Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.879
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(7): 1622-1635.e14, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29779948

RESUMO

Degrons are minimal elements that mediate the interaction of proteins with degradation machineries to promote proteolysis. Despite their central role in proteostasis, the number of known degrons remains small, and a facile technology to characterize them is lacking. Using a strategy combining global protein stability (GPS) profiling with a synthetic human peptidome, we identify thousands of peptides containing degron activity. Employing CRISPR screening, we establish that the stability of many proteins is regulated through degrons located at their C terminus. We characterize eight Cullin-RING E3 ubiquitin ligase (CRL) complex adaptors that regulate C-terminal degrons, including six CRL2 and two CRL4 complexes, and computationally implicate multiple non-CRLs in end recognition. Proteome analysis revealed that the C termini of eukaryotic proteins are depleted for C-terminal degrons, suggesting an E3-ligase-dependent modulation of proteome composition. Thus, we propose that a series of "C-end rules" operate to govern protein stability and shape the eukaryotic proteome.


Assuntos
Proteoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Animais , Antígenos de Neoplasias/metabolismo , Sistemas CRISPR-Cas/genética , Biologia Computacional/métodos , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Lentivirus/genética , Leupeptinas/farmacologia , Fases de Leitura Aberta/genética , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Proteólise , Proteoma/genética , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo
2.
Genes Dev ; 38(5-6): 253-272, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38565249

RESUMO

Oncogenic activation of MYC in cancers predominantly involves increased transcription rather than coding region mutations. However, MYC-dependent lymphomas frequently acquire point mutations in the MYC phosphodegron, including at threonine 58 (T58), where phosphorylation permits binding via the FBW7 ubiquitin ligase triggering MYC degradation. To understand how T58 phosphorylation functions in normal cell physiology, we introduced an alanine mutation at T58 (T58A) into the endogenous c-Myc locus in the mouse germline. While MYC-T58A mice develop normally, lymphomas and myeloid leukemias emerge in ∼60% of adult homozygous T58A mice. We found that primitive hematopoietic progenitor cells from MYC-T58A mice exhibit aberrant self-renewal normally associated with hematopoietic stem cells (HSCs) and up-regulate a subset of MYC target genes important in maintaining stem/progenitor cell balance. In lymphocytes, genomic occupancy by MYC-T58A was increased at all promoters compared with WT MYC, while genes differentially expressed in a T58A-dependent manner were significantly more proximal to MYC-bound enhancers. MYC-T58A lymphocyte progenitors exhibited metabolic alterations and decreased activation of inflammatory and apoptotic pathways. Our data demonstrate that a single point mutation stabilizing MYC is sufficient to skew target gene expression, producing a profound gain of function in multipotential hematopoietic progenitors associated with self-renewal and initiation of lymphomas and leukemias.


Assuntos
Proteína 7 com Repetições F-Box-WD , Neoplasias Hematológicas , Linfoma , Proteínas Proto-Oncogênicas c-myc , Animais , Camundongos , Células Germinativas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mutação Puntual , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo
3.
Mol Cell ; 83(11): 1921-1935.e7, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201526

RESUMO

Although most eukaryotic proteins are targeted for proteasomal degradation by ubiquitination, a subset have been demonstrated to undergo ubiquitin-independent proteasomal degradation (UbInPD). However, little is known about the molecular mechanisms driving UbInPD and the degrons involved. Utilizing the GPS-peptidome approach, a systematic method for degron discovery, we found thousands of sequences that promote UbInPD; thus, UbInPD is more prevalent than currently appreciated. Furthermore, mutagenesis experiments revealed specific C-terminal degrons required for UbInPD. Stability profiling of a genome-wide collection of human open reading frames identified 69 full-length proteins subject to UbInPD. These included REC8 and CDCA4, proteins which control proliferation and survival, as well as mislocalized secretory proteins, suggesting that UbInPD performs both regulatory and protein quality control functions. In the context of full-length proteins, C termini also play a role in promoting UbInPD. Finally, we found that Ubiquilin family proteins mediate the proteasomal targeting of a subset of UbInPD substrates.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Ubiquitinação , Proteínas de Ciclo Celular/metabolismo
4.
Mol Cell ; 83(18): 3377-3392.e6, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37738965

RESUMO

The ubiquitin-proteasome system plays a critical role in biology by regulating protein degradation. Despite their importance, precise recognition specificity is known for a few of the 600 E3s. Here, we establish a two-pronged strategy for identifying and mapping critical residues of internal degrons on a proteome-scale in HEK-293T cells. We employ global protein stability profiling combined with machine learning to identify 15,800 peptides likely to contain sequence-dependent degrons. We combine this with scanning mutagenesis to define critical residues for over 5,000 predicted degrons. Focusing on Cullin-RING ligase degrons, we generated mutational fingerprints for 219 degrons and developed DegronID, a computational algorithm enabling the clustering of degron peptides with similar motifs. CRISPR analysis enabled the discovery of E3-degron pairs, of which we uncovered 16 pairs that revealed extensive degron variability and structural determinants. We provide the visualization of these data on the public DegronID data browser as a resource for future exploration.


Assuntos
Algoritmos , Proteoma , Proteoma/genética , Núcleo Celular , Análise por Conglomerados , Ubiquitina-Proteína Ligases/genética
5.
Mol Cell ; 81(22): 4591-4604.e8, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34592134

RESUMO

Protein ADP-ribosylation is a reversible post-translational modification that transfers ADP-ribose from NAD+ onto acceptor proteins. Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolases (PARGs), which remove the modification, regulates diverse cellular processes. However, the chemistry and physiological functions of mono(ADP-ribosyl)ation (MARylation) remain elusive. Here, we report that Arabidopsis zinc finger proteins SZF1 and SZF2, key regulators of immune gene expression, are MARylated by the noncanonical ADP-ribosyltransferase SRO2. Immune elicitation promotes MARylation of SZF1/SZF2 via dissociation from PARG1, which has an unconventional activity in hydrolyzing both poly(ADP-ribose) and mono(ADP-ribose) from acceptor proteins. MARylation antagonizes polyubiquitination of SZF1 mediated by the SH3 domain-containing proteins SH3P1/SH3P2, thereby stabilizing SZF1 proteins. Our study uncovers a noncanonical ADP-ribosyltransferase mediating MARylation of immune regulators and underpins the molecular mechanism of maintaining protein homeostasis by the counter-regulation of ADP-ribosylation and polyubiquitination to ensure proper immune responses.


Assuntos
ADP-Ribosilação , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Imunidade Vegetal , Ubiquitinação , Dedos de Zinco , ADP Ribose Transferases/metabolismo , Difosfato de Adenosina/química , Arabidopsis/metabolismo , Sistemas CRISPR-Cas , Genes de Plantas , Glicosídeo Hidrolases/metabolismo , Homeostase , Humanos , Hidrólise , Mutação , Plantas Geneticamente Modificadas , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteostase , Plântula/metabolismo , Especificidade por Substrato , Tristetraprolina/química , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/química
6.
Proc Natl Acad Sci U S A ; 121(6): e2314853121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285937

RESUMO

Amino acid mutations that lower a protein's thermodynamic stability are implicated in numerous diseases, and engineered proteins with enhanced stability can be important in research and medicine. Computational methods for predicting how mutations perturb protein stability are, therefore, of great interest. Despite recent advancements in protein design using deep learning, in silico prediction of stability changes has remained challenging, in part due to a lack of large, high-quality training datasets for model development. Here, we describe ThermoMPNN, a deep neural network trained to predict stability changes for protein point mutations given an initial structure. In doing so, we demonstrate the utility of a recently released megascale stability dataset for training a robust stability model. We also employ transfer learning to leverage a second, larger dataset by using learned features extracted from ProteinMPNN, a deep neural network trained to predict a protein's amino acid sequence given its three-dimensional structure. We show that our method achieves state-of-the-art performance on established benchmark datasets using a lightweight model architecture that allows for rapid, scalable predictions. Finally, we make ThermoMPNN readily available as a tool for stability prediction and design.


Assuntos
Redes Neurais de Computação , Proteínas , Proteínas/genética , Proteínas/química , Sequência de Aminoácidos , Estabilidade Proteica , Aprendizado de Máquina
7.
Proc Natl Acad Sci U S A ; 121(14): e2317825121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536756

RESUMO

Trimethylamine-N-oxide (TMAO) and urea are metabolites that are used by some marine animals to maintain their cell volume in a saline environment. Urea is a well-known denaturant, and TMAO is a protective osmolyte that counteracts urea-induced protein denaturation. TMAO also has a general protein-protective effect, for example, it counters pressure-induced protein denaturation in deep-sea fish. These opposing effects on protein stability have been linked to the spatial relationship of TMAO, urea, and protein molecules. It is generally accepted that urea-induced denaturation proceeds through the accumulation of urea at the protein surface and their subsequent interaction. In contrast, it has been suggested that TMAO's protein-stabilizing effects stem from its exclusion from the protein surface, and its ability to deplete urea from protein surfaces; however, these spatial relationships are uncertain. We used neutron diffraction, coupled with structural refinement modeling, to study the spatial associations of TMAO and urea with the tripeptide derivative glycine-proline-glycinamide in aqueous urea, aqueous TMAO, and aqueous urea-TMAO (in the mole ratio 1:2 TMAO:urea). We found that TMAO depleted urea from the peptide's surface and that while TMAO was not excluded from the tripeptide's surface, strong atomic interactions between the peptide and TMAO were limited to hydrogen bond donating peptide groups. We found that the repartition of urea, by TMAO, was associated with preferential TMAO-urea bonding and enhanced urea-water hydrogen bonding, thereby anchoring urea in the bulk solution and depleting urea from the peptide surface.


Assuntos
Peptídeos , Ureia , Animais , Ureia/química , Peptídeos/química , Água/química , Metilaminas/química , Proteínas de Membrana
8.
Proc Natl Acad Sci U S A ; 121(28): e2320655121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38959043

RESUMO

SLC7A11 is a cystine transporter and ferroptosis inhibitor. How the stability of SLC7A11 is coordinately regulated in response to environmental cystine by which E3 ligase and deubiquitylase (DUB) remains elusive. Here, we report that neddylation inhibitor MLN4924 increases cystine uptake by causing SLC7A11 accumulation, via inactivating Cullin-RING ligase-3 (CRL-3). We identified KCTD10 as the substrate-recognizing subunit of CRL-3 for SLC7A11 ubiquitylation, and USP18 as SLC7A11 deubiquitylase. Upon cystine deprivation, the protein levels of KCTD10 or USP18 are decreased or increased, respectively, contributing to SLC7A11 accumulation. By destabilizing or stabilizing SLC7A11, KCTD10, or USP18 inversely regulates the cystine uptake and ferroptosis. Biologically, MLN4924 combination with SLC7A11 inhibitor Imidazole Ketone Erastin (IKE) enhanced suppression of tumor growth. In human breast tumor tissues, SLC7A11 levels were negatively or positively correlated with KCTD10 or USP18, respectively. Collectively, our study defines how SLC7A11 and ferroptosis is coordinately regulated by the CRL3KCTD10/E3-USP18/DUB axis, and provides a sound rationale of drug combination to enhance anticancer efficacy.


Assuntos
Cistina , Ferroptose , Pirimidinas , Ubiquitina Tiolesterase , Animais , Feminino , Humanos , Camundongos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Cistina/metabolismo , Células HEK293 , Piperazinas/farmacologia , Pirimidinas/farmacologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
9.
Genes Dev ; 33(15-16): 1069-1082, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31221664

RESUMO

Embryonic stem (ES) cells are regulated by a network of transcription factors that maintain the pluripotent state. Differentiation relies on down-regulation of pluripotency transcription factors disrupting this network. While investigating transcriptional regulation of the pluripotency transcription factor Kruppel-like factor 4 (Klf4), we observed that homozygous deletion of distal enhancers caused a 17-fold decrease in Klf4 transcript but surprisingly decreased protein levels by less than twofold, indicating that posttranscriptional control of KLF4 protein overrides transcriptional control. The lack of sensitivity of KLF4 to transcription is due to high protein stability (half-life >24 h). This stability is context-dependent and is disrupted during differentiation, as evidenced by a shift to a half-life of <2 h. KLF4 protein stability is maintained through interaction with other pluripotency transcription factors (NANOG, SOX2, and STAT3) that together facilitate association of KLF4 with RNA polymerase II. In addition, the KLF4 DNA-binding and transactivation domains are required for optimal KLF4 protein stability. Posttranslational modification of KLF4 destabilizes the protein as cells exit the pluripotent state, and mutations that prevent this destabilization also prevent differentiation. These data indicate that the core pluripotency transcription factors are integrated by posttranslational mechanisms to maintain the pluripotent state and identify mutations that increase KLF4 protein stability while maintaining transcription factor function.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Células-Tronco Embrionárias , Células HEK293 , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Mutação/genética , Domínios Proteicos , Estabilidade Proteica , Proteólise , RNA Polimerase II/metabolismo , Transdução de Sinais , Ubiquitinação
10.
Genes Dev ; 33(1-2): 61-74, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573454

RESUMO

Chromosomal translocations of the Mixed-lineage leukemia 1 (MLL1) gene generate MLL chimeras that drive the pathogenesis of acute myeloid and lymphoid leukemia. The untranslocated MLL1 is a substrate for proteolytic cleavage by the endopeptidase threonine aspartase 1 (taspase1); however, the biological significance of MLL1 cleavage by this endopeptidase remains unclear. Here, we demonstrate that taspase1-dependent cleavage of MLL1 results in the destabilization of MLL. Upon loss of taspase1, MLL1 association with chromatin is markedly increased due to the stabilization of its unprocessed version, and this stabilization of the uncleaved MLL1 can result in the displacement of MLL chimeras from chromatin in leukemic cells. Casein kinase II (CKII) phosphorylates MLL1 proximal to the taspase1 cleavage site, facilitating its cleavage, and pharmacological inhibition of CKII blocks taspase1-dependent MLL1 processing, increases MLL1 stability, and results in the displacement of the MLL chimeras from chromatin. Accordingly, inhibition of CKII in a MLL-AF9 mouse model of leukemia delayed leukemic progression in vivo. This study provides insights into the direct regulation of the stability of MLL1 through its cleavage by taspase1, which can be harnessed for targeted therapeutic approaches for the treatment of aggressive leukemia as the result of MLL translocations.


Assuntos
Endopeptidases/metabolismo , Leucemia/terapia , Proteína de Leucina Linfoide-Mieloide/genética , Animais , Cromatina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Endopeptidases/genética , Inibidores Enzimáticos/farmacologia , Técnicas de Inativação de Genes , Células HCT116 , Células HEK293 , Humanos , Leucemia/enzimologia , Leucemia/genética , Células MCF-7 , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Estabilidade Proteica , Análise de Sobrevida
11.
Trends Biochem Sci ; 47(12): 1048-1058, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35691783

RESUMO

Although biophysical studies have traditionally been performed in diluted solutions, it was pointed out in the late 1990s that the cellular milieu contains several other macromolecules, creating a condition of molecular crowding. How crowding affects protein stability is an important question heatedly discussed over the past 20 years. Theoretical estimations have suggested a 5-20°C effect of fold stabilisation. This estimate, however, is at variance with what has been verified experimentally that proposes only a limited increase of stability, opening the question whether some of the assumptions taken for granted should be reconsidered. The present review critically analyses the causes of this discrepancy and discusses the limitations and implications of the current concept of crowding.


Assuntos
Estabilidade Proteica , Substâncias Macromoleculares , Termodinâmica
12.
Trends Biochem Sci ; 47(3): 194-205, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34561149

RESUMO

Protein aggregation propensity is a pervasive and seemingly inescapable property of proteomes. Strikingly, a significant fraction of the proteome is supersaturated, meaning that, for these proteins, their native conformation is less stable than the aggregated state. Maintaining the integrity of a proteome under such conditions is precarious and requires energy-consuming proteostatic regulation. Why then is aggregation propensity maintained at such high levels over long evolutionary timescales? Here, we argue that the conformational stability of the native and aggregated states are correlated thermodynamically and that codon usage strengthens this correlation. As a result, the folding of stable proteins requires kinetic control to avoid aggregation, provided by aggregation gatekeepers. These unique residues are evolutionarily selected to kinetically favor native folding, either on their own or by coopting chaperones.


Assuntos
Chaperonas Moleculares , Dobramento de Proteína , Cinética , Chaperonas Moleculares/metabolismo , Agregados Proteicos , Conformação Proteica , Proteoma
13.
Mol Cell ; 70(3): 488-501.e5, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727619

RESUMO

Most eukaryotic proteins are N-terminally acetylated. This modification can be recognized as a signal for selective protein degradation (degron) by the N-end rule pathways. However, the prevalence and specificity of such degrons in the proteome are unclear. Here, by systematically examining how protein turnover is affected by N-terminal sequences, we perform a comprehensive survey of degrons in the yeast N-terminome. We find that approximately 26% of nascent protein N termini encode cryptic degrons. These degrons exhibit high hydrophobicity and are frequently recognized by the E3 ubiquitin ligase Doa10, suggesting a role in protein quality control. In contrast, N-terminal acetylation rarely functions as a degron. Surprisingly, we identify two pathways where N-terminal acetylation has the opposite function and blocks protein degradation through the E3 ubiquitin ligase Ubr1. Our analysis highlights the complexity of N-terminal degrons and argues that hydrophobicity, not N-terminal acetylation, is the predominant feature of N-terminal degrons in nascent proteins.


Assuntos
Células Eucarióticas/metabolismo , Proteínas Fúngicas/metabolismo , Acetilação , Sequência de Aminoácidos , Proteólise , Proteoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Leveduras/metabolismo
14.
Proc Natl Acad Sci U S A ; 120(33): e2303167120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37552756

RESUMO

The folding of most proteins occurs during the course of their translation while their tRNA-bound C termini are embedded in the ribosome. How the close proximity of nascent proteins to the ribosome influences their folding thermodynamics remains poorly understood. Here, we have developed a mass spectrometry-based approach for determining the stabilities of nascent polypeptide chains using methionine oxidation as a folding probe. This approach enables quantitative measurement subglobal folding stabilities of ribosome nascent chains within complex protein mixtures and extracts. To validate the methodology, we analyzed the folding thermodynamics of three model proteins (dihydrofolate reductase, chemotaxis protein Y, and DNA polymerase IV) in soluble and ribosome-bound states. The data indicate that the ribosome can significantly alter the stability of nascent polypeptides. Ribosome-induced stability modulations were highly variable among different folding domains and were dependent on localized charge distributions within nascent polypeptides. The results implicated electrostatic interactions between the ribosome surface and nascent polypeptides as the cause of ribosome-induced stability modulations. The study establishes a robust proteomic methodology for analyzing localized stabilities within ribosome-bound nascent polypeptides and sheds light on how the ribosome influences the thermodynamics of protein folding.


Assuntos
Biossíntese de Proteínas , Proteômica , Ribossomos/metabolismo , Peptídeos/química , Dobramento de Proteína , Proteínas/metabolismo , Espectrometria de Massas
15.
J Biol Chem ; 300(3): 105727, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325739

RESUMO

Hypoxia is a significant source of metabolic stress that activates many cellular pathways involved in cellular differentiation, proliferation, and cell death. Hypoxia is also a major component in many human diseases and a known driver of many cancers. Despite the challenges posed by hypoxia, there are animals that display impressive capacity to withstand lethal levels of hypoxia for prolonged periods of time and thus offer a gateway to a more comprehensive understanding of the hypoxic response in vertebrates. The weakly electric fish genus Brachyhypopomus inhabits some of the most challenging aquatic ecosystems in the world, with some species experiencing seasonal anoxia, thus providing a unique system to study the cellular and molecular mechanisms of hypoxia tolerance. In this study, we use closely related species of Brachyhypopomus that display a range of hypoxia tolerances to probe for the underlying molecular mechanisms via hypoxia inducible factors (HIFs)-transcription factors known to coordinate the cellular response to hypoxia in vertebrates. We find that HIF1⍺ from hypoxia tolerant Brachyhypopomus species displays higher transactivation in response to hypoxia than that of intolerant species, when overexpressed in live cells. Moreover, we identified two SUMO-interacting motifs near the oxygen-dependent degradation and transactivation domains of the HIF1⍺ protein that appear to boost transactivation of HIF1, regardless of the genetic background. Together with computational analyses of selection, this shows that evolution of HIF1⍺ are likely to underlie adaptations to hypoxia tolerance in Brachyhypopomus electric fishes, with changes in two SUMO-interacting motifs facilitating the mechanism of this tolerance.


Assuntos
Peixe Elétrico , Subunidade alfa do Fator 1 Induzível por Hipóxia , Oxigênio , Animais , Ecossistema , Peixe Elétrico/genética , Peixe Elétrico/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Anaerobiose , Oxigênio/metabolismo
16.
J Biol Chem ; 300(1): 105517, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042487

RESUMO

Amide-to-ester substitutions are used to study the role of the amide bonds of the protein backbone in protein structure, function, and folding. An amber suppressor tRNA/synthetase pair has been reported for incorporation of p-hydroxy-phenyl-L-lactic acid (HPLA), thereby introducing ester substitution at tyrosine residues. However, the application of this approach was limited due to the low yields of the modified proteins and the high cost of HPLA. Here we report the in vivo generation of HPLA from the significantly cheaper phenyl-L-lactic acid. We also construct an optimized plasmid with the HPLA suppressor tRNA/synthetase pair that provides higher yields of the modified proteins. The combination of the new plasmid and the in-situ generation of HPLA provides a facile and economical approach for introducing tyrosine ester substitutions. We demonstrate the utility of this approach by introducing tyrosine ester substitutions into the K+ channel KcsA and the integral membrane enzyme GlpG. We introduce the tyrosine ester in the selectivity filter of the M96V mutant of the KcsA to probe the role of the second ion binding site in the conformation of the selectivity filter and the process of inactivation. We use tyrosine ester substitutions in GlpG to perturb backbone H-bonds to investigate the contribution of these H-bonds to membrane protein stability. We anticipate that the approach developed in this study will facilitate further investigations using tyrosine ester substitutions.


Assuntos
Ésteres , Fenilpropionatos , Tirosina , Ésteres/química , Ligação de Hidrogênio , Proteínas/química , Sítios de Ligação , RNA de Transferência , Amidas/química , Ácido Láctico , Ligases
17.
J Biol Chem ; 300(1): 105511, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042491

RESUMO

Myosin binding protein-C (MyBP-C) is a multidomain protein that regulates muscle contraction. Mutations in MYBPC3, the gene encoding for the cardiac variant (henceforth called cMyBP-C), are amongst the most frequent causes of hypertrophic cardiomyopathy. Most mutations lead to a truncated version of cMyBP-C, which is most likely unstable. However, missense mutations have also been reported, which tend to cluster in the central domains of the cMyBP-C molecule. This suggests that these central domains are more than just a passive spacer between the better characterized N- and C-terminal domains. Here, we investigated the potential impact of four different missense mutations, E542Q, G596R, N755K, and R820Q, which are spread over the domains C3 to C6, on the function of MyBP-C on both the isolated protein level and in cardiomyocytes in vitro. Effect on domain stability, interaction with thin filaments, binding to myosin, and subcellular localization behavior were assessed. Our studies show that these missense mutations result in slightly different phenotypes at the molecular level, which are mutation specific. The expected functional readout of each mutation provides a valid explanation for why cMyBP-C fails to work as a brake in the regulation of muscle contraction, which eventually results in a hypertrophic cardiomyopathy phenotype. We conclude that missense mutations in cMyBP-C must be evaluated in context of their domain localization, their effect on interaction with thin filaments and myosin, and their effect on protein stability to explain how they lead to disease.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas de Transporte , Mutação de Sentido Incorreto , Humanos , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Domínios Proteicos/genética , Estabilidade Proteica
18.
J Biol Chem ; 300(1): 105536, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092149

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus. It causes mortality in neonatal piglets and is of growing concern because of its broad host range, including humans. To date, the mechanism of PDCoV infection remains poorly understood. Here, based on a genome-wide CRISPR screen of PDCoV-infected cells, we found that HSP90AB1 (heat shock protein 90 alpha family class B1) promotes PDCoV infection. Knockdown or KO of HSP90AB1 in LLC-PK cells resulted in a significantly suppressed PDCoV infection. Infected cells treated with HSP90 inhibitors 17-AAG and VER-82576 also showed a significantly suppressed PDCoV infection, although KW-2478, which does not affect the ATPase activity of HSP90AB1, had no effect on PDCoV infection. We found that HSP90AB1 interacts with the N, NS7, and NSP10 proteins of PDCoV. We further evaluated the interaction between N and HSP90AB1 and found that the C-tail domain of the N protein is the HSP90AB1-interacting domain. Further studies showed that HSP90AB1 protects N protein from degradation via the proteasome pathway. In summary, our results reveal a key role for HSP90AB1 in the mechanism of PDCoV infection and contribute to provide new host targets for PDCoV antiviral research.


Assuntos
Proteínas de Choque Térmico HSP90 , Replicação Viral , Animais , Humanos , Deltacoronavirus , Especificidade de Hospedeiro , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Suínos , Células HEK293
19.
J Biol Chem ; : 107590, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032649

RESUMO

The human tumor suppressor p16INK4a is a small monomeric protein that can form amyloid structures. Formation of p16INK4a amyloid fibrils is induced by oxidation which creates an intermolecular disulfide bond. The conversion into amyloid is associated with a change from an all α-helical structure into ß-sheet fibrils. Currently, structural insights into p16INK4a amyloid fibrils are lacking. Here, we investigate the amyloid-forming regions of this tumor suppressor using isotope-labeling limited-digestion mass spectrometry analysis. We discover two key regions that likely form the structured core of the amyloid. Further investigations using thioflavin-T fluorescence assays, electron microscopy and solution nuclear magnetic resonance spectroscopy of shorter peptide regions confirm the self-assembly of the identified sequences that include methionine and leucine repeat regions. This work describes a simple approach for studying protein motifs involved in the conversion of monomeric species into aggregated fibril structures. It provides first insights into the polypeptide sequence underlying the core structure of amyloid p16INK4a formed after a unique oxidation-driven structural transition.

20.
J Biol Chem ; 300(6): 107346, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718859

RESUMO

Lethal neurodegenerative prion diseases result from the continuous accumulation of infectious and variably protease-resistant prion protein aggregates (PrPD) which are misfolded forms of the normally detergent soluble and protease-sensitive cellular prion protein. Molecular chaperones like Grp78 have been found to reduce the accumulation of PrPD, but how different cellular environments and other chaperones influence the ability of Grp78 to modify PrPD is poorly understood. In this work, we investigated how pH and protease-mediated structural changes in PrPD from two mouse-adapted scrapie prion strains, 22L and 87V, influenced processing by Grp78 in the presence or absence of chaperones Hsp90, DnaJC1, and Stip1. We developed a cell-free in vitro system to monitor chaperone-mediated structural changes to, and disaggregation of, PrPD. For both strains, Grp78 was most effective at structurally altering PrPD at low pH, especially when additional chaperones were present. While Grp78, DnaJC1, Stip1, and Hsp90 were unable to disaggregate the majority of PrPD from either strain, pretreatment of PrPD with proteases increased disaggregation of 22L PrPD compared to 87V, indicating strain-specific differences in aggregate structure were impacting chaperone activity. Hsp90 also induced structural changes in 87V PrPD as indicated by an increase in the susceptibility of its n-terminus to proteases. Our data suggest that, while chaperones like Grp78, DnaJC1, Stip1, and Hsp90 disaggregate only a small fraction of PrPD, they may still facilitate its clearance by altering aggregate structure and sensitizing PrPD to proteases in a strain and pH-dependent manner.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico , Chaperonas Moleculares , Chaperona BiP do Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático/genética , Animais , Concentração de Íons de Hidrogênio , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Camundongos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/química , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/química , Agregados Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA