from PeLysM5, PeLysM12 and PeLysM15 was retarded on PDA medium. No significant difference in growth rate was observed between wild type and all mutants on solid Cazpek medium. Nevertheless, the hypha of wild type displayed deeper yellow on the back of Cazpek medium than those of knockout mutants. On the infecting apples fruits, the knockout mutants from PeLysM5, PeLysM7, PeLysM8, PeLysM9, PeLysM10, PeLysM11, PeLysM14, PeLysM15, PeLysM16, PeLysM18 and PeLysM19 showed enhanced fungal virulence, with faster decaying on infected fruits than those from wild type. By contrast, the knockout mutation at PeLysM12 locus led to reduced lesion expansion rate on the infected apple fruits. In addition, P. expansum-apple interaction RNA-seq experiment was performed using apple fruit tissues infected by the wild type and knockout mutant ΔPeLysM15, respectively. Transcriptome analyses indicated that deletion of PeLysM15 could activate expression of several core effector genes, such as PEX2_055830, PEX2_036960 and PEX2_108150, and a chitin-binding protein, PEX2_064520. These results suggest PeLysM15 may play pivotal roles in fungal growth and development and involve pathogen-host interaction by modulating other effector genes' expression. Our results could provide solid data reference and good candidates for further pathogen-related studies in P. expansum.


Assuntos
Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/genética , Malus/microbiologia , Penicillium/crescimento & desenvolvimento , Penicillium/patogenicidade , Doenças das Plantas/microbiologia , Transcriptoma , Frutas/genética , Frutas/microbiologia , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Malus/genética , Penicillium/genética , Doenças das Plantas/genética , Virulência
20.
Int J Mol Sci ; 21(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932988

RESUMO

Dissemination and survival of ascomycetes is through asexual spores. The brlA gene encodes a C2H2-type zinc-finger transcription factor, which is essential for asexual development. Penicillium expansum causes blue mold disease and is the main source of patulin, a mycotoxin that contaminates apple-based food. A P. expansum PeΔbrlA deficient strain was generated by homologous recombination. In vivo, suppression of brlA completely blocked the development of conidiophores that takes place after the formation of coremia/synnemata, a required step for the perforation of the apple epicarp. Metabolome analysis displayed that patulin production was enhanced by brlA suppression, explaining a higher in vivo aggressiveness compared to the wild type (WT) strain. No patulin was detected in the synnemata, suggesting that patulin biosynthesis stopped when the fungus exited the apple. In vitro transcriptome analysis of PeΔbrlA unveiled an up-regulated biosynthetic gene cluster (PEXP_073960-PEXP_074060) that shares high similarity with the chaetoglobosin gene cluster of Chaetomium globosum. Metabolome analysis of PeΔbrlA confirmed these observations by unveiling a greater diversity of chaetoglobosin derivatives. We observed that chaetoglobosins A and C were found only in the synnemata, located outside of the apple, whereas other chaetoglobosins were detected in apple flesh, suggesting a spatial-temporal organization of the chaetoglobosin biosynthesis pathway.


Assuntos
Genes Fúngicos/genética , Patulina/biossíntese , Patulina/genética , Penicillium/genética , Vias Biossintéticas/genética , Frutas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica/genética , Alcaloides Indólicos/metabolismo , Malus/microbiologia , Metaboloma/genética , Família Multigênica/genética , Patulina/metabolismo , Penicillium/metabolismo , Transcriptoma/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA