Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 552
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(2): 478-491.e20, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30929901

RESUMO

Genomic studies have identified hundreds of candidate genes near loci associated with risk for schizophrenia. To define candidates and their functions, we mutated zebrafish orthologs of 132 human schizophrenia-associated genes. We created a phenotype atlas consisting of whole-brain activity maps, brain structural differences, and profiles of behavioral abnormalities. Phenotypes were diverse but specific, including altered forebrain development and decreased prepulse inhibition. Exploration of these datasets identified promising candidates in more than 10 gene-rich regions, including the magnesium transporter cnnm2 and the translational repressor gigyf2, and revealed shared anatomical sites of activity differences, including the pallium, hypothalamus, and tectum. Single-cell RNA sequencing uncovered an essential role for the understudied transcription factor znf536 in the development of forebrain neurons implicated in social behavior and stress. This phenotypic landscape of schizophrenia-associated genes prioritizes more than 30 candidates for further study and provides hypotheses to bridge the divide between genetic association and biological mechanism.


Assuntos
Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Animais , Encéfalo , Córtex Cerebral , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Peixe-Zebra/genética
2.
J Neurovirol ; 30(1): 71-85, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38355914

RESUMO

Mixed glia are infiltrated with HIV-1 virus early in the course of infection leading to the development of a persistent viral reservoir in the central nervous system. Modification of the HIV-1 genome using gene editing techniques, including CRISPR/Cas9, has shown great promise towards eliminating HIV-1 viral reservoirs; whether these techniques are capable of removing HIV-1 viral proteins from mixed glia, however, has not been systematically evaluated. Herein, the efficacy of adeno-associated virus 9 (AAV9)-CRISPR/Cas9 gene editing for eliminating HIV-1 messenger RNA (mRNA) from cortical mixed glia was evaluated in vitro and in vivo. In vitro, a within-subjects experimental design was utilized to treat mixed glia isolated from neonatal HIV-1 transgenic (Tg) rats with varying doses (0, 0.9, 1.8, 2.7, 3.6, 4.5, or 5.4 µL corresponding to a physical titer of 0, 4.23 × 109, 8.46 × 109, 1.269 × 1010, 1.692 × 1010, 2.115 × 1010, and 2.538 × 1010 gc/µL) of CRISPR/Cas9 for 72 h. Dose-dependent decreases in the number of HIV-1 mRNA, quantified using an innovative in situ hybridization technique, were observed in a subset (i.e., n = 5 out of 8) of primary mixed glia. In vivo, HIV-1 Tg rats were retro-orbitally inoculated with CRISPR/Cas9 for two weeks, whereby treatment resulted in profound excision (i.e., approximately 53.2%) of HIV-1 mRNA from the medial prefrontal cortex. Given incomplete excision of the HIV-1 viral genome, the clinical relevance of HIV-1 mRNA knockdown for eliminating neurocognitive impairments was evaluated via examination of temporal processing, a putative neurobehavioral mechanism underlying HIV-1-associated neurocognitive disorders (HAND). Indeed, treatment with CRISPR/Cas9 protractedly, albeit not permanently, restored the developmental trajectory of temporal processing. Proof-of-concept studies, therefore, support the susceptibility of mixed glia to gene editing and the potential of CRISPR/Cas9 to serve as a novel therapeutic strategy for HAND, even in the absence of full viral eradication.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , HIV-1 , RNA Mensageiro , Ratos Transgênicos , Animais , HIV-1/genética , HIV-1/fisiologia , Ratos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Edição de Genes/métodos , Neuroglia/virologia , Neuroglia/metabolismo , Dependovirus/genética , Infecções por HIV/virologia , Infecções por HIV/genética , Técnicas de Silenciamento de Genes , RNA Viral/genética , Cognição/fisiologia , Humanos
3.
Psychophysiology ; 61(5): e14508, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38164815

RESUMO

In emergency medical services, paramedics are informed of an emergency call by a high-intensity acoustic alarm called the "call alert." Sudden, loud sounds like the call alert may cause a startle response and be experienced as aversive. Studies have identified an association between the call alert and adverse health effects in first responders; conceivably, these adverse health effects might be reduced by modifying the call alert to blunt its startling and aversive properties. Here, we assessed whether the call alert causes a startle response and whether its startling and aversive properties are reduced when the call alert is preceded by a weak acoustic "prepulse," a process referred to as "prepulse inhibition" (PPI). Paramedics (n = 50; 34M:13F:3 not reported; ages 20-68) were exposed to four call alerts (two with and two without a prepulse) in counterbalanced order. Responses were measured using electromyography (measuring blink amplitude), visual analog scales (quantifying perceived call alert intensity and aversiveness), and an electrocardiogram (assessing heart rate). Paramedics responded to the call alert with a startle reflex blink and an increased heart rate. Acoustic prepulses significantly reduced the amplitude of the call alert-induced startle blink, the perceived sound intensity, and the perceived "dislike" of the call alert. These findings confirm that the call alert is associated with an acoustic startle response in paramedics; adding a prepulse to the call alert can reduce its startling and aversive properties. Conceivably, such reductions might also diminish adverse health effects associated with the call alert in first responders.


Assuntos
Serviços Médicos de Emergência , Inibição Pré-Pulso , Humanos , Reflexo de Sobressalto/fisiologia , Estimulação Acústica , Eletromiografia
4.
Psychophysiology ; : e14599, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691020

RESUMO

Prepulse inhibition (PPI) of the startle reflex serves as a pre-cognitive marker of sensorimotor gating, and its deficit may predict cognitive impairments. Startle reflex is modulated by many factors. Among them, stress has been a topic of interest, but its effects on both pre-cognitive and cognitive variables continue to yield divergent results. This study aims to analyze the effect of acute stress on PPI of the startle reflex and cognitive function (working memory, attention, inhibition, and verbal fluency). Participants were exposed to the MAST stress induction protocol or a stress-neutral task: stress group (n = 54) or control group (n = 54). Following stress induction, participants' startle responses were recorded, and cognition was assessed. The results revealed that participants in the stress group exhibited greater startle magnitude, lower PPI, and lower scores in working memory tests compared with the control group. Additionally, a correlation was found between working memory and PPI across all the participants, independent of stress group. These findings support the notion that after stress, both greater startle magnitude and diminished PPI could play an adaptive role by allowing for increased processing of stimuli potentially dangerous and stress-related. Similarly, our results lend support to the hypothesis that lower PPI may be predictive of cognitive impairment. Considering the impact of stress on both pre-cognitive (PPI) and cognitive (working memory) variables, we discuss the possibility that the effect of stress on PPI occurs through motivational priming and emphasize the relevance of considering stress in both basic and translational science.

5.
Conscious Cogn ; 123: 103722, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981366

RESUMO

Startle modulation paradigms, namely habituation and prepulse inhibition (PPI), can offer insight into the brain's early information processing mechanisms that might be impacted by regular meditation practice. Habituation refers to decreasing response to a repeatedly-presented startle stimulus, reflecting its redundancy. PPI refers to response reduction when a startling stimulus "pulse" is preceded by a weaker sensory stimulus "prepulse" and provides an operational measure of sensorimotor gating. Here, we examined habituation and PPI of the acoustic startle response in regular meditators (n = 32), relative to meditation-naïve individuals (n = 36). Overall, there was no significant difference between meditators and non-meditators in habituation or PPI, but there was significantly greater PPI in meditators who self-reported being able to enter and sustain non-dual awareness during their meditation practice (n = 18) relative to those who could not (n = 14). Together, these findings suggest that subjective differences in meditation experience may be associated with differential sensory processing characteristics in meditators.

6.
Neurobiol Dis ; 176: 105950, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493977

RESUMO

BACKGROUND: Cognitive fatigue is highly prevalent in people with multiple sclerosis (pwMS) and significantly limits their quality of life. Fatigue can be subdivided into a subjective feeling of constant (trait) or current (state) exhaustion, as well as an objective performance decline, also known as fatigability. However, the current fatigue diagnosis in pwMS is purely subjective, leaving fatigability mostly unattended. Sensorimotor and sensory gating deficits have recently been described as possible objective markers for fatigability in healthy subjects. Thus, this study aimed to investigate the potential of prepulse inhibition (PPI) ratios and the P50 sensory gating suppression as surrogate markers for cognitive fatigue in pwMS. METHODS: PPI and P50 sensory gating ratios were assessed before and after a 30-min fatigability-inducing AX- continuous performance task. Subjective trait fatigue was operationalized via self-report questionnaires, subjective state fatigue via visual analog scales (VAS), and fatigability via the change in both gating ratios. The data were analyzed using Linear Mixed Models and Pearson correlations. RESULTS: We included 18 pwMS and 20 healthy controls (HC) in the final analyses. The task-induced fatigability was more pronounced in pwMS. While the initial PPI and P50 ratios were similar in both groups, P50 sensory gating was significantly disrupted after fatigability induction in pwMS. PPI, on the other hand, decreased in both groups. Moreover, initial P50 sensory gating ratios were negatively associated with subjective trait fatigue in pwMS, indicating that higher trait fatigue is associated with disrupted sensory gating. Finally, fatigability-related changes in P50 sensory gating were associated with the changes in VAS ratings, but only in HC. CONCLUSIONS: This study demonstrated that P50 sensory gating is a promising objective fatigue and fatigability parameter. Importantly, P50 sensory gating correlated with subjective trait and state fatigue ratings. Our results extend the subjective fatigue diagnosis and broaden the understanding of pathophysiological neuronal mechanisms in MS-related fatigue. This is the first study to present fatigue-related disruption of sensory gating in pwMS.


Assuntos
Transtornos Cognitivos , Esclerose Múltipla , Humanos , Qualidade de Vida , Filtro Sensorial , Cognição
7.
Nutr Neurosci ; : 1-17, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37534957

RESUMO

Objectives: Autism is a devastating neurodevelopmental disorder and recent studies showed that omega-3 or astaxanthin might reduce autistic symptoms due to their anti-inflammatory properties. Therefore, we investigated the effects of omega-3 and astaxanthin on the VPA-induced autism model of rats.Material and Methods: Female Wistar albino pups (n = 40) were grouped as control, autistic, astaxanthin (2 mg/kg), omega-3 (200 mg/kg), and astaxanthin (2 mg/kg)+omega-3 (200 mg/kg). All groups except the control were prenatally exposed to VPA. Astaxanthin and omega-3 were orally administered from the postnatal day 41 to 68 and behavioral tests were performed between day 69 and 73. The rats were decapitated 24 h after the behavioral tests and hippocampal and prefrontal cytokines and 5-HT levels were analyzed by ELISA.Results: VPA rats have increased grooming behavior while decreased sociability (SI), social preference index (SPI), discrimination index (DI), and prepulse inhibition (PPI) compared to control. Additionally, IL-1ß, IL-6, TNF-α, and IFN-γ levels increased while IL-10 and 5-HT levels decreased in both brain regions. Astaxanthin treatment raised SI, SPI, DI, PPI, and prefrontal IL-10 levels. It also raised 5-HT levels and decreased IL-6 levels in both brain regions. Omega-3 and astaxanthin + omega-3 increased the SI, SPI, DI, and PPI and decreased grooming behavior. Moreover, they increased IL-10 and 5-HT levels whereas decreased IL-1ß, IL-6, TNF-α, IFN-γ levels in both brain regions.Conclusions: Our results showed that VPA administration mimicked the behavioral and molecular changes of autism in rats. Single and combined administration of astaxanthin and omega-3 improved the autistic-like behavioral and molecular changes in the VPA model of rats.

8.
Phytother Res ; 37(12): 5904-5915, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37654104

RESUMO

Schizophrenia is a chronic brain disorder characterized by positive symptoms (delusions or hallucinations), negative symptoms (impaired motivation or social withdrawal), and cognitive impairment. In the present study, we explored whether D-pinitol could ameliorate schizophrenia-like behaviors induced by MK-801, an N-methyl-D-aspartate receptor antagonist. Acoustic startle response test was conducted to evaluate the effects of D-pinitol on sensorimotor gating function. Social interaction and novel object recognition tests were employed to measure the impact of D-pinitol on social behavior and cognitive function, respectively. Additionally, we examined whether D-pinitol affects motor coordination. Western blotting was conducted to investigate the mechanism of action of D-pinitol. Single administration of D-pinitol at 30, 100, or 300 mg/kg improved the sensorimotor gating deficit induced by MK801 in the acoustic startle response test. D-Pinitol also reversed social behavior deficits and cognitive impairments induced by MK-801 without causing any motor coordination deficits. Furthermore, D-pinitol reversed increased expression levels of pNF-kB induced by MK-801 treatment and consequently increased expression levels of TNF-α and IL-6 in the prefrontal cortex. These results suggest that D-pinitol could be a potential candidate for treating sensorimotor gating deficits and cognitive impairment observed in schizophrenia by down-regulating transcription factor NF-κB and pro-inflammatory cytokines in the prefrontal cortex.


Assuntos
Disfunção Cognitiva , Esquizofrenia , Camundongos , Animais , Maleato de Dizocilpina/efeitos adversos , Reflexo de Sobressalto/fisiologia , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico
9.
J Biol Chem ; 296: 100166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33478937

RESUMO

ATP-binding cassette subfamily A member 13 (ABCA13) is predicted to be the largest ABC protein, consisting of 5058 amino acids and a long N-terminal region. Mutations in the ABCA13 gene were reported to increase the susceptibility to schizophrenia, bipolar disorder, and major depression. However, little is known about the molecular functions of ABCA13 or how they associate with psychiatric disorders. Here, we examined the biochemical activity of ABCA13 using HEK293 cells transfected with mouse ABCA13. The expression of ABCA13 induced the internalization of cholesterol and gangliosides from the plasma membrane to intracellular vesicles. Cholesterol internalization by ABCA13 required the long N-terminal region and ATP hydrolysis. To examine the physiological roles of ABCA13, we generated Abca13 KO mice using CRISPR/Cas and found that these mice exhibited deficits of prepulse inhibition. Vesicular cholesterol accumulation and synaptic vesicle endocytosis were impaired in primary cultures of Abca13 KO cortical neurons. Furthermore, mutations in ABCA13 gene associated with psychiatric disorders disrupted the protein's subcellular localization and impaired cholesterol trafficking. These findings suggest that ABCA13 accelerates cholesterol internalization by endocytic retrograde transport in neurons and that loss of this function is associated with the pathophysiology of psychiatric disorders.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Colesterol/metabolismo , Endocitose/genética , Neurônios/metabolismo , Inibição Pré-Pulso , Transportadores de Cassetes de Ligação de ATP/deficiência , Trifosfato de Adenosina/metabolismo , Animais , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Transtorno Bipolar/patologia , Membrana Celular/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/patologia , Modelos Animais de Doenças , Gangliosídeos/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Hidrólise , Camundongos , Camundongos Knockout , Mutação , Neurônios/patologia , Cultura Primária de Células , Transporte Proteico , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologia , Transgenes
10.
Biochem Biophys Res Commun ; 586: 114-120, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34839189

RESUMO

Prepulse inhibition (PPI) is a neurophysiological finding that is decreased in schizophrenia patients and has been used in pathophysiology studies of schizophrenia and the development of antipsychotic drugs. PPI is affected by several drugs including amphetamine, ketamine, and nicotinic agents, and it is reported that several brain regions and modulatory neurotransmitters are involved in PPI. Here we showed that mice with IRSp53 deletion in each dopaminergic, cholinergic, oxytocinergic, and serotoninergic modulatory neurons showed a decrease in PPI. Other than PPI, there were no other behavioral changes among IRSp53 deletion mice. Through this study, we could reconfirm that dysfunction of each modulatory neuron such as dopamine, acetylcholine, oxytocin, and serotonin can result in PPI impairment, and it should be considered that PPI could be broadly affected by changes in one of a certain kind of modulatory neurons.


Assuntos
Encéfalo/metabolismo , Neurônios Colinérgicos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas do Tecido Nervoso/genética , Inibição Pré-Pulso , Neurônios Serotoninérgicos/metabolismo , Acetilcolina/metabolismo , Animais , Encéfalo/patologia , Mapeamento Encefálico , Neurônios Colinérgicos/patologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Deleção de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Ruído , Ocitocina/metabolismo , Reflexo de Sobressalto , Neurônios Serotoninérgicos/patologia , Serotonina/metabolismo
11.
Biochem Biophys Res Commun ; 629: 142-151, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116377

RESUMO

Phencyclidine (PCP) causes mental symptoms that closely resemble schizophrenia through the inhibition of the glutamatergic system. The kynurenine (KYN) pathway (KP) generates metabolites that modulate glutamatergic systems such as kynurenic acid (KA), quinolinic acid (QA), and xanthurenic acid (XA). Kynurenine 3-monooxygenase (KMO) metabolizes KYN to 3-hydroxykynurenine (3-HK), an upstream metabolite of QA and XA. Clinical studies have reported lower KMO mRNA and higher KA levels in the postmortem brains of patients with schizophrenia and exacerbation of symptoms in schizophrenia by PCP. However, the association between KMO deficiency and PCP remains elusive. Here, we demonstrated that a non-effective dose of PCP induced impairment of prepulse inhibition (PPI) in KMO KO mice. KA levels were increased in the prefrontal cortex (PFC) and hippocampus (HIP) of KMO KO mice, but 3-HK levels were decreased. In wild-type C57BL/6 N mice, the PPI impairment induced by PCP is exacerbated by KA, while attenuated by 3-HK, QA and XA. Taken together, KMO KO mice were vulnerable to the PPI impairment induced by PCP through an increase in KA and a decrease in 3-HK, suggesting that an increase in the ratio of KA to 3-HK (QA and XA) may play an important role in the pathophysiology of schizophrenia.


Assuntos
Quinurenina 3-Mono-Oxigenase , Cinurenina , Animais , Ácido Cinurênico/metabolismo , Cinurenina/metabolismo , Quinurenina 3-Mono-Oxigenase/genética , Quinurenina 3-Mono-Oxigenase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenciclidina , Inibição Pré-Pulso , Ácido Quinolínico/metabolismo , RNA Mensageiro
12.
J Exp Biol ; 225(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258623

RESUMO

Anthropogenic noise can be hazardous for the auditory system and wellbeing of animals, including humans. However, very limited information is known on how this global environmental pollutant affects auditory function and inner ear sensory receptors in early ontogeny. The zebrafish (Danio rerio) is a valuable model in hearing research, including investigations of developmental processes of the vertebrate inner ear. We tested the effects of chronic exposure to white noise in larval zebrafish on inner ear saccular sensitivity and morphology at 3 and 5 days post-fertilization (dpf), as well as on auditory-evoked swimming responses using the prepulse inhibition (PPI) paradigm at 5 dpf. Noise-exposed larvae showed a significant increase in microphonic potential thresholds at low frequencies, 100 and 200 Hz, while the PPI revealed a hypersensitization effect and a similar threshold shift at 200 Hz. Auditory sensitivity changes were accompanied by a decrease in saccular hair cell number and epithelium area. In aggregate, the results reveal noise-induced effects on inner ear structure-function in a larval fish paralleled by a decrease in auditory-evoked sensorimotor responses. More broadly, this study highlights the importance of investigating the impact of environmental noise on early development of sensory and behavioural responsiveness to acoustic stimuli.


Assuntos
Orelha Interna , Perda Auditiva Provocada por Ruído , Animais , Limiar Auditivo/fisiologia , Células Ciliadas Auditivas/fisiologia , Larva/fisiologia , Peixe-Zebra/fisiologia
13.
Neurol Sci ; 43(10): 5839-5850, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35781754

RESUMO

Tic related disorders affect 4-20% of the population, mostly idiopathic, can be grouped in a wide spectrum of severity, where the most severe end is Tourette Syndrome (TS). Tics are arrhythmic hyperkinesias to whom execution the subject is forced by a "premonitory urge" that can be classified as sensory tic, just-right experience or urge without obsession. If an intact volitional inhibition allows patients to temporarily suppress tics, a lack or deficit in automatic inhibition is involved in the genesis of the disorder. Studies have assessed the presence of intrinsic microscopic and macroscopic anomalies in striatal circuits and relative cortical areas in association with a hyperdopaminergic state in the basal forebrain. Prepulse inhibition (PPI) of the startle reflex is a measure of inhibitory functions by which a weak sensory stimulus inhibits the elicitation of a startle response determined by a sudden intense stimulus. It is considered an operation measure of sensorimotor gating, a neural process by which unnecessary stimuli are eliminated from awareness. Evidence points out that the limbic domain of the CSTC loops, dopamine and GABA receptors within the striatum play an important role in PPI modulation. It is conceivable that a sensorimotor gating deficit may be involved in the genesis of premonitory urge and symptoms. Therefore, correcting the sensorimotor gating deficit may be considered a target for tic-related disorders therapies; in such case PPI (as well as other indirect estimators of sensorimotor gating) could represent therapeutic impact predictors.


Assuntos
Tiques , Síndrome de Tourette , Humanos , Inibição Pré-Pulso , Reflexo de Sobressalto/fisiologia , Filtro Sensorial/fisiologia
14.
Acta Neuropsychiatr ; 34(1): 37-46, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34666867

RESUMO

OBJECTIVE: Acetylcholinesterase inhibitors are the focus of interest in the management of schizophrenia. We aimed to investigate the effects of acute galangin administration, a flavonoid compound with acetylcholinesterase inhibiting activity, on schizophrenia-associated cognitive deficits in rats and schizophrenia models in mice. METHODS: Apomorphine-induced prepulse inhibition (PPI) disruption for cognitive functions, nicotinic, muscarinic, and serotonergic mechanism involvement, and brain acetylcholine levels were investigated in Wistar rats. Apomorphine-induced climbing, MK-801-induced hyperlocomotion, and catalepsy tests were used as schizophrenia models in Swiss albino mice. The effects of galangin were compared with acetylcholinesterase inhibitor donepezil, and typical and atypical antipsychotics haloperidol and olanzapine, respectively. RESULTS: Galangin (50,100 mg/kg) enhanced apomorphine-induced PPI disruption similar to donepezil, haloperidol, and olanzapine (p < 0.05). This effect was not altered in the combination of galangin with the nicotinic receptor antagonist mecamylamine (1 mg/kg), the muscarinic receptor antagonist scopolamine (0.05 mg/kg), or the serotonin-1A receptor antagonist WAY-100635 (1 mg/kg) (p > 0.05). Galangin (50,100 mg/kg) alone increased brain acetylcholine concentrations (p < 0.05), but not in apomorphine-injected rats (p > 0.05). Galangin (50 mg/kg) decreased apomorphine-induced climbing and MK-801-induced hyperlocomotion similar to haloperidol and olanzapine (p < 0.05), but did not induce catalepsy, unlike them. CONCLUSION: We suggest that galangin may help enhance schizophrenia-associated cognitive deficits, and nicotinic, muscarinic cholinergic, and serotonin-1A receptors are not involved in this effect. Galangin also exerted an antipsychotic-like effect without inducing catalepsy and may be considered as an advantageous antipsychotic agent.


Assuntos
Antipsicóticos , Esquizofrenia , Acetilcolinesterase/farmacologia , Acetilcolinesterase/uso terapêutico , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Camundongos , Inibição Pré-Pulso , Ratos , Ratos Wistar , Reflexo de Sobressalto , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico
15.
Eur J Neurosci ; 54(3): 4768-4780, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34061412

RESUMO

Human hearing loss (HL) is often accompanied by comorbidities like tinnitus, which is affecting up to 15% of the adult population. Rodent animal studies could show that tinnitus may not only be a result of apparent HL due to cochlear hair cell damage but can also be a consequence of synaptopathy at the inner hair cells (IHCs) already induced by moderate sound traumata. Here, we investigate synaptopathy previously shown in mice in our animal model, the Mongolian gerbil, and relate it to behavioral signs of tinnitus. Tinnitus was induced by a mild monaural acoustic trauma leading to monaural noise induced HL in the animals, quantified by auditory brainstem response (ABR) audiometry. Behavioral signs of tinnitus percepts were detected by measurement of prepulse inhibition of the acoustic startle response in a gap-noise paradigm. Fourteen days after trauma, the cochleae of both ears were isolated, and IHC synapses were counted within several spectral regions of the cochlea. Behavioral signs of tinnitus were only found in animals with IHC synaptopathy, independent of type of HL. On the other hand, animals with apparent HL but without behavioral signs of tinnitus showed a reduction in amplitudes of ABR waves I&II but no significant changes in the number of synapses at the IHC. We conclude-in line with the literature-that HL is caused by damage to the IHC or by other reasons but that the development of tinnitus, at least in our animal model, is closely linked to synaptopathy at the IHC.


Assuntos
Perda Auditiva Provocada por Ruído , Zumbido , Animais , Limiar Auditivo , Cóclea , Potenciais Evocados Auditivos do Tronco Encefálico , Gerbillinae , Células Ciliadas Auditivas Internas , Humanos , Camundongos , Reflexo de Sobressalto , Zumbido/etiologia
16.
Hum Brain Mapp ; 42(16): 5495-5518, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34414633

RESUMO

Startle reflex is modulated when a weaker sensory stimulus ("prepulse") precedes a startling stimulus ("pulse"). Prepulse Inhibition (PPI) is the attenuation of the startle reflex (prepulse precedes pulse by 30-500 ms), whereas Prepulse Facilitation (PPF) is the enhancement of the startle reflex (prepulse precedes pulse by 500-6000 ms). Here, we critically appraise human studies using functional neuroimaging to establish brain regions associated with PPI and PPF. Of 10 studies, nine studies revealed thalamic, striatal and frontal lobe activation during PPI in healthy groups, and activation deficits in the cortico-striato-pallido-thalamic circuitry in schizophrenia (three studies) and Tourette Syndrome (two studies). One study revealed a shared network for PPI and PPF in frontal regions and cerebellum, with PPF networks recruiting superior medial gyrus and cingulate cortex. The main gaps in the literature are (i) limited PPF research and whether PPI and PPF operate on separate/shared networks, (ii) no data on sex differences in neural underpinnings of PPI and PPF, and (iii) no data on neural underpinnings of PPI and PPF in other clinical disorders.


Assuntos
Neuroimagem Funcional , Percepção/fisiologia , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/fisiologia , Esquizofrenia/fisiopatologia , Sensação/fisiologia , Síndrome de Tourette/fisiopatologia , Humanos , Esquizofrenia/diagnóstico por imagem , Síndrome de Tourette/diagnóstico por imagem
17.
Biomed Eng Online ; 20(1): 108, 2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34689781

RESUMO

BACKGROUND: Global measures of neuronal activity embrace the advantage of a univariate, holistic and unique description of brain activity, reducing the spatial dimensions of electroencephalography (EEG) analysis at the cost of lower precision in localizing effects. In this work, the instantaneous radiated power (IRP) is proposed as a new whole-brain descriptor, reflecting the cortical activity from an exclusively electromagnetic perspective. Considering that the brain consists of multiple elementary dipoles, the whole-brain IRP takes into account the radiational contribution of all cortical sources. Unlike conventional EEG analyses that evaluate a large number of scalp or source locations, IRP reflects a whole-brain, event-related measure and forces the analysis to focus on a single time-series, thus efficiently reducing the EEG spatial dimensions and multiple comparisons. RESULTS: To apply the developed methodology in real EEG data, two groups (25 controls vs 30 body dysmorphic disorder, BDD, patients) were matched for age and sex and tested in a prepulse inhibition (PPI) and facilitation (PPF) paradigm. Two global brain descriptors were extracted for between-groups and between-conditions comparison purposes, namely the global field power (GFP) and the whole-brain IRP. Results showed that IRP can replicate the expected condition differences (with PPF being greater than PPI responses), exhibiting also reduced levels in BDD compared to control group overall. There were also similar outcomes using GFP and IRP, suggesting consistency between the two measures. Finally, regression analysis showed that the PPI-related IRP (during N100 time-window) is negatively correlated with BDD psychometric scores. CONCLUSIONS: Investigating the brain activity with IRP significantly reduces the data dimensionality, giving insights about global brain synchronization and strength. We conclude that IRP can replicate the existing evidence regarding sensorimotor gating effects, revealing also group electrophysiological alterations. Finally, electrophysiological IRP responses exhibited correlations with BDD psychometrics, potentially useful as supplementary tool in BDD symptomatology.


Assuntos
Transtornos Dismórficos Corporais , Inibição Pré-Pulso , Encéfalo , Eletroencefalografia , Humanos , Psicometria
18.
Cereb Cortex ; 30(1): 311-325, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31070710

RESUMO

The prepulse inhibition (PPI) of the acoustic startle reflex (ASR), as an index of sensorimotor gating, is one of the most extensively used paradigms in the field of neuropsychiatric disorders. Few studies have examined how prenatal stress (PS) regulates the sensorimotor gating during the lifespan and how PS modifies the development of amyloid-beta (Aß) pathology in brain areas underlying the PPI formation. We followed alternations in corticosterone levels, learning and memory, and the PPI of the ASR measures in APPNL-G-F/NL-G-F offspring of dams exposed to gestational noise stress. In-depth quantifications of the Aß plaque accumulation were also performed at 6 months. The results indicated an age-dependent deterioration of sensorimotor gating, long-lasting PS-induced abnormalities in PPI magnitudes, as well as deficits in spatial memory. The PS also resulted in a higher Aß aggregation predominantly in brain areas associated with the PPI modulation network. The findings suggest the contribution of a PS-induced hypothalamic-pituitary-adrenal (HPA) axis hyperactivity in regulating the PPI modulation substrates leading to the abnormal development of the neural protection system in response to disruptive stimuli. The long-lasting HPA axis dysregulation appears to be the major underlying mechanism in precipitating the Aß deposition, especially in brain areas contributed to the PPI modulation network.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/fisiologia , Estimulação Acústica , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Placa Amiloide/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia
19.
Addict Biol ; 26(2): e12906, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32378298

RESUMO

Naphthylpyrovalerone (naphyrone) is a pyrovalerone cathinone that potently inhibits monoamine transporters and provides stimulatory-entactogenic effects. Little is known about the safety of naphyrone or its effects in vivo, and more research is needed to acquire knowledge about its fundamental effects on physiology and behaviour. Our objective was to investigate naphyrone's pharmacokinetics, acute toxicity, hyperthermic potential and stimulatory and psychotomimetic properties in vivo in male Wistar rats. Pharmacokinetics after 1 mg/kg subcutaneous (sc.) naphyrone were measured over 6 h in serum, the brain, liver and lungs. Rectal temperature (degree Celsius) was measured over 10 h in group-versus individually housed rats after 20 mg/kg sc. In the behavioural experiments, 5, 10 or 20 mg/kg of naphyrone was administered 15 or 60 min prior to testing. Stimulation was assessed in the open field, and sensorimotor processing in a prepulse inhibition (PPI) task. Peak concentrations of naphyrone in serum and tissue were reached at 30 min, with a long-lasting elevation in the brain/serum ratio, consistent with observations of lasting hyperlocomotion in the open field and modest increases in body temperature. Administration of 20 mg/kg transiently enhanced PPI. Naphyrone crosses the blood-brain barrier rapidly and is eliminated slowly, and its long-lasting effects correspond to its pharmacokinetics. No specific signs of acute toxicity were observed; therefore, clinical care and harm-reduction guidance should be in line with that available for other stimulants and cathinones.


Assuntos
Regulação da Temperatura Corporal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacocinética , Drogas Ilícitas/farmacocinética , Pentanonas/farmacocinética , Pirrolidinas/farmacocinética , Animais , Temperatura Corporal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Drogas Ilícitas/farmacologia , Masculino , Pentanonas/farmacologia , Pirrolidinas/farmacologia , Ratos , Ratos Wistar
20.
Int J Neurosci ; 131(3): 233-238, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32129123

RESUMO

Background: Prenatal stress has been shown to affect the cognition of offspring, including memory and learning abilities.Methods: In the current study, the long-term effects of chronic prenatal exposure to the physical or psychological stress on locomotion and attention were evaluated by using open field test (OFT) and prepulse inhibition (PPI) of the acoustic startle reflex (ASR). In addition, the level of corticosterone was measured after the ASR trial.Results: Male and female rodents that underwent prenatal physical and psychological stress had an augmented velocity in OFT, and only male animals showed an increased ASR. Neither male nor female offsprings had an alteration in the level of corticosterone and PPI values regardless of the stress type.Conclusion: Our results revealed that exposure to stress during the development of fetus increases ASR in a sex-dependent manner. This finding might implicate the effect of prenatal stress on attention in male offspring regardless of the stress type.


Assuntos
Atenção/fisiologia , Locomoção/fisiologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/fisiologia , Estresse Psicológico/psicologia , Estimulação Acústica/efeitos adversos , Animais , Corticosterona/sangue , Feminino , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Ratos , Ratos Wistar , Caracteres Sexuais , Estresse Psicológico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA