Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.463
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(18): e2216820120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098068

RESUMO

Daily and annual changes in light are processed by central clock circuits that control the timing of behavior and physiology. The suprachiasmatic nucleus (SCN) in the anterior hypothalamus processes daily photic inputs and encodes changes in day length (i.e., photoperiod), but the SCN circuits that regulate circadian and photoperiodic responses to light remain unclear. Somatostatin (SST) expression in the hypothalamus is modulated by photoperiod, but the role of SST in SCN responses to light has not been examined. Our results indicate that SST signaling regulates daily rhythms in behavior and SCN function in a manner influenced by sex. First, we use cell-fate mapping to provide evidence that SST in the SCN is regulated by light via de novo Sst activation. Next, we demonstrate that Sst  -/- mice display enhanced circadian responses to light, with increased behavioral plasticity to photoperiod, jetlag, and constant light conditions. Notably, lack of Sst  -/- eliminated sex differences in photic responses due to increased plasticity in males, suggesting that SST interacts with clock circuits that process light differently in each sex. Sst  -/- mice also displayed an increase in the number of retinorecipient neurons in the SCN core, which express a type of SST receptor capable of resetting the molecular clock. Last, we show that lack of SST signaling modulates central clock function by influencing SCN photoperiodic encoding, network after-effects, and intercellular synchrony in a sex-specific manner. Collectively, these results provide insight into peptide signaling mechanisms that regulate central clock function and its response to light.


Assuntos
Relógios Circadianos , Luz , Camundongos , Feminino , Masculino , Animais , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Fotoperíodo , Relógios Circadianos/genética
2.
Plant J ; 118(6): 1955-1971, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38491864

RESUMO

Photoperiod employs complicated networks to regulate various developmental processes in plants, including flowering transition. However, the specific mechanisms by which photoperiod affects epigenetic modifications and gene expression variations in plants remain elusive. In this study, we conducted a comprehensive analysis of DNA methylation, small RNA (sRNA) accumulation, and gene expressions under different daylengths in facultative long-day (LD) grass Brachypodium distachyon and short-day (SD) grass rice. Our results showed that while overall DNA methylation levels were minimally affected by different photoperiods, CHH methylation levels were repressed under their favorable light conditions, particularly in rice. We identified numerous differentially methylated regions (DMRs) that were influenced by photoperiod in both plant species. Apart from differential sRNA clusters, we observed alterations in the expression of key components of the RNA-directed DNA methylation pathway, DNA methyltransferases, and demethylases, which may contribute to the identified photoperiod-influenced CHH DMRs. Furthermore, we identified many differentially expressed genes in response to different daylengths, some of which were associated with the DMRs. Notably, we discovered a photoperiod-responsive gene MYB11 in the transcriptome of B. distachyon, and further demonstrated its role as a flowering inhibitor by repressing FT1 transcription. Together, our comparative and functional analysis sheds light on the effects of daylength on DNA methylation, sRNA accumulation, and gene expression variations in LD and SD plants, thereby facilitating better designing breeding programs aimed at developing high-yield crops that can adapt to local growing seasons.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica de Plantas , Oryza , Fotoperíodo , RNA de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/fisiologia , RNA de Plantas/genética , RNA de Plantas/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Brachypodium/fisiologia , Epigênese Genética , Flores/genética , Flores/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant J ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292875

RESUMO

"Jiaobai" is a symbiont of Zizania latifolia and Ustilago esculenta, producing fleshy galls as a popular vegetable in South and East Asia. Current "Jiaobai" cultivars exhibit abundant variation in their gall formation date; however, the underlying mechanism is not clear. In this study, a strict short-day (SD) "Jiaobai" line "YD-3" was used. Plants were treated with two day-length regimes [14 h/10 h (day/night) (control) and 8 h/16 h (day/night) (SD)] from 100 to 130 days after planting. The gall swelling rate of the two treatments and another early SD treatment (from 60 to 90 days after planting), together with the contingent flowering plants in the experiment population, revealed that SD can improve both gall enlargement and flowering of "Jiaobai" plants. Comparison of RNA sequencing data among control, SD swelling, and SD flowering treatments of leaves and meristems indicated that SD promotion of "Jiaobai" swelling is conducted by the CONSTANS (CO)-FLOWERING LOCUS T (FT) pathway, similar but not identical to the SD-induced flowering pathway in Z latifolia and rice. "Virus-induced gene silencing", "Yeast one-hybrid assay" and "Dual-luciferase assay" showed that a FT gene, ZlGsd1, is critical in SD promotion of gall formation and is positively regulated by a CO gene, ZlCOL1. Our study elucidated how photoperiod affects the formation of a unique organ produced by plant-fungus symbiosis. The difference in SD response between "Jiaobai" and rice, as well as their potential applications in breeding of "Jiaobai" and rice, were also discussed.

4.
Plant J ; 118(6): 2108-2123, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38526880

RESUMO

Rice (Oryza sativa L.) is a short-day plant whose heading date is largely determined by photoperiod sensitivity (PS). Many parental lines used in hybrid rice breeding have weak PS, but their F1 progenies have strong PS and exhibit an undesirable transgressive late-maturing phenotype. However, the genetic basis for this phenomenon is unclear. Therefore, effective methods are needed for selecting parents to create F1 hybrid varieties with the desired PS. In this study, we used bulked segregant analysis with F1 Ningyou 1179 (strong PS) and its F2 population, and through analyzing both parental haplotypes and PS data for 918 hybrid rice varieties, to identify the genetic basis of transgressive late maturation which is dependent on dominance complementation effects of Hd1, Ghd7, DTH8, and PRR37 from both parents rather than from a single parental genotype. We designed a molecular marker-assisted selection system to identify the genotypes of Hd1, Ghd7, DTH8, and PRR37 in parental lines to predict PS in F1 plants prior to crossing. Furthermore, we used CRISPR/Cas9 technique to knock out Hd1 in Ning A (sterile line) and Ning B (maintainer line) and obtained an hd1-NY material with weak PS while retaining the elite agronomic traits of NY. Our findings clarified the genetic basis of transgressive late maturation in hybrid rice and developed effective methods for parental selection and gene editing to facilitate the breeding of hybrid varieties with the desired PS for improving their adaptability.


Assuntos
Genes de Plantas , Oryza , Melhoramento Vegetal , Proteínas de Plantas , Alelos , Genótipo , Hibridização Genética , Oryza/genética , Oryza/metabolismo , Fenótipo , Fotoperíodo , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Plant J ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226401

RESUMO

Photoperiod and temperature-sensitive male sterility rice is an important line for two-line hybrid rice, and the changes in the cultivation temperature strictly control its pollen fertility. However, the mechanism by which temperature variation regulates pollen fertility is still unclear. This study obtained stable fertile PA64S(F) and sterile PA64S(S) rice from PA64S by controlling temperature changes. PA64S(F) shows a normal anther development and fertile pollen under low temperature (21°C), and PA64S(S) shows delayed degradation of the tapetum cells, leading to abnormal pollen wall formation and ubisch development under normal temperature (28°C). The accumulation of reactive oxygen species (ROS) positively correlates with the programmed cell death (PCD) process of tapetum cells. The delayed accumulation of ROS in the PA64S(S) tapetum at early stages leads to a delayed initiation of the PCD process. Importantly, we localized ascorbic acid (ASA) accumulation in the tapetum cells and determined that ASA is a major antioxidant for ROS homeostasis. ROS-inhibited accumulation plants (PA64S-ASA) demonstrated pollen sterility, higher ASA and lower ROS accumulation in the tapetum, and the absence of PCD processes in the tapetum cell. Abnormal changes in the tapetum of PA64S(S) rice disrupted metabolic pathways such as lipid metabolism, cutin and wax synthesis, sugar accumulation, and phenylpropane, affecting pollen wall formation and substance accumulation, suggesting that the timely accumulation of ROS is critical for male fertility. This study highlights the central role of ROS homeostasis in fertility alteration and also provides an avenue to address the effect of environmental temperature changes on pollen fertility in rice.

6.
Annu Rev Neurosci ; 40: 539-556, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28525301

RESUMO

The discovery of a third type of photoreceptors in the mammalian retina, intrinsically photosensitive retinal ganglion cells (ipRGCs), has had a revolutionary impact on chronobiology. We can now properly account for numerous non-vision-related functions of light, including its effect on the circadian system. Here, we give an overview of ipRGCs and their function as it relates specifically to mood and biological rhythms. Although circadian disruptions have been traditionally hypothesized to be the mediators of light's effects on mood, here we present an alternative model that dispenses with assumptions of causality between the two phenomena and explains mood regulation by light via another ipRGC-dependent mechanism.


Assuntos
Afeto/fisiologia , Ritmo Circadiano/fisiologia , Células Fotorreceptoras/metabolismo , Células Ganglionares da Retina/metabolismo , Opsinas de Bastonetes/metabolismo , Animais , Fotoperíodo
7.
BMC Genomics ; 25(1): 879, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300396

RESUMO

BACKGROUND: The correlation between heading date and flowering time significantly regulates grain filling and seed formation in barley and other crops, ultimately determining crop productivity. In this study, the transcriptome, hormone content detection, and metabolome analysis were performed systematically to analyze the regulatory mechanism of heading time in highland barley under different light conditions. The heading date of D18 (winter highland barley variety, Dongqing18) was later than that of K13 (vernal highland barley variety) under normal growth conditions or long-day (LD) treatment, while this situation will reverse with short-day (SD) treatment. RESULTS: The circadian rhythm plant, plant hormone signaling transduction, starch and sucrose metabolism, and photosynthesis-related pathways are significantly enriched in barley under SD and LD to influence heading time. In the plant circadian rhythm pathway, the key genes GI (Gigantea), PRR (Pesudoresponseregulator), FKF1 (Flavin-binding kelch pepeat F-Box 1), and FT (Flowering locus T) are identified as highly expressed in D18SD3 and K13SD2, while they are significantly down-regulated in K13SD3. These genes play an important role in regulating the heading date of D18 earlier than that of K13 under SD conditions. In photosynthesis-related pathways, a-b binding protein and RBS were highly expressed in K13LD3, while NADP-dependent malic enzyme, phosphoenolpyruvate carboxylase, fructose-bisphosphate aldolase, and triosephosphate isomerase were significantly expressed in D18SD3. In the starch and sucrose metabolism pathway, 41 DEGs (differentially expressed genes) and related metabolites were identified as highly expressed and accumulated in D18SD3. The DEGs SAUR (Small auxin-up RNA), ARF (Auxin response factor), TIR1 (Transport inhibitor response 1), EIN3 (Ethylene-insensitive 3), ERS1 (Ethylene receptor gene), and JAZ1 (Jasmonate ZIM-domain) in the plant hormone pathway were significantly up-regulated in D18SD3. Compared with D18LD3, the content of N6-isopentenyladenine, indole-3-carboxylic acid, 1-aminocyclopropanecarboxylic acid, trans-zeatin, indole-3-carboxaldehyde, 1-O-indol-3-ylacetylglucose, and salicylic acid in D18SD3 also increased. The expression levels of vernalization genes (HvVRN1, HvVRN2, and HvVRN3), photoperiod genes (PPD), and PPDK (Pyruvate phosphate dikinase) that affect photosynthetic efficiency in barley are also analyzed, which play important regulatory roles in barley heading date. The WGCNA analysis of the metabolome data and circadian regulatory genes identified the key metabolites and candidate genes to regulate the heading time of barley in response to the photoperiod. CONCLUSION: These studies will provide a reference for the regulation mechanism of flowering and the heading date of highland barley.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum , Fotoperíodo , Reguladores de Crescimento de Plantas , Hordeum/genética , Hordeum/metabolismo , Hordeum/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Metabolômica/métodos , Perfilação da Expressão Gênica , Transcriptoma , Fotossíntese , Ritmo Circadiano/genética , Flores/genética , Flores/metabolismo , Flores/crescimento & desenvolvimento
8.
Curr Issues Mol Biol ; 46(9): 10299-10311, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39329965

RESUMO

Heading date is a critical physiological process in rice that is influenced by both genetic and environmental factors. The photoperiodic pathway is a primary regulatory mechanism for rice heading, with key florigen genes Hd3a (Heading date 3a) and RFT1 (RICE FLOWERING LOCUS T1) playing central roles. Upstream regulatory pathways, including Hd1 and Ehd1, also significantly impact this process. This review aims to provide a comprehensive examination of the localization, cloning, and functional roles of photoperiodic pathway-related genes in rice, and to explore the interactions among these genes as well as their pleiotropic effects on heading date. We systematically review recent advancements in the identification and functional analysis of genes involved in the photoperiodic pathway. We also discuss the molecular mechanisms underlying rice heading date variation and highlight the intricate interactions between key regulatory genes. Significant progress has been made in understanding the molecular mechanisms of heading date regulation through the cloning and functional analysis of photoperiod-regulating genes. However, the regulation of heading date remains complex, and many underlying mechanisms are not yet fully elucidated. This review consolidates current knowledge on the photoperiodic regulation of heading date in rice, emphasizing novel findings and gaps in the research. It highlights the need for further exploration of the interactions among flowering-related genes and their response to environmental signals. Despite advances, the full regulatory network of heading date remains unclear. Further research is needed to elucidate the intricate gene interactions, transcriptional and post-transcriptional regulatory mechanisms, and the role of epigenetic factors such as histone methylation in flowering time regulation. This review provides a detailed overview of the current understanding of photoperiodic pathway genes in rice, setting the stage for future research to address existing gaps and improve our knowledge of rice flowering regulation.

9.
BMC Plant Biol ; 24(1): 210, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519909

RESUMO

BACKGROUND: Different metabolic compounds give pepper leaves and fruits their diverse colors. Anthocyanin accumulation is the main cause of the purple color of pepper leaves. The light environment is a critical factor affecting anthocyanin biosynthesis. It is essential that we understand how to use light to regulate anthocyanin biosynthesis in plants. RESULT: Pepper leaves were significantly blue-purple only in continuous blue light or white light (with a blue light component) irradiation treatments, and the anthocyanin content of pepper leaves increased significantly after continuous blue light irradiation. This green-to-purple phenotype change in pepper leaves was due to the expression of different genes. We found that the anthocyanin synthesis precursor-related genes PAL and 4CL, as well as the structural genes F3H, DFR, ANS, BZ1, and F3'5'H in the anthocyanin synthesis pathway, had high expression under continuous blue light irradiation. Similarly, the expression of transcription factors MYB1R1-like, MYB48, MYB4-like isoform X1, bHLH143-like, and bHLH92-like isoform X3, and circadian rhythm-related genes LHY and COP1, were significantly increased after continuous blue light irradiation. A correlation network analysis revealed that these transcription factors and circadian rhythm-related genes were positively correlated with structural genes in the anthocyanin synthesis pathway. Metabolomic analysis showed that delphinidin-3-O-glucoside and delphinidin-3-O-rutinoside were significantly higher under continuous blue light irradiation relative to other light treatments. We selected 12 genes involved in anthocyanin synthesis in pepper leaves for qRT-PCR analysis, and the accuracy of the RNA-seq results was confirmed. CONCLUSIONS: In this study, we found that blue light and 24-hour irradiation together induced the expression of key genes and the accumulation of metabolites in the anthocyanin synthesis pathway, thus promoting anthocyanin biosynthesis in pepper leaves. These results provide a basis for future study of the mechanisms of light quality and photoperiod in anthocyanin synthesis and metabolism, and our study may serve as a valuable reference for screening light ratios that regulate anthocyanin biosynthesis in plants.


Assuntos
Capsicum , Transcriptoma , Antocianinas/metabolismo , Capsicum/genética , Capsicum/metabolismo , Luz Azul , Metaboloma , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Isoformas de Proteínas/metabolismo , Regulação da Expressão Gênica de Plantas
10.
BMC Plant Biol ; 24(1): 90, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317069

RESUMO

BACKGROUND: Photoperiod, or the length of the day, has a significant impact on the flowering and sex differentiation of photoperiod-sensitive crops. The "miben" pumpkin (the main type of Cucurbita moschata Duch.) is well-known for its high yield and strong disease resistance. However, its cultivation has been limited due to its sensitivity to photoperiod. This sensitivity imposes challenges on its widespread cultivation and may result in suboptimal yields in regions with specific daylength conditions. As a consequence, efforts are being made to explore potential strategies or breeding techniques to enhance its adaptability to a broader range of photoperiods, thus unlocking its full cultivation potential and further promoting its valuable traits in agriculture. RESULTS: This study aimed to identify photoperiod-insensitive germplasm exhibiting no difference in sex differentiation under different day-length conditions. The investigation involved a phenotypic analysis of photoperiod-sensitive (PPS) and photoperiod-insensitive (PPIS) pumpkin materials exposed to different day lengths, including long days (LDs) and short days (SDs). The results revealed that female flower differentiation was significantly inhibited in PPS_LD, while no differences were observed in the other three groups (PPS_SD, PPIS_LD, and PPIS_SD). Transcriptome analysis was carried out for these four groups to explore the main-effect genes of sex differentiation responsive to photoperiod. The main-effect gene subclusters were identified based on the principal component and hierarchical cluster analyses. Further, functional annotations and enrichment analysis revealed significant upregulation of photoreceptors (CmCRY1, F-box/kelch-repeat protein), circadian rhythm-related genes (CmGI, CmPRR9, etc.), and CONSTANS (CO) in PPS_LD. Conversely, a significant downregulation was observed in most Nuclear Factor Y (NF-Y) transcription factors. Regarding the gibberellic acid (GA) signal transduction pathway, positive regulators of GA signaling (CmSCL3, CmSCL13, and so forth) displayed higher expression levels, while the negative regulators of GA signaling, CmGAI, exhibited lower expression levels in PPS_LD. Notably, this effect was not observed in the synthetic pathway genes. Furthermore, genes associated with ethylene synthesis and signal transduction (CmACO3, CmACO1, CmERF118, CmERF118-like1,2, CmWIN1-like, and CmRAP2-7-like) showed significant downregulation. CONCLUSIONS: This study offered a crucial theoretical and genetic basis for understanding how photoperiod influences the mechanism of female flower differentiation in pumpkins.


Assuntos
Cucurbita , Cucurbita/genética , Fotoperíodo , Inibidores da Bomba de Prótons/metabolismo , Diferenciação Sexual , Melhoramento Vegetal , Perfilação da Expressão Gênica , Flores/metabolismo , Regulação da Expressão Gênica de Plantas
11.
BMC Plant Biol ; 24(1): 711, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060970

RESUMO

BACKGROUND: The transition from vegetative to reproductive growth is a key factor in yield maximization. Sesame (Sesamum indicum), an indeterminate short-day oilseed crop, is rapidly being introduced into new cultivation areas. Thus, decoding its flowering mechanism is necessary to facilitate adaptation to environmental conditions. In the current study, we uncover the effect of day-length on flowering and yield components using F 2 populations segregating for previously identified quantitative trait loci (Si_DTF QTL) confirming these traits. RESULTS: Generally, day-length affected all phenotypic traits, with short-day preceding days to flowering and reducing yield components. Interestingly, the average days to flowering required for yield maximization was 50 to 55 days, regardless of day-length. In addition, we found that Si_DTF QTL is more associated with seed-yield and yield components than with days to flowering. A bulk-segregation analysis was applied to identify additional QTL differing in allele frequencies between early and late flowering under both day-length conditions. Candidate genes mining within the identified major QTL intervals revealed two flowering-related genes with different expression levels between the parental lines, indicating their contribution to sesame flowering regulation. CONCLUSIONS: Our findings demonstrate the essential role of flowering date on yield components and will serve as a basis for future sesame breeding.


Assuntos
Flores , Locos de Características Quantitativas , Sesamum , Sesamum/genética , Sesamum/crescimento & desenvolvimento , Sesamum/fisiologia , Flores/crescimento & desenvolvimento , Flores/genética , Flores/fisiologia , Fenótipo , Fotoperíodo
12.
J Neurosci Res ; 102(7): e25367, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001670

RESUMO

The ventral subiculum regulates emotion, stress responses, and spatial and social cognition. In our previous studies, we have demonstrated anxiety- and depression-like symptoms, deficits in spatial and social cognition in ventral subicular lesioned (VSL) rats, and restoration of affective and cognitive behaviors following photoperiod manipulation (short photoperiod regime, SPR; 6:18 LD cycle). In the present study, we have studied the impact of VSL on sleep-wake behavioral patterns and the effect of SPR on sleep-wakefulness behavior. Adult male Wistar rats subjected to VSL demonstrated decreased wake duration and enhanced total sleep time due to increased non-rapid eye movement sleep (NREMS) and rapid eye movement sleep (REMS). Power spectral analysis indicated increased delta activity during NREMS and decreased sigma band power during all vigilance states. Light is one of the strongest entrainers of the circadian rhythm, and its manipulation may have various physiological and functional consequences. We investigated the effect of 21-day exposure to SPR on sleep-wakefulness (S-W) behavior in VSL rats. We observed that SPR exposure restored S-W behavior in VSL rats, resulting in an increase in wake duration and a significant increase in theta power during wake and REMS. This study highlights the crucial role of the ventral subiculum in maintaining normal sleep-wakefulness patterns and highlights the effectiveness of photoperiod manipulation as a non-pharmacological treatment for reversing sleep disturbances reported in mood and neuropsychiatric disorders like Alzheimer's disease, bipolar disorder, and major depressive disorder, which also involve alterations in circadian rhythm.


Assuntos
Eletroencefalografia , Hipocampo , Fotoperíodo , Ratos Wistar , Sono , Vigília , Animais , Masculino , Vigília/fisiologia , Ratos , Hipocampo/fisiopatologia , Sono/fisiologia , Ritmo Circadiano/fisiologia
13.
Planta ; 259(6): 150, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727772

RESUMO

MAIN CONCLUSION: The hop phenological cycle was described in subtropical condition of Brazil showing that flowering can happen at any time of year and this was related to developmental molecular pathways. Hops are traditionally produced in temperate regions, as it was believed that vernalization was necessary for flowering. Nevertheless, recent studies have revealed the potential for hops to flower in tropical and subtropical climates. In this work, we observed that hops in the subtropical climate of Minas Gerais, Brazil grow and flower multiple times throughout the year, independently of the season, contrasting with what happens in temperate regions. This could be due to the photoperiod consistently being inductive, with daylight hours below the described threshold (16.5 h critical). We observed that when the plants reached 7-9 nodes, the leaves began to transition from heart-shaped to trilobed-shaped, which could be indicative of the juvenile to adult transition. This could be related to the fact that the 5th node (in plants with 10 nodes) had the highest expression of miR156, while two miR172s increased in the 20th node (in plants with 25 nodes). Hop flowers appeared later, in the 25th or 28th nodes, and the expression of HlFT3 and HlFT5 was upregulated in plants between 15 and 20 nodes, while the expression of HlTFL3 was upregulated in plants with 20 nodes. These results indicate the role of axillary meristem age in regulating this process and suggest that the florigenic signal should be maintained until the hop plants bloom. In addition, it is possible that the expression of TFL is not sufficient to inhibit flowering in these conditions and promote branching. These findings suggest that the reproductive transition in hop under inductive photoperiodic conditions could occur in plants between 15 and 20 nodes. Our study sheds light on the intricate molecular mechanisms underlying hop floral development, paving the way for potential advancements in hop production on a global scale.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Humulus , Fotoperíodo , Folhas de Planta , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Humulus/genética , Humulus/crescimento & desenvolvimento , Humulus/fisiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Estações do Ano , Brasil , MicroRNAs/genética , MicroRNAs/metabolismo , Clima Tropical
14.
Plant Biotechnol J ; 22(4): 929-945, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009862

RESUMO

The control of flowering time in maize is crucial for reproductive success and yield, and it can be influenced by environmental stresses. Using the approaches of Ac/Ds transposon and transposable element amplicon sequencing techniques, we identified a Ds insertion mutant in the ZmPRR37 gene. The Ds insertion showed a significant correlation with days to anthesis. Further research indicated that ZmPRR37-CR knockout mutants exhibited early flowering, whereas ZmPRR37-overexpression lines displayed delayed flowering compared to WT under long-day (LD) conditions. We demonstrated that ZmPRR37 repressed the expression of ZmNF-YC2 and ZmNF-YA3 to delay flowering. Association analysis revealed a significant correlation between flowering time and a SNP2071-C/T located upstream of ZmPRR37. The SNP2071-C/T impacted the binding capacity of ZmELF6 to the promoter of ZmPRR37. ZmELF6 also acted as a flowering suppressor in maize under LD conditions. Notably, our study unveiled that ZmPRR37 can enhance salt stress tolerance in maize by directly regulating the expression of ABA-responsive gene ZmDhn1. ZmDhn1 negatively regulated maize salt stress resistance. In summary, our findings proposed a novel pathway for regulating photoperiodic flowering and responding to salt stress based on ZmPRR37 in maize, providing novel insights into the integration of abiotic stress signals into floral pathways.


Assuntos
Flores , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/fisiologia , Zea mays/genética , Zea mays/metabolismo , Fotoperíodo , Regiões Promotoras Genéticas , Regulação da Expressão Gênica de Plantas/genética
15.
Plant Biotechnol J ; 22(5): 1051-1066, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38070179

RESUMO

To increase rice yields and feed billions of people, it is essential to enhance genetic gains. However, the development of new varieties is hindered by longer generation times and seasonal constraints. To address these limitations, a speed breeding facility has been established and a robust speed breeding protocol, SpeedFlower is developed that allows growing 4-5 generations of indica and/or japonica rice in a year. Our findings reveal that a high red-to-blue (2R > 1B) spectrum ratio, followed by green, yellow and far-red (FR) light, along with a 24-h long day (LD) photoperiod for the initial 15 days of the vegetative phase, facilitated early flowering. This is further enhanced by 10-h short day (SD) photoperiod in the later stage and day and night temperatures of 32/30 °C, along with 65% humidity facilitated early flowering ranging from 52 to 60 days at high light intensity (800 µmol m-2 s-1). Additionally, the use of prematurely harvested seeds and gibberellic acid treatment reduced the maturity duration by 50%. Further, SpeedFlower was validated on a diverse subset of 198 rice accessions from 3K RGP panel encompassing all 12 distinct groups of Oryza sativa L. classes. Our results confirmed that using SpeedFlower one generation can be achieved within 58-71 days resulting in 5.1-6.3 generations per year across the 12 sub-groups. This breakthrough enables us to enhance genetic gain, which could feed half of the world's population dependent on rice.


Assuntos
Oryza , Humanos , Oryza/genética , Melhoramento Vegetal , Luz
16.
Plant Biotechnol J ; 22(3): 635-649, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37938892

RESUMO

Wheat needs different durations of vernalization, which accelerates flowering by exposure to cold temperature, to ensure reproductive development at the optimum time, as that is critical for adaptability and high yield. TaVRN1 is the central flowering regulator in the vernalization pathway and encodes a MADS-box transcription factor (TF) that usually works by forming hetero- or homo-dimers. We previously identified that TaVRN1 bound to an MADS-box TF TaSOC1 whose orthologues are flowering activators in other plants. The specific function of TaSOC1 and the biological implication of its interaction with TaVRN1 remained unknown. Here, we demonstrated that TaSOC1 was a flowering repressor in the vernalization and photoperiod pathways by overexpression and knockout assays. We confirmed the physical interaction between TaSOC1 and TaVRN1 in wheat protoplasts and in planta, and further validated their genetic interplay. A Flowering Promoting Factor 1-like gene TaFPF1-2B was identified as a common downstream target of TaSOC1 and TaVRN1 through transcriptome and chromatin immunoprecipitation analyses. TaSOC1 competed with TaVRT2, another MADS-box flowering regulator, to bind to TaVRN1; their coding genes synergistically control TaFPF1-2B expression and flowering initiation in response to photoperiod and low temperature. We identified major haplotypes of TaSOC1 and found that TaSOC1-Hap1 conferred earlier flowering than TaSOC1-Hap2 and had been subjected to positive selection in wheat breeding. We also revealed that wheat SOC1 family members were important domestication loci and expanded by tandem and segmental duplication events. These findings offer new insights into the regulatory mechanism underlying flowering control along with useful genetic resources for wheat improvement.


Assuntos
Flores , Triticum , Triticum/metabolismo , Fotoperíodo , Melhoramento Vegetal , Vernalização , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética
17.
Cell Tissue Res ; 397(2): 97-110, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38771348

RESUMO

The saccus vasculosus is an organ present in gnathostome fishes, located ventral to the hypothalamus and posterior to the pituitary gland, whose structure is highly variable among species. In some fishes, this organ is well-developed; however, its physiological function is still under debate. Recently, it has been proposed that this organ is a seasonal regulator of reproduction. In the present work, we examined the histology, ultrastructure, and development of the saccus vasculosus in Cichlasoma dimerus. In addition, immunohistochemical studies of proteins related to reproductive function were performed. Finally, the potential response of this organ to different photoperiods was explored. C. dimerus presented a well-developed saccus vasculosus consisting of a highly folded epithelium, composed of coronet and supporting cells, closely associated with blood vessels, and a highly branched lumen connected to the third ventricle. Coronet cells showed all the major characteristics described in other fish species. In addition, some of the vesicles of the globules were positive for thyrotropin beta subunit, while luteinizing hormone beta subunit immunostaining was observed at the edge of the apical processes of some coronet cells. Furthermore, neuropeptide Y and gonadotropin inhibitory hormone innervation in the saccus vasculosus of C. dimerus were shown. Finally, animals exposed to the long photoperiod showed lower levels of thyrotropin beta and common alpha subunits expression in the saccus compared to those of animals exposed to short photoperiod. All these results support the hypothesis that the saccus vasculosus is involved in the regulation of reproductive function in fish.


Assuntos
Ciclídeos , Fotoperíodo , Animais , Ciclídeos/anatomia & histologia , Hipófise/metabolismo , Feminino , Masculino , Imuno-Histoquímica , Reprodução/fisiologia
18.
New Phytol ; 241(4): 1646-1661, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38115785

RESUMO

Perennial trees in boreal and temperate regions undergo growth cessation and bud set under short photoperiods, which are regulated by phytochrome B (phyB) photoreceptors and PHYTOCHROME INTERACTING FACTOR 8 (PIF8) proteins. However, the direct signaling components downstream of the phyB-PIF8 module remain unclear. We found that short photoperiods suppressed the expression of miR156, while upregulated the expression of miR156-targeted SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE 16 (SPL16) and SPL23 in leaves and shoot apices of Populus trees. Accordingly, either overexpression of MIR156a/c or mutagenesis of SPL16/23 resulted in the attenuation of growth cessation and bud set under short days (SD), whereas overexpression of SPL16 and SPL23 conferred early growth cessation. We further showed that SPL16 and SPL23 directly suppressed FLOWERING LOCUS T2 (FT2) expression while promoted BRANCHED1 (BRC1.1 and BRC1.2) expression. Moreover, we revealed that PIF8.1/8.2, positive regulators of growth cessation, directly bound to promoters of MIR156a and MIR156c and inhibited their expression to modulate downstream pathways. Our results reveal a connection between the phyB-PIF8 module-mediated photoperiod perception and the miR156-SPL16/23-FT2/BRC1 regulatory cascades in SD-induced growth cessation. Our study provides insights into the rewiring of a conserved miR156-SPL module in the regulation of seasonal growth in Populus trees.


Assuntos
Fitocromo , Populus , Fotoperíodo , Árvores , Proteínas de Plantas/metabolismo , Estações do Ano , Fitocromo/metabolismo , Regulação da Expressão Gênica de Plantas
19.
Plant Cell Environ ; 47(5): 1656-1667, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38282250

RESUMO

Soybean (Glycine max) is a typical short-day plant, but has been widely cultivated in high-latitude long-day (LD) regions because of the development of early-maturing genotypes which are photoperiod-insensitive. However, some early-maturing varieties exhibit significant responses to maturity under different daylengths but not for flowering, depicting an evident photoperiodic after-effect, a poorly understood mechanism. In this study, we investigated the postflowering responses of 11 early-maturing soybean varieties to various preflowering photoperiodic treatments. We confirmed that preflowering SD conditions greatly promoted maturity and other postflowering developmental stages. Soybean homologs of FLOWERING LOCUS T (FT), including GmFT2a, GmFT3a, GmFT3b and GmFT5a, were highly accumulated in leaves under preflowering SD treatment. More importantly, they maintained a high expression level after flowering even under LD conditions. E1 RNAi and GmFT2a overexpression lines showed extremely early maturity regardless of preflowering SD and LD treatments due to constitutively high levels of floral-promoting GmFT homolog expression throughout their life cycle. Collectively, our data indicate that high and stable expression of floral-promoting GmFT homologs play key roles in the maintenance of photoperiodic induction to promote postflowering reproductive development, which confers early-maturing varieties with appropriate vegetative growth and shortened reproductive growth periods for adaptation to high latitudes.


Assuntos
Glycine max , Fotoperíodo , Glycine max/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/fisiologia , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas
20.
Plant Cell Environ ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189944

RESUMO

The optimal timing of transition from vegetative to floral reproductive phase is critical for plant productivity and agricultural yields. Light plays a decisive role in regulating this transition. The B-box (BBX) family of transcription factors regulates several light-mediated developmental processes in plants, including flowering. Here, we identify a previously uncharacterized group II BBX family member, BBX13/COL15, as a negative regulator of flowering under long-day conditions. BBX13 is primarily expressed in the leaf vasculature, buds, and flowers, showing a similar spatial expression pattern to the major flowering time regulators CO and FT. bbx13 mutants flower early, while BBX13-overexpressors exhibit delayed flowering under long days. Genetic analyses showed that BBX13 acts upstream to CO and FT and negatively regulates their expression. BBX13 physically interacts with CO and inhibits the CO-mediated transcriptional activation of FT. In addition, BBX13 directly binds to the CORE2 motif on the FT promoter, where CO also binds. Chromatin immunoprecipitation data indicates that BBX13 reduces the in vivo binding of CO on the FT promoter. Through luciferase assay, we found that BBX13 inhibits the CO-mediated transcriptional activation of FT. Together, these findings suggest that BBX13/COL15 represses flowering in Arabidopsis by attenuating the binding of CO on the FT promoter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA