Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(1): 246-254, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978836

RESUMO

Even though the anion exchange membrane fuel cells have many advantages, the stability of their electrocatalysts for oxygen reduction reaction (ORR) has remained remarkably poor. We report here on the ultrathin twisty PdNi-alloy nanowires (NWs) exhibiting a very low reaction overpotential with an E1/2 ∼ 0.95 V versus RHE in alkaline media maintained over 200 K cycles, the highest ever recorded for an electrocatalyst. The mass activity of the used NWs is >10 times higher than fresh commercial Pt/C. Therein, Ni improves the Pd d-band center for a more efficient ORR, and its leaching continuously regenerates the surface active sites. The twisty nanowire morphology imparts multiple anchor points on the electrode surface to arrest their detachment or coalescence and extra stability from self-entanglement. The significance of the NW morphology was further confirmed from the high-temperature durability studies. The study demonstrates that tailoring the number of contact points to the electrode-surface may help realize commercial-grade stability in the highly active electrocatalysts.

2.
Molecules ; 26(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34500618

RESUMO

Since Prof. Grätzel and co-workers achieved breakthrough progress on dye-sensitized solar cells (DSSCs) in 1991, DSSCs have been extensively investigated and wildly developed as a potential renewable power source in the last two decades due to their low cost, low energy-intensive processing, and high roll-to-roll compatibility. During this period, the highest efficiency recorded for DSSC under ideal solar light (AM 1.5G, 100 mW cm-2) has increased from ~7% to ~14.3%. For the practical use of solar cells, the performance of photovoltaic devices in several conditions with weak light irradiation (e.g., indoor) or various light incident angles are also an important item. Accordingly, DSSCs exhibit high competitiveness in solar cell markets because their performances are less affected by the light intensity and are less sensitive to the light incident angle. However, the most used catalyst in the counter electrode (CE) of a typical DSSC is platinum (Pt), which is an expensive noble metal and is rare on earth. To further reduce the cost of the fabrication of DSSCs on the industrial scale, it is better to develop Pt-free electro-catalysts for the CEs of DSSCs, such as transition metallic compounds, conducting polymers, carbonaceous materials, and their composites. In this article, we will provide a short review on the Pt-free electro-catalyst CEs of DSSCs with superior cell compared to Pt CEs; additionally, those selected reports were published within the past 5 years.

3.
ACS Appl Mater Interfaces ; 11(28): 25090-25099, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31117438

RESUMO

In this study, a transition-metal selenide, vanadium diselenide (VSe2), with various morphologies was synthesized by employing a surfactant-free hydrothermal method under varied temperature conditions (190-220 °C). Although the physical properties of VSe2 have been studied before, only limited morphological change or application were explored. This study, for the first time, applied VSe2 as the electrocatalytic counter electrode (CE) in dye-sensitized solar cells (DSSCs) and showed an attractive cell efficiency. The mechanism of forming the tunable VSe2 morphologies is proposed. The evaluation of solar cell efficiency shows the correlation between morphology and electrocatalytic properties. It was further shown that VSe2-200 with the cauliflower-like morphology shows the highest cell performance of DSSC with an efficiency of 9.23 ± 0.07% under 1 sun irradiance, superior to that of the Pt-based DSSC (8.48 ± 0.08%). An electrochemical technique equipped with a rotating disk electrode system was introduced to confirm the high electrocatalytic performance with this particular morphology. The optimized VSe2 demonstrated good long-term stability with 78% retention after 500 cycles of the consecutive cyclic voltammetry, compared to 60% for the Pt CE. The control in morphology in vanadium diselenide synthesis and its usage in Pt-free CE DSSC have advanced the progress in electrochemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA