Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611944

RESUMO

Two types of cellulose nanofibrils (CNFs) were isolated from cotton linter fibers and hardwood fibers through mechanical fibrillation methods. The dialdehyde cellulose nanofibrils (DACNFs) were prepared through the periodate oxidation method, and their morphological and structural properties were investigated. The characteristics of the DACNFs during the concentration process were also explored. The AFM analysis results showed that the mean diameters of wood fiber-based CNFs and cotton fiber-based CNFs were about 52.03 nm and 69.51 nm, respectively. However, the periodate oxidation treatment process obviously reduced the nanofibril size and destroyed the crystalline region of the nanofibrils. Due to the high crystallinity of cotton fibers, the cotton fiber-based DACNFs exhibited a lower aldehyde content and suspension stability compared to the wood fiber-based DACNFs. For the concentration process of the DACNF suspension, the bound water content of the concentrated cotton fiber-based DACNFs was lowered to 0.41 g/g, which indicated that the cotton fiber-based DACNFs could have good redispersibility. Both the wood fiber-based and cotton fiber-based DACNF films showed relatively good transmittance and mechanical strength. In addition, to the cotton fiber-based DACNF films had a very low swelling ratio, and the barrier water vapor and oxygen properties of the redispersed cotton fiber-based DACNF films decreased by very little. In sum, this study has demonstrated that cotton fibers could serve as an effective alternative to wood fibers for preparing CNFs, and that cotton fiber-based DACNFs have huge application prospects in the field of packaging film materials due to their stable properties during the concentration process.

2.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982208

RESUMO

A universal approach to the construction of antibody-drug conjugates (ADCs) has been developed. It relies on periodate oxidation of naturally present glycans of immunoglobulin G, followed by oxime ligation and, optionally, copper(I)-catalyzed alkyne-azide cycloaddition for conjugation with a toxic payload. The introduction of highly absorbing cyanine dyes into the linker allows for facile determination of the drug-antibody ratio. We applied this methodology to the synthesis of cytotoxic conjugates of an antibody against the tumor-associated antigen PRAME with doxorubicin and monomethyl auristatin E (MMAE). The resultant conjugates retained their affinity to a large extent, yet their cytotoxicity in vitro varied dramatically: while the doxorubicin-based conjugate did not produce any effect on cells, the MMAE-based one demonstrated specific activity against PRAME-expressing cancer cell lines. Importantly, the latter conjugate constitutes the first reported example of a PRAME-targeting ADC.


Assuntos
Antineoplásicos , Imunoconjugados , Imunoconjugados/farmacologia , Imunoglobulina G , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Doxorrubicina
3.
Molecules ; 28(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067656

RESUMO

Converting paper-grade bleached Kraft pulp into dissolving pulp using eco-friendly chemicals on-site at the mill is a challenge for the pulp industry. In this study, two oxidation systems are evaluated: the first one is based on the use of hydrogen peroxide at various levels of alkalinity; the second one investigates the use of sodium periodate followed by hydrogen peroxide to convert aldehydes into carboxyls and enhance their hemicelluloses removal. Our results have shown that when using only peroxide, the removal of hemicelluloses was not sufficient to improve the pulp's dissolving ability. Conversely, the periodate-peroxide system proved to be more efficient. Results regarding the pulp purity, solubility, degradation (pulp viscosity and cellulose molecular mass distribution), brightness, and its potential applications were discussed.

4.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615611

RESUMO

Fluorescent antibodies have proved to be an invaluable tool for molecular biology and diagnostics. They are routinely produced by modification of lysine residues, which leads to high heterogeneity. As such, their affinity may be compromised if the antigen-binding site is affected, the probability of which increases along with the degree of labeling. In this work, we propose a methodology for the synthesis of site-specific antibody-dye conjugates with a high degree of labeling. To this end, we synthesized two oxyamine-based branched triazide linkers and coupled them with a periodate-oxidized anti-PRAME antibody 6H8; two oxyamine-based linear monoazide linkers of similar structure were used as controls. The azide-labeled antibodies were subsequently conjugated with fluorescent dyes via SPAAC, a copper-free click reaction. Compared to their counterparts made with linear linkers, the branched conjugates possessed a higher degree of labeling. The utility of the methodology was demonstrated in the detection of the PRAME protein on the surface of the cell by flow cytometry.


Assuntos
Anticorpos , Corantes Fluorescentes , Corantes Fluorescentes/química , Antígenos
5.
Molecules ; 28(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067618

RESUMO

Antibodies and their derivatives (scFv, Fabs, etc.) represent a unique class of biomolecules that combine selectivity with the ability to target drug delivery. Currently, one of the most promising endeavors in this field is the development of molecular diagnostic tools and antibody-based therapeutic agents, including antibody-drug conjugates (ADCs). To meet this challenge, it is imperative to advance methods for modifying antibodies. A particularly promising strategy involves the introduction of carbonyl groups into the antibody that are amenable to further modification by biorthogonal reactions, namely aliphatic, aromatic, and α-oxo aldehydes, as well as aliphatic and aryl-alkyl ketones. In this review, we summarize the preparation methods and applications of site-specific antibody conjugates that are synthesized using this approach.


Assuntos
Antineoplásicos , Imunoconjugados , Anticorpos , Imunoconjugados/uso terapêutico , Antígenos , Sistemas de Liberação de Medicamentos , Antineoplásicos/uso terapêutico
6.
Molecules ; 26(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34885897

RESUMO

In this work, the amino-functionalized cellulose nanocrystal (ACNC) was prepared using a green route and applied as a biosorbent for adsorption of Cr(VI), Pb2+, and Cu2+ from aqueous solutions. CNC was firstly oxidized by sodium periodate to yield the dialdehyde nanocellulose (DACNC). Then, DACNC reacted with diethylenetriamine (DETA) to obtain amino-functionalized nanocellulose (ACNC) through a Schiff base reaction. The properties of DACNC and ACNC were characterized by using elemental analysis, Fourier transform infrared spectroscopy (FT-IR), Kaiser test, atomic force microscopy (AFM), X-ray diffraction (XRD), and zeta potential measurement. The presence of free amino groups was evidenced by the FT-IR results and Kaiser test. ACNCs exhibited an amphoteric nature with isoelectric points between pH 8 and 9. After the chemical modification, the cellulose I polymorph of nanocellulose remained, while the crystallinity decreased. The adsorption behavior of ACNC was investigated for the removal of Cr(VI), Pb2+, and Cu2+ in aqueous solutions. The maximum adsorption capacities were obtained at pH 2 for Cr(VI) and pH 6 for Cu2+ and Pb2+, respectively. The adsorption all followed pseudo second-order kinetics and Sips adsorption isotherms. The estimated adsorption capacities for Cr(VI), Pb2+, and Cu2+ were 70.503, 54.115, and 49.600 mg/g, respectively.

7.
Angew Chem Int Ed Engl ; 60(21): 12032-12037, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33617018

RESUMO

Aldehyde groups enable facile conjugation to proteins, enzymes, oligonucleotides or fluorescent dyes, yet there are no literature examples of water-soluble aldehyde-functional vinyl monomers. We report the synthesis of a new hydrophilic cis-diol-based methacrylic monomer (GEO5MA) by transesterification of isopropylideneglycerol penta(ethylene glycol) using methyl methacrylate followed by acetone deprotection via acid hydrolysis. The corresponding water-soluble aldehyde monomer, AGEO5MA, is prepared by aqueous periodate oxidation of GEO5MA at 22 °C. RAFT polymerization of GEO5MA yields the water-soluble homopolymer, PGEO5MA. Aqueous periodate oxidation of the terminal cis-diol units on PGEO5MA at 22 °C affords a water-soluble aldehyde-functional homopolymer (PAGEO5MA). Moreover, a library of hydrophilic statistical copolymers bearing cis-diol and aldehyde groups was prepared using sub-stoichiometric periodate/cis-diol molar ratios. The aldehyde groups on PAGEO5MA homopolymer were reacted in turn with three amino acids to demonstrate synthetic utility.

8.
Biochem Biophys Res Commun ; 523(3): 573-579, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31932036

RESUMO

The applications of dextran depend not only on the molecular weight but also on the types and number of branches. In this study, dextran generated from Leuconostoc mesenteroides (L.M.CICC-20724) was characterized by fourier-transform infrared spectrum and nuclear magnetic resonance spectroscopy. Our analyses showed that dextran was a polysaccharide composed of d-glucose units with predominantly α(1 â†’ 6) linkages in the main chain and few α(1 â†’ 3) linkages in the branch. Periodate oxidation, a classic chemical method, was usually combined with Smith degradation and gas chromatography to analyze glycosidic linkages in polysaccharide quantitatively. In this study, we calculated the exact straight-chain/branched-chain ratio in the dextran using periodate oxidation only. The ratios obtained by periodate oxidation only were compared to the ratios obtained by nuclear magnetic resonance. The results showed that the ratios of the two groups were nearly equal, and the average relative error between the two groups was 0.83%. This method was evaluated and found to be accurate and stable. This technique provided a convenient and straightforward chemical method for the quantitative analysis of the straight-chains and branched-chains in polysaccharides which had a similar structure. The ratios during the enzymatic synthesis process of dextran were analyzed by this method and were found to be stable with a high level of approximately 95% on average.


Assuntos
Dextranos/química , Leuconostoc mesenteroides/química , Biocatálise , Configuração de Carboidratos , Dextranos/metabolismo , Leuconostoc mesenteroides/metabolismo , Oxirredução , Ácido Periódico/química , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Molecules ; 25(21)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182366

RESUMO

In the present study, the fabrication of a biomimetic wound dressing that mimics the extracellular matrix, consisting of a hydrogel matrix composed of non-oxidized and periodate-oxidized marine alginate, was prepared to which gelatin was bound via Schiff base formation. Into this alginate/oxidized-alginate-gelatin hydrogel, polyP was stably but reversibly integrated by ionic cross-linking with Zn2+ ions. Thereby, a soft hybrid material is obtained, consisting of a more rigid alginate scaffold and porous structures formed by the oxidized-alginate-gelatin hydrogel with ionically cross-linked polyP. Two forms of the Zn-polyP-containing matrices were obtained based on the property of polyP to form, at neutral pH, a coacervate-the physiologically active form of the polymer. At alkaline conditions (pH 10), it will form nanoparticles, acting as a depot that is converted at pH 7 into the coacervate phase. Both polyP-containing hydrogels were biologically active and significantly enhanced cell growth/viability and attachment/spreading of human epidermal keratinocytes compared to control hydrogels without any adverse effect on reconstructed human epidermis samples in an in vitro skin irritation test system. From these data, we conclude that polyP-containing alginate/oxidized-alginate-gelatin hydrogels may provide a suitable regeneratively active matrix for wound healing for potential in vivo applications.


Assuntos
Alginatos/química , Biomimética , Gelatina/química , Hidrogéis/química , Queratinócitos/efeitos dos fármacos , Polifosfatos/química , Cicatrização , Materiais Biocompatíveis/química , Movimento Celular , Sobrevivência Celular , Epiderme/metabolismo , Matriz Extracelular/química , Humanos , Concentração de Íons de Hidrogênio , Íons , Queratinócitos/citologia , Queratinócitos/efeitos da radiação , Nanopartículas Metálicas/química , Nanopartículas/química , Porosidade , Pele/efeitos da radiação , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual , Alicerces Teciduais/química , Zinco/química
10.
Bioorg Chem ; 87: 103-111, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30878809

RESUMO

Compounds having antimicrobial activity were synthesized from sodium alginate, the main constituent of brown algae. Sodium alginate was oxidized with sodium periodate to get alginate dialdehyde (ADA). FTIR spectrum of the ADA gave very small peak characteristic for aldehyde groups at 1720 cm-1, indicating that the aldehyde group is masked somehow. It may be hydrated, involving at hemiacetal formation or hemialdol, similar to cellulose dialdehyde. Two methods were used for the condensation of ADA with o-phenylenediamine analogs to obtain the final products. The first method was stirring at room temperature and the second method was heating in microwave. The microwave method gave higher yield and shorter reaction time than the other method. The condensation reaction is considered as a shiff-base formation and the proposed mechanism was suggested. The condensation products were characterized by FTIR and UV spectra. The antimicrobial potency for five of these products in addition to the used alginate and to the precursor amines was evaluated against four pathogenic fungi and six pathogenic bacteria species.


Assuntos
Alginatos/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Alginatos/síntese química , Alginatos/química , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Configuração de Carboidratos , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Micro-Ondas , Relação Estrutura-Atividade
11.
Anal Bioanal Chem ; 410(2): 553-564, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29167933

RESUMO

AvidinOX, the oxidized derivative of Avidin, is a chemically modified glycoprotein, being currently under clinical investigation for targeted delivery of radioactive biotin to inoperable tumors. AvidinOX is produced by 4-hydroxyazobenzene-2-carboxylic acid (HABA)-assisted sodium periodate oxidation of Avidin. The peculiar property of the periodate-generated glycol-split carbohydrate moieties to form Schiff's bases with amino groups of the tissue proteins allows to achieve a tissue half-life of 2 weeks compared to 2 h of native Avidin. Carbohydrate oxidation, along with possible minor amino acid modifications, introduces additional microheterogeneity in the glycoprotein structure, making its characterization even more demanding than for native glycoproteins. Aiming at the elucidation of the effects of oxidation conditions on the AvidinOX protein backbone and sugars, this microheterogeneous glycoprotein derivative was characterized for the first time using a combination of different analytical methods, including colorimetric methods, mass spectrometry, hollow-fiber flow field-flow fractionation with UV and multi-angle laser scattering detection (HF5-UV-MALS), and NMR. The proposed integrated approach reveals structural features of AvidinOX relevant for its biological activity, e.g., oxidized sites within both carbohydrate moieties and protein backbone and conformational stability, and will be considered as an analytical tool for AvidinOX industrial preparations. It is worth noting that this study enriches also the structural data of native Avidin published up-to-date (e.g., glycan structure and distribution, peptide fingerprint, etc.). Graphical abstract Scheme of phenylacetic hydrazide/MALDI-TOF approach for quantification of aldehydes in AvidinOX based on the determination of the number of hydrazone adducts between hydrazide reagent and aldehyde groups of protein.


Assuntos
Aldeídos/análise , Avidina/química , Polissacarídeos/análise , Compostos Azo/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Oxirredução , Fenilacetatos/química , Agregados Proteicos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
12.
Biotechnol Bioprocess Eng ; 23(6): 686-692, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32218682

RESUMO

Paper-based analytical devices (PADs) have been widely used in many fields because they are affordable and portable. For reproducible quantitative analysis, it is crucial to strongly immobilize proteins on PADs. Conventional techniques for immobilizing proteins on PADs are based on physical adsorption, but proteins can be easily removed by weak physical forces. Therefore, it is difficult to ensure the reproducibility of the analytical results of PADs using physical adsorption. To overcome this limitation, in this study, we showed a method of covalent binding of proteins to cellulose paper. This method consists of three steps, which include periodate oxidation of paper, the formation of a Schiff base, and reductive amination. We identified aldehyde and imine groups formed on paper using FT-IR analysis. This covalent bonding approach enhanced the binding force and binding capacity of proteins. We confirmed the activity of an immobilized antibody through a sandwich immunoassay. We expect that this immobilization method will contribute to the commercialization of PADs with high reproducibility and sensitivity.

13.
Zhongguo Zhong Yao Za Zhi ; 43(13): 2747-2750, 2018 Jul.
Artigo em Zh | MEDLINE | ID: mdl-30111026

RESUMO

Immunogenic antigen (spinosin-BSA) and coating antigen (spinosin-OVA) of spinosin were synthesized by sodium periodate oxidation method. UV scanning analysis method showed that these two spinosins were successfully conjugated with carrier protein and the coupling ratio was 17 and 13.7, respectively. Meanwhile, when immunized by spinosin-BSA,the mice can produce anti-spinosin antibodies with the high titer (1:32 000),specificity (IC50 211.6 µg·L⁻¹) and low cross-reaction rate measured by ELISA tests. The artificial antigen of spinosin was successfully synthesized, which can be applied for preparation of monoclonal antibodies and establishment of appropriate immune method.


Assuntos
Flavonoides/química , Animais , Antígenos , Ensaio de Imunoadsorção Enzimática , Camundongos , Vacinas Sintéticas
14.
Molecules ; 21(11)2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27886097

RESUMO

Heparanase is the only known endoglycosidase able to cleave heparan sulfate. Roneparstat and necuparanib, heparanase inhibitors obtained from heparin and currently being tested in man as a potential drugs against cancer, contain in their structure glycol-split uronic acid moieties probably responsible for their strong inhibitory activity. We describe here the total chemical synthesis of the trisaccharide GlcNS6S-GlcA-1,6anGlcNS (1) and its glycol-split (gs) counterpart GlcNS6S-gsGlcA-1,6anGlcNS (2) from glucose. As expected, in a heparanase inhibition assay, compound 2 is one order of magnitude more potent than 1. Using molecular modeling techniques we have created a 3D model of 1 and 2 that has been validated by NOESY NMR experiments. The pure synthetic oligosaccharides have allowed the first in depth study of the conformation of a glycol-split glucuronic acid. Introducing a glycol-split unit in the structure of 1 increases the conformational flexibility and shortens the distance between the two glucosamine motives, thus promoting interaction with heparanase. However, comparing the relative activities of 2 and roneparstat, we can conclude that the glycol-split motive is not the only determinant of the strong inhibitory effect of roneparstat.


Assuntos
Glucuronidase/antagonistas & inibidores , Glicóis/química , Heparina/química , Trissacarídeos/síntese química , Trissacarídeos/farmacologia , Sequência de Carboidratos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Relação Estrutura-Atividade , Trissacarídeos/química
15.
Zhongguo Zhong Yao Za Zhi ; 41(10): 1880-1883, 2016 May.
Artigo em Zh | MEDLINE | ID: mdl-28895337

RESUMO

Immunogenic antigen (jujuboside A-BSA) and coating antigen (jujuboside A-OVA) of jujuboside A were synthesized by sodium periodate oxidation method for the first time. Jujuboside A artificial antigen was confirmed by matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF-MS). The titer and specificity of the antibody in serum of immunized mice were detected by enzyme-linked immunosorbent assay (ELISA). The corrected relation curve of inhibition rate showed that the antibody against Jujuboside A obtained from immunized mice could bind to jujuboside A and the titer was up to 1∶4 000. The jujuboside A artificial antigen was synthesized, which can be used further to preparation of monoclonal antibody and the pharmacokinetics study of jujuboside A in laboratory animals.


Assuntos
Antígenos/química , Saponinas/síntese química , Animais , Ensaio de Imunoadsorção Enzimática , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Int J Biol Macromol ; 267(Pt 2): 131553, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621569

RESUMO

An alternative packaging material based on cellulose that possesses excellent barrier properties and is potentially useful for active packaging has been developed. Cellulose nanofibril was efficiently and selectively oxidized with sodium periodate generating reactive aldehyde groups. These groups formed hemiacetal and hemialdal bonds during film formation and, consequently, highly transparent, elastic and strong films were created even under moisture saturation conditions. The periodate oxidation treatment additionally decreased the polarity of the films and considerably enhanced their water barrier properties. Thus, the water contact angle of films treated for 3 and 6 h was 97° and 102°, their water drop test value was higher than in untreated film (viz., 138 and 141 min with 3 and 6 h of treatment) and their water vapour transmission rate was substantially better (3.31 and 0.78 g m-2 day-1 with 3 and 6 h, respectively). The presence of aldehyde groups facilitated immobilization of the enzyme laccase, which efficiently captures oxygen and prevents food decay as a result. Laccase-containing films oxidized 80 % of Methylene Blue colorant and retained their enzymatic activity after storage for 1 month and 12 reuse cycles, opening the door to the possible creation of a reusable packaging to replace the single-use packaging.


Assuntos
Celulose , Embalagem de Alimentos , Nanofibras , Oxirredução , Ácido Periódico , Celulose/química , Nanofibras/química , Embalagem de Alimentos/métodos , Ácido Periódico/química , Lacase/química , Água/química , Enzimas Imobilizadas/química , Vapor
17.
ChemSusChem ; 17(5): e202300791, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37923704

RESUMO

The derivatization of dialdehyde cellulose (DAC) has received increasing attention in the development of sustainable thermoplastics. In this study, a series of dialcohol celluloses were generated by borohydride reduction, which exhibited glass transition temperature (Tg ) values ranging from 23 to 109 °C, depending on the initial degree of oxidation (DO) of the DAC intermediate. However, the DAC derivatives did not exhibit thermoplastic behavior when the DO of the modified DAC was below 26 %. The influence of introduced side chains was highlighted by comparing DAC-based thermoplastic materials obtained by either oximation or borohydride reduction. Our results provide insights into the generation of DAC-based thermoplastics and highlight a strategy for tailoring the Tg by adjusting the DO during the periodate oxidation step and selecting appropriate substituents in subsequent modifications.

18.
Carbohydr Polym ; 341: 122305, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876711

RESUMO

In recent years, the remarkable progress in nanotechnology has ignited considerable interest in investigating nanocelluloses, an environmentally friendly and sustainable nanomaterial derived from cellulosic feedstocks. Current research primarily focuses on the preparation and applications of nanocelluloses. However, to enhance the efficiency of nanofibrillation, reduce energy consumption, and expand nanocellulose applications, chemical pre-treatments of cellulose fibers have attracted substantial interest and extensive exploration. Various chemical pre-treatment methods yield nanocelluloses with diverse functional groups. Among these methods, periodate oxidation has garnered significant attention recently, due to the formation of dialdehyde cellulose derived nanocellulose, which exhibits great promise for further modification with various functional groups. This review seeks to provide a comprehensive and in-depth examination of periodate oxidation-mediated nanocelluloses (PONCs), including their preparation, functionalization, hierarchical structural design, and applications. We believe that PONCs stand as highly promising candidates for the development of novel nano-cellulosic materials.

19.
Sci China Life Sci ; 66(4): 800-818, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36323972

RESUMO

2'-O-methylation (Nm) is one of the most abundant RNA epigenetic modifications and plays a vital role in the post-transcriptional regulation of gene expression. Current Nm mapping approaches are normally limited to highly abundant RNAs and have significant technical hurdles in mRNAs or relatively rare non-coding RNAs (ncRNAs). Here, we developed a new method for enriching Nm sites by using RNA exoribonuclease and periodate oxidation reactivity to eliminate 2'-hydroxylated (2'-OH) nucleosides, coupled with sequencing (Nm-REP-seq). We revealed several novel classes of Nm-containing ncRNAs as well as mRNAs in humans, mice, and drosophila. We found that some novel Nm sites are present at fixed positions in different tRNAs and are potential substrates of fibrillarin (FBL) methyltransferase mediated by snoRNAs. Importantly, we discovered, for the first time, that Nm located at the 3'-end of various types of ncRNAs and fragments derived from them. Our approach precisely redefines the genome-wide distribution of Nm and provides new technologies for functional studies of Nm-mediated gene regulation.


Assuntos
Exorribonucleases , RNA não Traduzido , Humanos , Animais , Camundongos , Exorribonucleases/genética , Exorribonucleases/metabolismo , Metilação , RNA não Traduzido/genética , Sequência de Bases , RNA Nucleolar Pequeno/metabolismo , RNA Mensageiro/genética
20.
Carbohydr Polym ; 319: 121145, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567703

RESUMO

Recreating the intricate mechanical and functional gradients found in natural tissues through additive manufacturing poses significant challenges, including the need for precise control over time and space and the availability of versatile biomaterial inks. In this proof-of-concept study, we developed a new biomaterial ink for direct ink writing, allowing the creation of 3D structures with tailorable functional and mechanical gradients. Our ink formulation combined multifunctional cellulose nanofibrils (CNFs), allyl-functionalized gelatin (0.8-2.0 wt%), and polyethylene glycol dithiol (3.0-7.5 wt%). The CNF served as a rheology modifier, whereas a concentration of 1.8 w/v % in the inks was chosen for optimal printability and shape fidelity. In addition, CNFs were functionalized with azido groups, enabling the spatial distribution of functional moieties within a 3D structure. These functional groups were further modified using a spontaneous click chemistry reaction. Through additive manufacturing and a readily available static mixer, we successfully demonstrated the fabrication of mechanical gradients - ranging from 3 to 6 kPa in indentation strength - and functional gradients. Additionally, we introduced dual gradients by combining gradient printing with an anisotropic photocrosslinking step. The developed biomaterial ink opens up possibilities for printing intricate multigradient structures, resembling the complex hierarchical organization seen in living tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA