Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Photochem Photobiol Sci ; 23(4): 747-755, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430371

RESUMO

Photochemistry of the (n-Bu4N)2[Pt(NO3)6] complex in acetonitrile was studied by means of stationary photolysis and nanosecond laser flash photolysis. The primary photochemical process was found to be an intramolecular electron transfer followed by an escape of an •NO3 radical to the solution bulk. The spectra of two successive Pt(III) intermediates were detected in the microsecond time domain, and their spectral and kinetic characteristics were determined. These intermediates were identified as PtIII(NO3)52- and PtIII(NO3)4- complexes. Disproportionation of Pt(III) species resulted in formation of final Pt(II) products.

2.
Bioorg Chem ; 135: 106499, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37058978

RESUMO

Developing bioactive axial ligands ligated platinum(IV) complexes with advantages over monotherapy and drug combinations is an efficient strategy to ameliorate the clinical defects of platinum(II) drugs. In this article, a series of 4-amino-quinazoline moieties (privileged pharmacophores of well-studied EGFR inhhibitors) ligated platinum(IV) were synthesized and evaluated for their anticancer activities. Among the complex, 17b demonstrated higher cytotoxicity against the tested lung cancer cells (including CDDP-resistant A549/CDDP cells) while lower cytotoxicity toward human normal cells than Oxaliplatin (Oxa) or cisplatin (CDDP). Mechanistic investigation demonstrated that the enhanced intracellular uptake of 17b efficiently elevated the of reactive oxygen species levels by 6.1 times more than Oxa. Detailed mechanisms of overcoming CDDP resistance revealed that 17b significantly induced apoptosis via inducing severe DNA damage, disturbing mitochondrial transmembrane potentials, efficiently disturbing EGFR-PI3K-Akt signaling transduction and activating a mitochondria-dependent apoptosis pathway. Besides, 17b significantly inhibited migration and invasion in A549/CDDP cells. In vivo tests exhibited that 17b obtained superior antitumor effect and attenuated systemic toxicity in A549/CDDP xenografts. All these results emphasized that the antitumor action of 17b differed from that of. classical platinum(II) drugs and provided a novel practical method to overcome CDDP resistance in lung cancer.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Pró-Fármacos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Oxaliplatina/farmacologia , Fosfatidilinositol 3-Quinases , Platina/farmacologia , Pró-Fármacos/farmacologia
3.
Molecules ; 28(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37687231

RESUMO

PtIV coordination complexes are of interest as prodrugs of PtII anticancer agents, as they can avoid deactivation pathways owing to their inert nature. Here, we report the oxidation of the antitumor agent [PtII(p-BrC6F4)NCH2CH2NEt2}Cl(py)], 1 (py = pyridine) to dihydroxidoplatinum(IV) solvate complexes [PtIV{(p-BrC6F4)NCH2CH2NEt2}Cl(OH)2(py)].H2O, 2·H2O with hydrogen peroxide (H2O2) at room temperature. To optimize the yield, 1 was oxidized in the presence of added lithium chloride with H2O2 in a 1:2 ratio of Pt: H2O2, in CH2Cl2 producing complex 2·H2O in higher yields in both gold and red forms. Despite the color difference, red and yellow 2·H2O have the same structure as determined by single-crystal and X-ray powder diffraction, namely, an octahedral ligand array with a chelating organoamide, pyridine and chloride ligands in the equatorial plane, and axial hydroxido ligands. When tetrabutylammonium chloride was used as a chloride source, in CH2Cl2, another solvate, [PtIV{(p-BrC6F4)NCH2CH2NEt2}Cl(OH)2(py)].0.5CH2Cl2,3·0.5CH2Cl2, was obtained. These PtIV compounds show reductive dehydration into PtII [Pt{(p-BrC6F4)NCH=CHNEt2}Cl(py)], 1H over time in the solid state, as determined by X-ray powder diffraction, and in solution, as determined by 1H and 19F NMR spectroscopy and mass spectrometry. 1H contains an oxidized coordinating ligand and was previously obtained by oxidation of 1 under more vigorous conditions. Experimental data suggest that oxidation of the ligand is favored in the presence of excess H2O2 and elevated temperatures. In contrast, a smaller amount (1Pt:2H2O2) of H2O2 at room temperature favors the oxidation of the metal and yields platinum(IV) complexes.

4.
Molecules ; 28(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110640

RESUMO

One of the main problems in chemotherapy using platinum drugs as anticancer agents is the resistance phenomenon. Synthesizing and evaluating valid alternative compounds is challenging. This review focuses on the last two years of progress in the studies of platinum (II)- and platinum (IV)-based anticancer complexes. In particular, the research studies reported herein focus on the capability of some platinum-based anticancer agents to bypass resistance to chemotherapy, which is typical of well-known drugs such as cisplatin. Regarding platinum (II) complexes, this review deals with complexes in trans conformation; complexes containing bioactive ligands, as well as those that are differently charged, all experience a different reaction mechanism compared with cisplatin. Regarding platinum (IV) compounds, the focus was on complexes with biologically active ancillary ligands that exert a synergistic effect with platinum (II)-active complexes upon reduction, or those for which controllable activation can be realized thanks to intracellular stimuli.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Platina/uso terapêutico
5.
Bioorg Chem ; 105: 104430, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33171407

RESUMO

For the sake to develop novel platinum(IV) complexes to reverse cisplatin (CDDP) resistence, four multifunctional platinum(IV) prodrugs via conjugating chalcones with the related platinum(IV) complexes derived from cisplatin were designed and evaluated for anti-tumor actyivities in vitro and in vivo. Among them, complex 9 exhibited excellent anticancer activities in vitro with IC50 values at the submicromolar level against the tested human cancer cells, whereas showed low cytotoxicity towards human normal liver cells HL-7702. Further mechanistic studies indicated that complex 9 induced G2/M phase arrest and apoptosis in A549 cells, which was associated with a collapse of the mitochondrial membrane potential (MMP), alterations in the expression of some apoptosis-related proteins, and enhanced level of the intracellular reactive oxygen species (ROS). More importantly, complex 9 significantly suppressed the tumor growth in the A549 xenograft model without obvious hints of toxicity.


Assuntos
Antineoplásicos/farmacologia , Chalcona/farmacologia , Complexos de Coordenação/farmacologia , Platina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalcona/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Platina/química , Relação Estrutura-Atividade
6.
Bull Exp Biol Med ; 168(4): 583-588, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32152850

RESUMO

We performed a comparative study of the cytotoxicity of cisplatin, JM216 complex, and aminonitroxyl platinum(IV) complexes for HeLa cells grown in monolayer and 3D culture. The growth dynamics of spheroids was studied and optimal conditions for evaluation of cytotoxicity were determined. Spheroids were less sensitive to the test compounds than cells in a monolayer. The resistance index (RI) of spheroids was determined as the ratio of IC50 for spheroids to IC50 for monolayer culture. Resistance index was 5.0±1.5 for cisplatin and ranged from 1.8 to 2.3 for platinum(IV) complexes. The observed differences are related to different physicochemical properties of the complexes and different mechanisms of their penetration into cells.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Compostos Organoplatínicos/farmacologia , Esferoides Celulares/efeitos dos fármacos , Antineoplásicos/química , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Cisplatino/química , Resistencia a Medicamentos Antineoplásicos/fisiologia , Células HeLa , Humanos , Concentração Inibidora 50 , Compostos Organoplatínicos/química , Permeabilidade , Esferoides Celulares/patologia , Relação Estrutura-Atividade
7.
Bioorg Med Chem ; 27(8): 1639-1645, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30852077

RESUMO

A new series of glucose-conjugated Pt(IV) complexes that target tumor-specific glucose transporters (GLUTs) was designed, synthesized, and evaluated for their anticancer activities. All six compounds, namely, A1-A6, exhibited increased cytotoxicity that were almost six fold higher than that of oxaliplatin to MCF-7 cells. These Pt(IV) complexes can be reduced to release Pt(II) complexes and cause the death of tumor cells. Simultaneously, the glycosylated Pt(IV) complexes (30.21-91.33 µM) showed lower cytotoxicity that normal LO2 cells compared with cisplatin (5.25 µM) and oxaliplatin (8.34 µM). The intervention of phlorizin as a GLUTs inhibitor increased the IC50 value of the glycosylated Pt(IV) complexes, thereby indicating the potential GLUT transportability. The introduction of glucose moiety to Pt(IV) complexes can effectively enhance the Pt cellular uptake and DNA platination. Results suggested glucose-conjugated Pt(IV) complexes had potential for further study as new anticancer agents.


Assuntos
Antineoplásicos/síntese química , Complexos de Coordenação/química , Desenho de Fármacos , Glucose/química , Platina/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glicosilação , Humanos , Oxaliplatina/farmacologia , Florizina/química , Florizina/metabolismo , Florizina/farmacologia
8.
Angew Chem Int Ed Engl ; 58(22): 7464-7469, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-30870571

RESUMO

Due to their high kinetic inertness and consequently reduced side reactions with biomolecules, PtIV complexes are considered to define the future of anticancer platinum drugs. The aqueous stability of a series of biscarboxylato PtIV complexes was studied under physiologically relevant conditions. Unexpectedly and in contrast to the current chemical understanding, especially oxaliplatin and satraplatin complexes underwent fast hydrolysis in equatorial position (even in cell culture medium and serum). Notably, the resulting hydrolysis products strongly differ in their reduction kinetics, a crucial parameter for the activation of PtIV drugs, which also changes the anticancer potential of the compounds in cell culture. The discovery that intact PtIV complexes can hydrolyze at equatorial position contradicts the dogma on the general kinetic inertness of PtIV compounds and needs to be considered in the screening and design for novel platinum-based anticancer drugs.

9.
Chemistry ; 24(71): 19010-19023, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30211455

RESUMO

It has been shown for the first time that the PtIV complex cis-[Pt(N^C-tolpy)2 Cl2 ] (tolpy=2-(4-tolyl)pyridinyl) can be prepared in a one-pot reaction from K2 [PtCl4 ], although analogous complexes containing 2,5-bis(4-dodecyloxyphenyl)pyridine (=HL) could be prepared using existing routes. The resulting complexes cis-[Pt(N^C-L)2 Cl2 ] are liquid crystals and small-angle X-ray scattering suggests formation of a lamellar mesophase. Surprisingly, heating [Pt(κ2 -N^C-L)2 Cl(κ1 -N^C-LH)] also leads to a mesomorphic compound, which results from thermally induced oxidation to cis-[Pt(N^C-L)2 Cl2 ] and what is presumed to be another geometric isomer of the same formula. The PtIV complexes are quite strongly luminescent in deoxygenated solution, with φ≈10 % and show vibrationally structured emission spectra, λmax (0,0)=532 nm, strongly displaced to the red compared to cis-[Pt(N^C-tolpy)Cl2 ]. Long luminescence lifetimes of 230 µs are attributed to a lower degree of metal character in the excited state accompanying the extension of conjugation in the ligand. There is no significant difference between the emission properties of the bromo- and chloro-complexes, in contrast with the known complexes cis-[Pt(N^C-ppy)X2 ], where the quantum yield for X=Br is some 30 times lower than for X=Cl (ppyH=2-phenylpyridine). The lower energy of the excited state in the new complexes probably ensures that deactivating LLCT/LMCT states remain thermally inaccessible, even when X=Br.

10.
Int J Mol Sci ; 19(7)2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30011897

RESUMO

Platinum(II) drugs are activated intracellularly by aquation of the leaving groups and then bind to DNA, forming DNA adducts capable to activate various signal-transduction pathways. Mostly explored in recent years are Pt(IV) complexes which allow the presence of two additional ligands in the axial positions suitable for the attachment of other cancer-targeting ligands. Here we have extended this strategy by coordinating in the axial positions of kiteplatin ([PtCl2(cis-1,4-DACH)], DACH = Diaminocyclohexane) and its CBDCA (1,1-cyclobutanedicarboxylate) analogue the antioxidant α-Lipoic acid (ALA), an inhibitor of the mitochondrial pyruvate dehydrogenase kinase (PDK). The new compounds (cis,trans,cis-[Pt(CBDCA)(ALA)2(cis-1,4-DACH)], 2, and cis,trans,cis-[PtCl2(ALA)2(cis-1,4-DACH)], 3), after intracellular reduction, release the precursor Pt(II) species and two molecules of ALA. The Pt residue is able to target DNA, while ALA could act on mitochondria as activator of the pyruvate dehydrogenase complex, thus suppressing anaerobic glycolysis. Compounds 2 and 3 were tested in vitro on a panel of five human cancer cell lines and compared to cisplatin, oxaliplatin, and kiteplatin. They proved to be much more effective than the reference compounds, with complex 3 most effective in 3D spheroid tumor cultures. Notably, treatment of human A431 carcinoma cells with 2 and 3 did not determine increase of cellular ROS (usually correlated to inhibition of mitochondrial PDK) and did not induce a significant depolarization of the mitochondrial membrane or alteration of other morphological mitochondrial parameters.


Assuntos
Mitocôndrias/metabolismo , Compostos Organoplatínicos/metabolismo , Platina/metabolismo , Pró-Fármacos/metabolismo , Ácido Tióctico/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/química , Cisplatino/metabolismo , Cisplatino/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Estrutura Molecular , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Platina/química , Platina/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ácido Tióctico/química , Ácido Tióctico/farmacologia
11.
J Biol Inorg Chem ; 22(6): 807-817, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28421385

RESUMO

In the present study, cytotoxic effects of cisplatin, the most usually used chemotherapeutic agent, were compared with new designed platinum(IV) ([PtCl4(en)] (en = ethylenediamine) and [PtCl4(dach)]) (dach = (±)-trans-1,2-diaminocyclohexane) and platinum(II) complexes ([{trans-Pt(NH3)2Cl}2(µ-pyrazine)](ClO4)2 (Pt1), [{trans-Pt(NH3)2Cl}2(µ-4,4'-bipyridyl)](ClO4)2DMF(Pt2),[{trans-Pt(NH3)2Cl}2(µ-1,2-bis(4pyridyl)ethane)](ClO4)2 (Pt3)), in vitro and in vivo against human and murine lung cancer cells, to determine anti-tumor potential of newly synthesized platinum-based drugs in the therapy of lung cancer. Results obtained by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide], Lactate dehydrogenase and Annexin V/Propidium Iodide assays showed that, among all tested complexes, [PtCl4(en)] had the highest cytotoxicity against human and murine lung carcinoma cells in vitro. [PtCl4(en)] showed significantly higher cytotoxicity then cisplatin in all tested concentrations, mainly by inducing apoptosis in lung cancer cells. [PtCl4(en)] was well tolerated in vivo. Clinical signs of [PtCl4(en)]-induced toxicity, such as changes in food, water consumption or body weight, nephrotoxicity or hepatotoxicity was not observed in [PtCl4(en)]-treated mice. [PtCl4(en)] managed to increase presence of CD45+ leukocytes, including F4/80+ macrophages, CD11c+ dendritic cells, CD4+ helper and CD8+ cytotoxic T cells (CTLs) in the lungs, cytotoxic NK, NKT and CTLs in the spleens of tumor bearing mice, resulting with reduction of metastatic lesions in the lungs, indicating its potential to stimulate anti-tumor immune response in vivo. Due to its anti-tumor cytotoxicity, biocompatibility, and potential for stimulation of anti-tumor immune response, [PtCl4(en)] may be a good candidate for further testing in the field of medicinal chemistry.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pulmonares/patologia , Compostos Organoplatínicos/farmacologia , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Metástase Neoplásica , Compostos Organoplatínicos/efeitos adversos , Compostos Organoplatínicos/uso terapêutico , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Inorg Biochem ; 254: 112505, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38377623

RESUMO

Platinum-based anticancer drugs, while potent, are associated with numerous and severe side effects. Hyperthermia therapy is an effective adjuvant in anticancer treatment, however, clinically used platinum drugs have not been optimised for combination with hyperthermia. The derivatisation of existing anticancer drugs with appropriately chosen thermoresponsive moieties results in drugs being activated only at the heated site. Perfluorinated chains of varying lengths were installed on carboplatin, a clinically approved drug, leading to the successful synthesis of a series of mono- and di- substituted platinum(IV) carboplatin prodrugs. Some of these complexes display relevant thermosensitivity on ovarian cancer cell lines, i.e., being inactive at 37 °C while having comparable activity to carboplatin under mild hyperthermia (42 °C). Nuclear magnetic resonance spectroscopy and mass spectrometry indicated that carboplatin is likely the active platinum(II) anticancer agent upon reduction and cyclic voltammetry revealed that the length of the fluorinated alkyl chain has a strong influence on the rate of carboplatin formation, regulating the subsequent cytotoxicity.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Pró-Fármacos , Feminino , Humanos , Carboplatina/farmacologia , Carboplatina/química , Pró-Fármacos/química , Antineoplásicos/química , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Platina/química , Cisplatino/química
13.
J Inorg Biochem ; 254: 112515, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38490045

RESUMO

Chemotherapy resistance is an insurmountable problem in clinical anticancer therapy. Although Oxaliplatin is an effective chemotherapeutic agent for the treatment of colorectal cancer (CRC), it still suffers from serious toxicities as well as drug resistance. In this work, three Oxaliplatin tetravalent platinum prodrugs(O1-O3) and three novel mixed ammine/amine analogs(C1-C3) were constructed, introducing cannabidiol with anti-tumor activity in their axial position. All Pt(IV) prodrugs exhibited potent antitumor effects in a variety of tumor cell lines, especially in HCT-116 cells, where complex O3 showed strong inhibitory effects with the half maximal inhibitory concentrations (IC50) value of 6.02 ± 0.69 µM and about 2.6 times higher than that of Oxaliplatin. Further studies revealed that complex O3 decreased cellular mitochondrial membrane potential in a concentration-dependent manner and enhanced reactive oxygen species (ROS) accumulation by decreasing the expression of catalase, superoxide dismutase 2 (SOD2) and superoxide dismutase 3 (SOD3). Complex O3 induces mitochondrial dysfunction and upregulates the pro-apoptotic protein Noxa, ultimately leading to severe DNA damage. The upregulation of Phosphorylated histone protein H2AX (γ-H2AX) expression is clear evidence. In addition, O3 inhibits the expression of RAD51 protein and prevents DNA damage repair, thus overcoming drug resistance. This strategy of combining bioactive molecules cannabidiol with platinum drugs to improve therapeutic efficacy and overcome drug resistance has been proven to be very effective and deserves further investigation.


Assuntos
Antineoplásicos , Canabidiol , Doenças Mitocondriais , Pró-Fármacos , Humanos , Oxaliplatina/farmacologia , Antineoplásicos/farmacologia , Platina/farmacologia , Canabidiol/farmacologia , Linhagem Celular Tumoral , Pró-Fármacos/farmacologia , Apoptose , Cisplatino/farmacologia
14.
Pharmaceutics ; 15(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37111536

RESUMO

A new class of anticancer prodrugs was designed by combining the cytotoxicity of platinum(IV) complexes and the drug carrier properties of glycol chitosan polymers: Unsymmetrically carboxylated platinum(IV) analogues of cisplatin, carboplatin and oxaliplatin, namely (OC-6-44)-acetatodiammine(3-carboxypropanoato)dichloridoplatinum(IV), (OC-6-44)-acetaodiammine(3-carboxypropanoato)(cyclobutane-1,1-dicarboxylato)platinum(IV) and (OC-6-44)-acetato(3-carboxypropanoato)(1R,2R-cyclohexane-1,2-diamine)oxalatoplatinum(IV) were synthesised and conjugated via amide bonding to degraded glycol chitosan (dGC) polymers with different chain lengths (5, 10, 18 kDa). The 15 conjugates were investigated with 1H and 195Pt NMR spectroscopy, and average amounts of platinum(IV) units per dGC polymer molecule with ICP-MS, revealing a range of 1.3-22.8 platinum(IV) units per dGC molecule. Cytotoxicity was tested with MTT assays in the cancer cell lines A549, CH1/PA-1, SW480 (human) and 4T1 (murine). IC50 values in the low micromolar to nanomolar range were obtained, and higher antiproliferative activity (up to 72 times) was detected with dGC-platinum(IV) conjugates in comparison to platinum(IV) counterparts. The highest cytotoxicity (IC50 of 0.036 ± 0.005 µM) was determined in CH1/PA-1 ovarian teratocarcinoma cells with a cisplatin(IV)-dGC conjugate, which is hence 33 times more potent than the corresponding platinum(IV) complex and twice more potent than cisplatin. Biodistribution studies of an oxaliplatin(IV)-dGC conjugate in non-tumour-bearing Balb/C mice showed an increased accumulation in the lung compared to the unloaded oxaliplatin(IV) analogue, arguing for further activity studies.

15.
Pharmaceutics ; 15(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242758

RESUMO

Based on their drug delivery properties and activity against tumors, we combined PAMAM dendrimers with various platinum(IV) complexes in order to provide an improved approach of anticancer treatment. Platinum(IV) complexes were linked to terminal NH2 moieties of PAMAM dendrimers of generation 2 (G2) and 4 (G4) via amide bonds. Conjugates were characterized by 1H and 195Pt NMR spectroscopy, ICP-MS and in representative cases by pseudo-2D diffusion-ordered NMR spectroscopy. Additionally, the reduction behavior of conjugates in comparison to corresponding platinum(IV) complexes was investigated, showing a faster reduction of conjugates. Cytotoxicity was evaluated via the MTT assay in human cell lines (A549, CH1/PA-1, SW480), revealing IC50 values in the low micromolar to high picomolar range. The synergistic combination of PAMAM dendrimers and platinum(IV) complexes resulted in up to 200 times increased cytotoxic activity of conjugates in consideration of the loaded platinum(IV) units compared to their platinum(IV) counterparts. The lowest IC50 value of 780 ± 260 pM in the CH1/PA-1 cancer cell line was detected for an oxaliplatin-based G4 PAMAM dendrimer conjugate. Finally, in vivo experiments of a cisplatin-based G4 PAMAM dendrimer conjugate were performed based on the best toxicological profile. A maximum tumor growth inhibition effect of 65.6% compared to 47.6% for cisplatin was observed as well as a trend of prolonged animal survival.

16.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513938

RESUMO

Quaternary ammonium palmitoyl glycol chitosan (GCPQ) has already shown beneficial drug delivery properties and has been studied as a carrier for anticancer agents. Consequently, we synthesised cytotoxic platinum(IV) conjugates of cisplatin, carboplatin and oxaliplatin by coupling via amide bonds to five GCPQ polymers differing in their degree of palmitoylation and quaternisation. The conjugates were characterised by 1H and 195Pt NMR spectroscopy as well as inductively coupled plasma mass spectrometry (ICP-MS), the latter to determine the amount of platinum(IV) units per GCPQ polymer. Cytotoxicity was evaluated by the MTT assay in three human cancer cell lines (A549, non-small-cell lung carcinoma; CH1/PA-1, ovarian teratocarcinoma; SW480, colon adenocarcinoma). All conjugates displayed a high increase in their cytotoxic activity by factors of up to 286 times compared to their corresponding platinum(IV) complexes and mostly outperformed the respective platinum(II) counterparts by factors of up to 20 times, also taking into account the respective loading of platinum(IV) units per GCPQ polymer. Finally, a biodistribution experiment was performed with an oxaliplatin-based GCPQ conjugate in non-tumour-bearing BALB/c mice revealing an increased accumulation in lung tissue. These findings open promising opportunities for further tumouricidal activity studies especially focusing on lung tissue.

17.
Bioimpacts ; 13(5): 373-382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736338

RESUMO

Introduction: Machine learning methods, coupled with a tremendous increase in computer power in recent years, are promising tools in modern drug design and drug repurposing. Methods: Machine learning predictive models, publicly available at chemosophia.com, were used to predict the bioactivity of recently synthesized platinum(IV) complexes against different kinds of diseases and medical conditions. Two novel QSAR models based on the BiS algorithm are developed and validated, capable to predict activities against the SARS-CoV virus and its RNA dependent RNA polymerase. Results: The internal predictive power of the QSAR models was tested by 10-fold cross-validation, giving cross-R2 from 0.863 to 0.903. 38 different activities, ranging from antioxidant, antibacterial, and antiviral activities, to potential anti-inflammatory, anti-arrhythmic and anti-malarial activity were predicted for a series of eighteen platinum(IV) complexes. Conclusion: Complexes 1, 3 and 13 have high generalized optimality criteria and are predicted as potential SARS-CoV RNA dependent RNA polymerase inhibitors.

18.
Comput Methods Programs Biomed ; 226: 107158, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36198204

RESUMO

BACKGROUND AND OBJECTIVE: Colorectal cancer (CRC) is at the top of the most common cancer types in the world, with significant mortality rates among both men and women. Deregulation of Wnt/ß-catenin pathway and cell-cell junctions' components, acquisition of invasive phenotype, epithelial-mesenchymal transition (EMT) and invasion are important for development and progression of colorectal cancer. Numerical simulation presents method for estimation of the Wnt pathway via its individual components in cells, thus providing information about EMT, migratory and invasive potential. By using this numerical model, the effectiveness of treatment in EMT suppression can be assessed. Furthermore, the model can be adapted to ``every'' cell type, application time or duration of treatment can be also modified. METHODS: We characterized colorectal cancer (CRC) cell lines (HCT-116, SW-480) from the aspect of EMT, via markers ß-catenin and E-cadherin using numerical modeling. To confirm the numerical model, cells were treated with sublethal concentrations of platinum(IV) complexes and their ligands. We confirmed ß-catenin regulated expression of mesenchymal markers: N-cadherin, Vimentin and MMP-9, and decreased E-cadherin expression. Treatment-induced changes were determined in the protein expression of tested markers and results showed cell-specific responses. Molecular docking was performed to investigate exact effects of treatments on E-cadherin and ß-catenin in cell-cell junctions and individually in tested cells. RESULTS: The application of the numerical model via ß-catenin and E-cadherin (experimentally measured), is largely valid for the categorization of EMT progression in cells. This numerical modeling better characterizes cells with single cell migration, higher expression of mesenchymal markers, and advanced mesenchymal phenotype like HCT-116 cell line. The model was validated for the treatments and results show HCT-116 cells as more sensitive to applied compounds, among which ligands were more potent in reducing migration and invasiveness. Anti-migratory/invasive effects were due to increased E-cadherin, cytoplasmic ß-catenin expression and suppressed mesenchymal markers. In silico methods showed higher affinity of tested chemicals towards free ß-catenin, which is the key for regulation of migratory/invasive potential. CONCLUSIONS: Our study shows that, no matter individual properties of cell lines and EMT degree, de novo formation of intercellular junctions stands in the basis of anti-migratory/invasive process.


Assuntos
Neoplasias Colorretais , beta Catenina , Feminino , Humanos , beta Catenina/metabolismo , beta Catenina/farmacologia , Transição Epitelial-Mesenquimal , Via de Sinalização Wnt , Simulação de Acoplamento Molecular , Caderinas/genética , Caderinas/metabolismo , Caderinas/farmacologia , Movimento Celular , Linhagem Celular , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral
19.
Anticancer Res ; 40(9): 5001-5013, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878788

RESUMO

AIM: Newly synthesized platinum(IV) complexes with ethylenediamine-N,N'-diacetate ligands (EDDA-type) (butyl-Pt and pentyl-Pt) were investigated against two cancer (A549 lung, and HTB 140 melanoma) and one non-cancerous (MRC-5 embryonic lung fibroblast) human cell lines. MATERIALS AND METHODS: The effects of these agents were compared with those of cisplatin after 6-, 24- and 48-h treatment. Sulforhodamine-B (SRB) assay was performed to estimate the cytotoxic effect, while the inhibitory effect on cell proliferation was measured using 5-bromo-2,-deoxyuridine (BrdU) incorporation assay. Cell cycle analysis was performed by flow cytometry. Type of cell death induced by these agents was determined by electrophoretic analysis of DNA, flow cytometry and by western blot analysis of proteins involved in induction of apoptosis. The effects of gamma irradiation, alone and in combination with platinum-based compounds, were examined by clonogenic and SRB assays. RESULTS: All examined platinum-based compounds had inhibitory and antiproliferative effects on A549 cells, but not on HTB140 and MRC-5 cells. Butyl-Pt, pentyl-Pt and cisplatin arrested the cell cycle in the S-phase and induced apoptotic cell death via regulation of expression of B-cell lymphoma 2 (BCL2) and BCL2-associated X (BAX) proteins. Platinum-based compounds increased the sensitivity of A549 cells to gamma irradiation. Butyl-Pt and pentyl-Pt showed better antitumour effects against A549 cells than did cisplatin, by interfering in cell proliferation and the cell cycle, and by triggering apoptosis. CONCLUSION: The effects of gamma irradiation on tumour cells may be amplified by pre-treatment of cells with platinum-based compounds.


Assuntos
Antineoplásicos/farmacologia , Compostos Organoplatínicos/farmacologia , Radiossensibilizantes/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cisplatino/farmacologia , Relação Dose-Resposta a Droga , Ácido Edético/análogos & derivados , Ácido Edético/química , Raios gama , Humanos , Concentração Inibidora 50 , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Radiossensibilizantes/síntese química , Radiossensibilizantes/química
20.
J Inorg Biochem ; 210: 111125, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32521289

RESUMO

Epigenetic agents such as histone deacetylase (HDAC) inhibitors are widely investigated for use in combined anticancer therapy and the co-administration of Pt drugs with HDAC inhibitors has shown promise for the treatment of resistant cancers. Coordination of an HDAC inhibitor to an axial position of a Pt(IV) derivative of cisplatin allows the combination of the epigenetic drug and the Pt chemotherapeutic into a single molecule. In this work we carry out mechanistic studies on the known Pt(IV) complex cis,cis,trans-[Pt(NH3)2Cl2(PBA)2] (B) with the HDAC inhibitor 4-phenylbutyrate (PBA) and its derivatives cis,cis,trans-[Pt(NH3)2Cl2(PBA)(OH)] (A), cis,cis,trans-[Pt(NH3)2Cl2(PBA)(Bz)] (C), and cis,cis,trans-[Pt(NH3)2Cl2(PBA)(Suc)] (D) (Bz = benzoate, Suc = succinate). The comparison of the cytotoxicity, effect on HDAC activity, reactive oxygen species (ROS) generation, γ-H2AX (histone 2A-family member X) foci generation and induction of apoptosis in cisplatin-sensitive and cisplatin-resistant ovarian cancer cells shows that A - C exhibit multimodal mechanisms involving DNA damage and apoptosis independent of cisplatin resistance.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Dano ao DNA/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Pró-Fármacos/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Histonas/metabolismo , Humanos , Platina/química , Pró-Fármacos/síntese química , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA