Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(52): 23554-23558, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32918778

RESUMO

The adsorption and electrooxidation of CO molecules at well-defined Pt(hkl) single-crystal electrode surfaces is a key step towards addressing catalyst poisoning mechanisms in fuel cells. Herein, we employed in situ electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) coupled with theoretical calculation to investigate CO electrooxidation on Pt(hkl) surfaces in acidic solution. We obtained the Raman signal of top- and bridge-site adsorbed CO* molecules on Pt(111) and Pt(100). In contrast, on Pt(110) surfaces only top-site adsorbed CO* was detected during the entire electrooxidation process. Direct spectroscopic evidence for OH* and COOH* species forming on Pt(100) and Pt(111) surfaces was afforded and confirmed subsequently via isotope substitution experiments and DFT calculations. In summary, the formation and adsorption of OH* and COOH* species plays a vital role in expediting the electrooxidation process, which relates with the pre-oxidation peak of CO electrooxidation. This work deepens knowledge of the CO electrooxidation process and provides new perspectives for the design of anti-poisoning and highly effective catalysts.

2.
Chemphyschem ; 20(21): 2791-2798, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31509325

RESUMO

A detailed understanding of the electrochemistry of platinum electrodes is of great importance for the electrochemical oxidation of fuels and electrochemical reduction of dioxygen in fuel cells. The Pt(111) facet is the most representative model mimicking Pt nanoparticles and polycrystals for fundamental studies. Herein, we propose a site-specific model accompanied with the typical elementary steps of the electrochemistry of Pt(111) in non-adsorbing electrolyte within the potential range between 0.05 and 1.15 V versus reversible hydrogen electrode. Simulations were conducted at different scanning rates based on the kinetics models. We reproduce all the anodic and cathodic peaks observed in the reported experimental curves. These results demonstrate the underlying mechanisms of the peak formation in different potential regions.

3.
Sci Technol Adv Mater ; 16(4): 046001, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27877827

RESUMO

This article reviews the history of piezoelectric perovskites and forecasts future development trends, including Uchino's discoveries such as the Pb(Mg1/3Nb2/3)O3-PbTiO3 electrostrictor, Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystal, (Pb, La)(Zr, Ti)O3 photostriction, and Pb(Zr, Ti)O3-Terfenol magnetoelectric composites. We discuss five key trends in the development of piezomaterials: performance to reliability, hard to soft, macro to nano, homo to hetero, and single to multi-functional.

4.
Small Methods ; 8(7): e2301257, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38513232

RESUMO

Single crystals of (001)-oriented 0.7Pb(Mg1/3Nb2/3)-0.3PbTiO3 (PMN-30PT) with a composition near the morphotropic phase boundary have attracted considerable attention due to their superior dielectric and electromechanical performance. Recently, a new alternating current (electric field) poling approach used for the enhancement of dielectric and piezoelectric properties. However, the microscopic domain variants that govern the performance, especially under high-frequency alternating current (AC) voltages, remain largely unexplored. In this work, the domain microstructure under AC poling reveals the presence of four monoclinic (MA) domain variants using a suite of scanning probe microscopy methods, and X-ray diffraction (XRD) reciprocal space mapping is tuned. It is reported on the emergence of hierarchical fine domains - needle-shaped, and 109° domain walls under applied high-frequency AC poling. Time-resolved Kelvin probe force microscopy (KPFM) reveals the charge dynamics and relaxation behavior of these needle domains and walls. The findings provide new insight and guidance to the domain engineering by high-frequency AC poling for the development of advanced transducer technology.

5.
Ultrasonics ; 144: 107447, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39216210

RESUMO

It is essential to characterize the high-field properties of piezoelectric composites for their applications in ultrasonic transducers. This study involved the development of an experimental characterization system of piezoelectric impedance spectra and mechanical quality factors under high-field conditions to analyze the properties of PMN-PT piezoelectric single-crystal composites. The impedance spectra and mechanical quality factors of a [001]c-poled 0.69PMN-0.31PT single crystal/epoxy 1-3 composite disk with filling ratio φ = 0.4 under thickness resonance mode were tested at different driving voltages ranging from 1 to 120 Vpp to explore the influence of AC electric field on the material properties. By utilizing a theoretical approach, an evaluation was conducted on the variations in the material properties such as stiffness, permittivity, piezoelectric coefficient, and electromechanical coupling factor, along with respective loss factors. Our results suggest that as the AC electric field increases, the elastic modulus c33D and the mechanical quality factor Qm decrease, while the piezoelectric strain coefficient d33 and the electromechanical coupling factor kt increase. However, the dielectric coefficient ε33X does not show an obvious change in this field range. Furthermore, the elastic loss factor tanϕ, the dielectric loss factor tanδ33', the piezoelectric loss factor tanθ33', and the electromechanical coupling loss factor tanχt all increase, indicating that the loss of the piezoelectric composite becomes more evident as the AC electric field grows.

6.
ACS Appl Mater Interfaces ; 12(40): 44902-44911, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32931241

RESUMO

Ferroelectric field-effect transistors (FeFETs) with semiconductors as the channel material and ferroelectrics as the gate insulator are attractive and/or promising devices for application in nonvolatile memory. In FeFETs, the conductivity states of the semiconductor are utilized to explore the polarization directions of the ferroelectric material. Herein, we report FeFETs based on a few layers of MoS2 on a 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) single crystal with switchable multilevel states. It was found that the On-Off ratios can reach as high as 106. We prove that the interaction effect of ferroelectric polarization and interface charge traps has a great influence on the transport behaviors and nonvolatile memory characteristics of MoS2/PMN-PT FeFETs. In order to further study the underlying physical mechanism, we have researched the time-dependent electrical properties in the temperature range from 300 to 500 K. The separation of effects from ferroelectric polarization and interfacial traps on electrical behaviors of FeFETs provides us with an opportunity to better understand the operation mechanism, which suggests a fantastic way for multilevel, low-power consumption, and high-density nonvolatile memory devices.

7.
Ultrasonics ; 108: 106176, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32504985

RESUMO

Propagation characteristics of Lamb waves in a bilayer plate comprised of a PMN-PT single crystal layer and an elastic layer were investigated in this study. The profiles of the bilayer plate's upper and lower surfaces and the common interface between the PMN-PT and elastic layers were assumed to be periodic corrugation instead of perfect planes. The PMN-PT single crystal was poled along the [0 1 1]c direction with macroscopic symmetry of orthonormal mm2. The dispersion relations of Lamb waves for electrically open and electrically short boundary conditions were derived in the closed form. The effects of the related corrugation parameters and thickness ratios of the PMN-PT single crystal layer to the elastic layer on the phase velocity were assessed using the numerical results. The parameters of the amplitudes and wavenumbers related to the periodic corrugation played key roles in the propagation and dispersion behaviors of the Lamb waves. The phase velocity increased, especially in a lower wavenumber range when the upper or lower surfaces were considered corrugated contours. However, the phase velocity decreased when the common interface was treated as a corrugated configuration. The smaller thickness ratio produced higher phase velocity. These results can provide some fundamental characteristics for the design and application of acoustic wave devices fabricated with PMN-PT single crystals, especially for improving the efficiency and sensitivity.

8.
Ultrasonics ; 73: 181-186, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664869

RESUMO

In this study, a 20-MHz 64-element phased-array ultrasound transducer with a one-wavelength pitch is developed using a PMN-30%PT single crystal and double-matching layer scheme. High piezoelectric (d33>1000pC/N) and electromechanical coupling (k33>0.8) properties of the single crystal with an optimized fabrication process involving the photolithography technique have been demonstrated to be suitable for wide-bandwidth (⩾70%) and high-sensitivity (insertion loss ⩽30dB) phased-array transducer application. A -6dBbandwidth of 91% and an insertion loss of 29dBfor the 20-MHz 64-element phased-array transducer were achieved. This result shows that the bandwidth is improved comparing with the investigated high-frequency (⩾20MHz) ultrasound transducers using piezoelectric ceramic and single crystal materials. It shows that this phased-array transducer has potential to improve the resolution of biomedical imaging, theoretically. Based on the hypothesis of resolution improvement, this phased-array transducer is capable for small animal (i.e. mouse and zebrafish) studies.


Assuntos
Transdutores , Ultrassonografia/instrumentação , Alumínio/química , Animais , Cerâmica , Cromo/química , Desenho de Equipamento , Análise de Falha de Equipamento , Ouro/química
9.
ACS Appl Mater Interfaces ; 8(40): 26932-26937, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27633004

RESUMO

We report the epitaxial growth of oxygen deficient titanium dioxide thin films on 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) single crystals and realized highly effective in situ electrostatic manipulation of electrotransport and magnetism of TiO2-δ films via gate voltages. Upon the polarization switching in the PMN-PT, the carrier density of the TiO2-δ film could be reversibly modified, resulting in a large nonvolatile resistivity modulation by ∼51% at T = 300 K, approximately 4-12 times larger than that of other transition-metal oxide film/PMN-PT structures. By taking advantage of in situ manipulation of the carrier density via gate voltages, we found that competition between the trap of electrons by the Ti3+-VO pairs and that by the positive polarization charges at the interface results in a significant resistivity relaxation upon the polarization switching, and revealed that magnetization is inversely correlated with the carrier density of the TiO2-δ film. Such hybrid structures combining materials with dissimilar functionalities may have potential applications in multifunctional devices which can take advantage of the useful and unique properties of both materials.

10.
Ultrasonics ; 56: 227-31, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25108608

RESUMO

High-frequency focused intravascular ultrasonic probes were fabricated in this study using dimple technique based on PMN-PT single crystal and lead-free KNN-KBT-Mn ceramic. The center frequency, bandwidth, and insertion loss of the PMN-PT transducer were 34 MHz, 75%, and 22.9 dB, respectively. For the lead-free probe, the center frequency, bandwidth, and insertion loss were found to be 40 MHz, 72%, and 28.8 dB, respectively. The ultrasonic images of wire phantom and vessels with good resolution were obtained to evaluate the transducer performance. The -6 dB axial and lateral resolutions of the PMN-PT probe were determined to be 58 µm and 131 µm, respectively. For the lead-free probe, the axial and lateral resolutions were found to be 44 µm and 125 µm, respectively. These results suggest that the mechanical dimpling technique has good potential in preparing focused transducers for intravascular ultrasound applications.


Assuntos
Transdutores , Ultrassonografia de Intervenção/instrumentação , Cerâmica , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA