Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 140: 108938, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37442308

RESUMO

QM protein was previously discovered as a tumor suppressor, and numerous studies have shown that QM protein also played important roles in the immune responses. To investigate the potential roles of the QM protein gene in Eriocheir sinensis, the QM protein gene (designated as EsQM) has been cloned from E. sinensis using the rapid amplification of cDNA ends (RACE) technique. The cDNA of EsQM is 781 bp in length, consisting of a 654 bp open reading frame (ORF), encoding 219 amino acids, a 27 bp 5' untranslated region (UTR) and a 94 bp 3' UTR. The EsQM protein has a calculated molecular weight of 25.4 kDa and a theoretical isoelectric point of 10.10. The deduced protein sequence of EsQM contains a Ribosomal_L16 domain, an SH3-binding motif, an N-acylation site, two putative antibiotic binding sites, two putative protein kinase C phosphorylation sites, and two amidation sites. EsQM is extremely conserved and exhibits more than 85% similarities to previously identified arthropod QM protein genes. By real-time quantitative PCR (qPCR) analysis, we found that EsQM mRNA transcripts were detectable in all the examined tissues, with the highest expression in hemocytes. The mRNA expression of EsQM in hemocytes was significantly upregulated after the stimulation of Aeromonas hydrophila or polybrominated diphenyl ether-47 (BDE-47). Moreover, EsQM mRNA expression in hemocytes responded more quickly and lasted longer when stimulated by A.hydrophila than BDE-47. Thus, EsQM can respond to bacterial infection and environmental pollution, and might be involved in the defense mechanism to both biological and non-biological stimulation of arthropods.


Assuntos
Braquiúros , Animais , Sequência de Bases , Alinhamento de Sequência , DNA Complementar/genética , Proteína Ribossômica L10/metabolismo , Clonagem Molecular , RNA Mensageiro/metabolismo , Braquiúros/genética , Braquiúros/metabolismo , Filogenia
2.
Dev Comp Immunol ; 46(2): 146-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24736204

RESUMO

In an attempt to identify a peptidoglycan recognition protein (PGRP) in Penaeus (Penaeus) monodon, in vitro pull-down binding assays were used between shrimp proteins and purified peptidoglycan (PG). By gel electrophoresis and mass spectrometry followed by Mascot program analysis, proteins from shrimp hemocyte peripheral membrane proteins showed significant homology to records for a QM protein, actin and prophenoloxidase 2 precursor (proPO2), while proteins from cell-free plasma showed significant homology to records for a vitellogenin, a fibrinogen related protein (FREP) and a C-type lectin. Due to time and resource limitations, specific binding to PG was examined only for recombinant PmQM protein and PmLec that were synthesized based on sequences reported in the Genbank database (accession numbers FJ766846 and DQ078266, respectively). An in vitro assay revealed that hemocytes would bind with and encapsulate agarose beads coated with recombinant PmQM (rPmQM) or rPmLec and that melanization followed 2h post-encapsulation. ELISA tests confirmed specific binding of rPmQM protein to PG. This is the first time that PmQM has been reported as a potential PGRP in shrimp or any other crustacean. The two other potential PGRP identified (FREP and the vitellin-like protein present in male P. monodon, unlike other vitellin subunits) should also be expressed heterologously and tested for their ability to activate shrimp hemocytes.


Assuntos
Proteínas de Artrópodes/metabolismo , Proteínas de Transporte/metabolismo , Penaeidae/metabolismo , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Células Cultivadas , Hemócitos/imunologia , Hemócitos/metabolismo , Imunidade Inata , Masculino , Melaninas/biossíntese , Penaeidae/citologia , Penaeidae/imunologia , Peptidoglicano/química , Ligação Proteica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA