Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant J ; 118(1): 106-123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38111157

RESUMO

Sorghum anthracnose caused by the fungus Colletotrichum sublineola (Cs) is a damaging disease of the crop. Here, we describe the identification of ANTHRACNOSE RESISTANCE GENES (ARG4 and ARG5) encoding canonical nucleotide-binding leucine-rich repeat (NLR) receptors. ARG4 and ARG5 are dominant resistance genes identified in the sorghum lines SAP135 and P9830, respectively, that show broad-spectrum resistance to Cs. Independent genetic studies using populations generated by crossing SAP135 and P9830 with TAM428, fine mapping using molecular markers, comparative genomics and gene expression studies determined that ARG4 and ARG5 are resistance genes against Cs strains. Interestingly, ARG4 and ARG5 are both located within clusters of duplicate NLR genes at linked loci separated by ~1 Mb genomic region. SAP135 and P9830 each carry only one of the ARG genes while having the recessive allele at the second locus. Only two copies of the ARG5 candidate genes were present in the resistant P9830 line while five non-functional copies were identified in the susceptible line. The resistant parents and their recombinant inbred lines carrying either ARG4 or ARG5 are resistant to strains Csgl1 and Csgrg suggesting that these genes have overlapping specificities. The role of ARG4 and ARG5 in resistance was validated through sorghum lines carrying independent recessive alleles that show increased susceptibility. ARG4 and ARG5 are located within complex loci displaying interesting haplotype structures and copy number variation that may have resulted from duplication. Overall, the identification of anthracnose resistance genes with unique haplotype stucture provides a foundation for genetic studies and resistance breeding.


Assuntos
Colletotrichum , Sorghum , Haplótipos , Sorghum/genética , Variações do Número de Cópias de DNA , Melhoramento Vegetal , Genômica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Colletotrichum/fisiologia , Resistência à Doença/genética
2.
J Bacteriol ; 206(2): e0043023, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38240569

RESUMO

Quorum sensing (QS) is an elaborate regulatory mechanism associated with virulence and bacterial adaptation to the changing environment. QS is widespread in Proteobacteria and acts primarily through N-acylhomoserine lactone (AHL) signals. At the core of the AHL-driven QS systems are the AHL synthase gene (luxI family) and its cognate transcriptional regulator gene (luxR family). Several QS systems display one or more genes intervening between the luxI and luxR, in which gene arrangements are notably different due to the relative position and the transcriptional orientation between the essential luxI/R and the genes of location correlation. These adjacent genes may exert a regulatory impact on the primary QS genes or contribute toward an extension of QS regulatory control. In this review, we describe the organization of AHL-driven QS genes based on previous research and specific genome databases and provide new insights into these atypical QS gene arrangements.


Assuntos
Proteínas Repressoras , Transativadores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo , Lactonas , Percepção de Quorum/genética , Regulação Bacteriana da Expressão Gênica , Acil-Butirolactonas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Mol Plant Microbe Interact ; 37(2): 143-154, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381127

RESUMO

Plant disease resistance (R) gene-mediated effector-triggered immunity (ETI) is usually associated with hypersensitive response (HR) and provides robust and race-specific disease resistance against pathogenic infection. The activation of ETI and HR in plants is strictly regulated, and improper activation will lead to cell death. Xa27 is an executor-type R gene in rice induced by the TAL effector AvrXa27 and confers disease resistance to Xanthomonas oryzae pv. oryzae (Xoo). Here we reported the characterization of a transgenic line with lesion mimic phenotype, designated as Spotted leaf and resistance 1 (Slr1), which was derived from rice transformation with a genomic subclone located 5,125 bp downstream of the Xa27 gene. Slr1 develops spontaneous lesions on its leaves caused by cell death and confers disease resistance to both Xoo and Xanthomonas oryzae pv. oryzicola. Further investigation revealed that the Slr1 phenotype resulted from the ectopic expression of an Xa27 paralog gene, designated as Xa27B, in the inserted DNA fragment at the Slr1 locus driven by a truncated CaMV35Sx2 promoter in reverse orientation. Disease evaluation of IRBB27, IR24, and Xa27B mutants with Xoo strains expressing dTALE-Xa27B confirmed that Xa27B is a functional executor-type R gene. The functional XA27B-GFP protein was localized to the endoplasmic reticulum and apoplast. The identification of Xa27B as a new functional executor-type R gene provides additional genetic resources for studying the mechanism of executor-type R protein-mediated ETI and developing enhanced and broad-spectrum disease resistance to Xoo through promoter engineering. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Oryza , Xanthomonas , Resistência à Doença/genética , Oryza/genética , Expressão Ectópica do Gene , Genes vpr , Xanthomonas/genética , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas
4.
BMC Plant Biol ; 24(1): 515, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851681

RESUMO

BACKGROUND: Plant-parasitic root-knot nematode (Meloidogyne incognita) causes global yield loss in agri- and horticultural crops. Nematode management options rely on chemical method. However, only a handful of nematicides are commercially available. Resistance breeding efforts are not sustainable because R gene sources are limited and nematodes have developed resistance-breaking populations against the commercially available Mi-1.2 gene-expressing tomatoes. RNAi crops that manage nematode infection are yet to be commercialized because of the regulatory hurdles associated with transgenic crops. The deployment of the CRISPR/Cas9 system to improve nematode tolerance (by knocking out the susceptibility factors) in plants has emerged as a feasible alternative lately. RESULTS: In the present study, a M. incognita-responsive susceptibility (S) gene, amino acid permease (AAP6), was characterized from the model plant Arabidodpsis thaliana by generating the AtAAP6 overexpression line, followed by performing the GUS reporter assay by fusing the promoter of AtAAP6 with the ß-glucuronidase (GUS) gene. Upon challenge inoculation with M. incognita, overexpression lines supported greater nematode multiplication, and AtAAP6 expression was inducible to the early stage of nematode infection. Next, using CRISPR/Cas9, AtAAP6 was selectively knocked out without incurring any growth penalty in the host plant. The 'Cas9-free' homozygous T3 line was challenge inoculated with M. incognita, and CRISPR-edited A. thaliana plants exhibited considerably reduced susceptibility to nematode infection compared to the non-edited plants. Additionally, host defense response genes were unaltered between edited and non-edited plants, implicating the direct role of AtAAP6 towards nematode susceptibility. CONCLUSION: The present findings enrich the existing literature on CRISPR/Cas9 research in plant-nematode interactions, which is quite limited currently while compared with the other plant-pathogen interaction systems.


Assuntos
Arabidopsis , Sistemas CRISPR-Cas , Doenças das Plantas , Tylenchoidea , Animais , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Suscetibilidade a Doenças , Técnicas de Inativação de Genes , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Tylenchoidea/fisiologia
5.
Plant Biotechnol J ; 22(3): 602-616, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37870975

RESUMO

Ralstonia solanacearum, a species complex of bacterial plant pathogens that causes bacterial wilt, comprises four phylotypes that evolved when a founder population was split during the continental drift ~180 million years ago. Each phylotype contains strains with RipTAL proteins structurally related to transcription activator-like (TAL) effectors from the bacterial pathogen Xanthomonas. RipTALs have evolved in geographically separated phylotypes and therefore differ in sequence and potentially functionality. Earlier work has shown that phylotype I RipTAL Brg11 targets a 17-nucleotide effector binding element (EBE) and transcriptionally activates the downstream arginine decarboxylase (ADC) gene. The predicted DNA binding preferences of Brg11 and RipTALs from other phylotypes are similar, suggesting that most, if not all, RipTALs target the Brg11-EBE motif and activate downstream ADC genes. Here we show that not only phylotype I RipTAL Brg11 but also RipTALs from other phylotypes activate host genes when preceded by the Brg11-EBE motif. Furthermore, we show that Brg11 and RipTALs from other phylotypes induce the same quantitative changes of ADC-dependent plant metabolites, suggesting that most, if not all, RipTALs induce functionally equivalent changes in host cells. Finally, we report transgenic tobacco lines in which the RipTAL-binding motif Brg11-EBE mediates RipTAL-dependent transcription of the executor-type resistance (R) gene Bs4C from pepper, thereby conferring resistance to RipTAL-delivering R. solanacearum strains. Our results suggest that cell death-inducing executor-type R genes, preceded by the RipTAL-binding motif Brg11-EBE, could be used to genetically engineer broad-spectrum bacterial wilt resistance in crop plants without any apparent fitness penalty.


Assuntos
Ralstonia solanacearum , Ralstonia solanacearum/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
6.
J Virol ; 97(2): e0122722, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36656014

RESUMO

African swine fever (ASF) is a highly contagious infectious disease of domestic pigs and wild boars caused by African swine fever virus (ASFV), with a mortality rate of up to 100%. In order to replicate efficiently in macrophages and monocytes, ASFV has evolved multiple strategies to evade host antiviral responses. However, the underlying molecular mechanisms by which ASFV-encoded proteins execute immune evasion are not fully understood. In this study, we found that ASFV pH240R strongly inhibits transcription, maturation, and secretion of interleukin-1ß (IL-1ß). Importantly, pH240R not only targeted NF-κB signaling but also impaired NLRP3 inflammasome activation. In this mechanism, pH240R interacted with NF-kappa-B essential modulator (NEMO), a component of inhibitor of kappa B kinase (IKK) complex and subsequently reduced phosphorylation of IκBα and p65. In addition, pH240R bonded to NLRP3 to inhibit NLRP3 inflammasome activation, resulting in reduced IL-1ß production. As expected, infection with H240R-deficient ASFV (ASFV-ΔH240R) induced more inflammatory cytokine expression both in vitro and in vivo than its parental ASFV HLJ/18 strain. Consistently, H240R deficiency reduced the viral pathogenicity in pigs compared with its parental strain. These findings reveal that the H240R gene is an essential virulence factor, and deletion of the H240R gene affects the pathogenicity of ASFV HLJ/18 by enhancing antiviral inflammatory responses, which provides insights for ASFV immune evasion mechanisms and development of attenuated live vaccines and drugs for prevention and control of ASF. IMPORTANCE African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious and acute hemorrhagic viral disease of domestic pigs, with a high mortality approaching 100%. ASFV has spread rapidly worldwide and caused huge economic losses and ecological consequences. However, the pathogenesis and immune evasion mechanisms of ASFV are not fully understood, which limits the development of safe and effective ASF attenuated live vaccines. Therefore, investigations are urgently needed to identify virulence factors that are responsible for escaping the host antiviral innate immune responses and provide a new target for development of ASFV live-attenuated vaccine. In this study, we determined that the H240R gene is an essential virulence factor, and its depletion affects the pathogenicity of ASFV by enhancing NLRP3-mediated inflammatory responses, which provides theoretical support for the development of an ASFV attenuated live vaccine.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteínas Virais , Animais , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Deleção de Genes , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Sus scrofa , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/imunologia
7.
Plant Cell Rep ; 43(4): 105, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522062

RESUMO

KEY MESSAGE: A recently reported Pijx gene interacts and promotes the ATPb degradation through 26 proteasomal pathways activate OsRbohC mediated ROS burst, leading to broad-spectrum rice blast resistance in seedling and panicle.


Assuntos
Plântula , Plântula/genética , Proteólise
8.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256205

RESUMO

Powdery mildew caused by Podosphaera xanthii is a serious fungal disease which causes severe damage to melon production. Unlike with chemical fungicides, managing this disease with resistance varieties is cost effective and ecofriendly. But, the occurrence of new races and a breakdown of the existing resistance genes poses a great threat. Therefore, this study aimed to identify the resistance locus responsible for conferring resistance against P. xanthii race KN2 in melon line IML107. A bi-parental F2 population was used in this study to uncover the resistance against race KN2. Genetic analysis revealed the resistance to be monogenic and controlled by a single dominant gene in IML107. Initial marker analysis revealed the position of the gene to be located on chromosome 2 where many of the resistance gene against P. xanthii have been previously reported. Availability of the whole genome of melon and its R gene analysis facilitated the identification of a F-box type Leucine Rich Repeats (LRR) to be accountable for the resistance against race KN2 in IML107. The molecular marker developed in this study can be used for marker assisted breeding programs.


Assuntos
Ascomicetos , Melhoramento Vegetal , Genes Dominantes , Erysiphe
9.
Funct Integr Genomics ; 23(2): 169, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37209309

RESUMO

Stripe rust (Sr), caused by Puccinia striiformis f. sp. tritici (Pst), is the most devastating disease that poses serious threat to the wheat-growing nations across the globe. Developing resistant cultivars is the most challenging aspect in wheat breeding. The function of resistance genes (R genes) and the mechanisms by which they influence plant-host interactions are poorly understood. In the present investigation, comparative transcriptome analysis was carried out by involving two near-isogenic lines (NILs) PBW343 and FLW29. The seedlings of both the genotypes were inoculated with Pst pathotype 46S119. In total, 1106 differentially expressed genes (DEGs) were identified at early stage of infection (12 hpi), whereas expressions of 877 and 1737 DEGs were observed at later stages (48 and 72 hpi) in FLW29. The identified DEGs were comprised of defense-related genes including putative R genes, 7 WRKY transcriptional factors, calcium, and hormonal signaling associated genes. Moreover, pathways involved in signaling of receptor kinases, G protein, and light showed higher expression in resistant cultivar and were common across different time points. Quantitative real-time PCR was used to further confirm the transcriptional expression of eight critical genes involved in plant defense mechanism against stripe rust. The information about genes are likely to improve our knowledge of the genetic mechanism that controls the stripe rust resistance in wheat, and data on resistance response-linked genes and pathways will be a significant resource for future research.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Melhoramento Vegetal , Basidiomycota/genética , Genótipo , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Resistência à Doença/genética
10.
Planta ; 258(6): 103, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874380

RESUMO

MAIN CONCLUSION: As an important biotic stressor, plant-parasitic nematodes afflict global crop productivity. Deployment of CRISPR/Cas9 system that selectively knock out host susceptibility genes conferred improved nematode tolerance in crop plants. As an important biotic stressor, plant-parasitic nematodes cause a considerable yield decline in crop plants that eventually contributes to a negative impact on global food security. Being obligate plant parasites, the root-knot and cyst nematodes maintain an intricate and sophisticated relationship with their host plants by hijacking the host's physiological and metabolic pathways for their own benefit. Significant progress has been made toward developing RNAi-based transgenic crops that confer nematode resistance. However, the strategy of host-induced gene silencing that targets nematode effectors is likely to fail because the induced silencing of effectors (which interact with plant R genes) may lead to the development of nematode phenotypes that break resistance. Lately, the CRISPR/Cas9-based genome editing system has been deployed to achieve host resistance against bacteria, fungi, and viruses. In these studies, host susceptibility (S) genes were knocked out to achieve resistance via loss of susceptibility. As the S genes are recessively inherited in plants, induced mutations of the S genes are likely to be long-lasting and confer broad-spectrum resistance. A number of S genes contributing to plant susceptibility to nematodes have been identified in Arabidopsis thaliana, rice, tomato, cucumber, and soybean. A few of these S genes were targeted for CRISPR/Cas9-based knockout experiments to improve nematode tolerance in crop plants. Nevertheless, the CRISPR/Cas9 system was mostly utilized to interrogate the molecular basis of plant-nematode interactions rather than direct research toward achieving tolerance in crop plants. The current standalone article summarizes the progress made so far on CRISPR/Cas9 research in plant-nematode interactions.


Assuntos
Sistemas CRISPR-Cas , Nematoides , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes , Inativação Gênica , Produtos Agrícolas/genética
11.
Plant Biotechnol J ; 21(10): 2019-2032, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37421233

RESUMO

Citrus bacterial canker (CBC), caused by Xanthomonas citri subsp. citri (Xcc), causes dramatic losses to the citrus industry worldwide. Transcription activator-like effectors (TALEs), which bind to effector binding elements (EBEs) in host promoters and activate transcription of downstream host genes, contribute significantly to Xcc virulence. The discovery of the biochemical context for the binding of TALEs to matching EBE motifs, an interaction commonly referred to as the TALE code, enabled the in silico prediction of EBEs for each TALE protein. Using the TALE code, we engineered a synthetic resistance (R) gene, called the Xcc-TALE-trap, in which 14 tandemly arranged EBEs, each capable of autonomously recognizing a particular Xcc TALE, drive the expression of Xanthomonas avrGf2, which encodes a bacterial effector that induces plant cell death. Analysis of a corresponding transgenic Duncan grapefruit showed that transcription of the cell death-inducing executor gene, avrGf2, was strictly TALE-dependent and could be activated by several different Xcc TALE proteins. Evaluation of Xcc strains from different continents showed that the Xcc-TALE-trap mediates resistance to this global panel of Xcc isolates. We also studied in planta-evolved TALEs (eTALEs) with novel DNA-binding domains and found that these eTALEs also activate the Xcc-TALE-trap, suggesting that the Xcc-TALE-trap is likely to confer durable resistance to Xcc. Finally, we show that the Xcc-TALE-trap confers resistance not only in laboratory infection assays but also in more agriculturally relevant field studies. In conclusion, transgenic plants containing the Xcc-TALE-trap offer a promising sustainable approach to control CBC.


Assuntos
Citrus , Xanthomonas , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Citrus/genética , Citrus/microbiologia , Xanthomonas/genética , Regiões Promotoras Genéticas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
12.
J Virol ; 96(5): e0208421, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34985996

RESUMO

The Sw5 gene cluster furnishes robust resistance to Tomato spotted wilt virus in tomato, which has led to its widespread applicability in agriculture. Among the five orthologs, Sw5b functions as a resistance gene against a broad-spectrum tospovirus and is linked with tospovirus resistance. However, its paralog Sw5a has been recently implicated in providing resistance against Tomato leaf curl New Delhi virus, broadening the relevance of the Sw5 gene cluster in promoting defense against plant viruses. We propose that plants have established modifications within the homologs of R genes that permit identification of different effector proteins and provide broad and robust resistance against different pathogens through activation of the hypersensitive response and cell death.


Assuntos
Resistência à Doença , Família Multigênica , Proteínas de Plantas , Solanum lycopersicum , Tospovirus , Resistência à Doença/genética , Solanum lycopersicum/genética , Solanum lycopersicum/virologia , Família Multigênica/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tospovirus/fisiologia
13.
Transgenic Res ; 32(1-2): 95-107, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870023

RESUMO

Phytophthora infestans, the etiologic agent of late blight, is a threat to potato production in areas with high humidity during the growing season. The oomycete pathogen is hemi-biotrophic, it establishes infection on living plant cells and then spreads, kills, and feeds off the necrotized plant tissue material. The interaction between host and pathogen is complex with dynamic pathogen RXLR effectors and potato NB-LRR resistance proteins actively competing for dominance and survival. Late blight protection was brought to several cultivars of potato through insertion of the wild potato (Solanum venturii) NB-LRR resistance gene Rpi-vnt1.1. We have established that the late blight protection trait, mediated by Rpi-vnt1.1, is effective despite low expression of RNA. The RNA expression dynamics of Rpi-vnt1.1 and the cognate pathogen RXLR effector, Avr-vnt1, were evaluated following spray inoculation with up to five different contemporary late blight isolates from North America and South America. Following inoculations, RXLR effector transcript profiles provided insight into interaction compatibility in relation to markers of the late blight hemi-biotrophic lifecycle.


Assuntos
Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Proteínas de Plantas/genética , Phytophthora infestans/genética , Fenótipo , Doenças das Plantas/genética
14.
Purinergic Signal ; 19(4): 663-671, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36653592

RESUMO

Hypertension has become a prominent public health concern. Essential hypertension (EH) is a polygenic disorder caused by multiple susceptibility genes. It has been previously shown that the purinergic P2Y2 receptor (P2Y2R) regulates blood pressure; however, whether P2Y2R genetic polymorphisms correlate with EH has not been investigated in Chinese. Our study included 500 EH cases and 504 controls who are Chinese postmenopausal women. We used allele-specific polymerase chain reaction (ASPCR) to genotype five single-nucleotide polymorphism (SNPs) in the P2Y2R gene, i.e., rs4944831, rs12366239, rs1783596, rs4382936, and rs10898909. We assessed the association of P2Y2R genetic polymorphisms with EH susceptibility. The results demonstrated that P2Y2R rs4382936A was correlated with a high risk of EH; particularly, the participants with the rs4382936A allele and CA/AA/(CA+AA) genotypes were at higher risks to EH compared to the subjects with the rs4382936C allele and CC genotype. Moreover, haplotype CAG combined by rs1783596-rs4382936-rs10898909 was a susceptible haplotype for EH, whereas haplotype CCG was a protective haplotype for EH. These results may provide new evidence for applying P2Y2R genetic polymorphisms as useful markers in clinic screening or monitoring potential EH cases in a population of Chinese postmenopausal women.


Assuntos
Hipertensão , Pós-Menopausa , Humanos , Feminino , Pós-Menopausa/genética , Hipertensão Essencial , Hipertensão/genética , Genótipo , Haplótipos , Polimorfismo de Nucleotídeo Único/genética , China/epidemiologia , Predisposição Genética para Doença/genética , Frequência do Gene
15.
BMC Pulm Med ; 23(1): 265, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464360

RESUMO

BACKGROUND: Severe tuberculosis constitutes a significant menace to human safety and well-being, with a considerable mortality rate. The severity of tuberculosis can be impacted by genetic variations in host genes, particularly single nucleotide polymorphisms (SNPs). METHODS: A case‒control study was undertaken, encompassing a cohort of 1137 tuberculosis patients (558 with severe tuberculosis and 579 with mild tuberculosis), alongside 581 healthy controls within the age range of fifteen to forty-five years. Whole blood DNA was extracted from all participants, and three tag polymorphisms (rs1884444, rs7518660, rs7539625) of the IL23R gene were selectively identified and genotyped. RESULTS: No significant correlation was observed between the IL23R gene polymorphisms (rs1884444, rs7518660, and rs7539625) and tuberculosis. Upon comparing the tuberculosis group with the healthy control group, the mild tuberculosis group with the healthy control group, and the severe tuberculosis group with the healthy control group, the obtained P-values were> 0.05. However, in the comparison between severe tuberculosis and mild tuberculosis, the presence of rs1884444 G alleles exhibited a significantly increased risk of severe tuberculosis after adjusting for age and sex (ORa: 1.199, 95% CI: 1.009-1.424; Pa=0.039, respectively). In subgroup analysis, after accounting for confounding factors, including age and sex, rs1884444 G alleles continued to demonstrate a significantly heightened risk of severe tuberculosis. Nonetheless, the comparison between the multisystemic tuberculosis group and the mild tuberculosis group was no significant difference. Notably, rs1884444 of the IL23R gene exhibited a noteworthy association with the risk of severe tuberculosis in the comparison between severe tuberculosis and mild tuberculosis before and after adjusting for age and sex (ORa: 1.301, 95% CI: 1.030-1.643; Pa=0.027, respectively). Furthermore, the presence of the rs1884444 G allele exhibited a significantly increased risk of severe tuberculosis after adjusting for age and sex in the comparison between tuberculous meningitis and mild tuberculosis (ORa: 1.646, 95% CI: 1.100-2.461; Pa=0.015, respectively). CONCLUSIONS: The present study suggests that there is no significant association between IL23R gene polymorphism and tuberculosis susceptibility in the Chinese Han population. However, it does indicate a potential link between IL23R polymorphism and an increased risk of developing severe tuberculosis.


Assuntos
Polimorfismo de Nucleotídeo Único , Tuberculose , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Predisposição Genética para Doença , Estudos de Casos e Controles , População do Leste Asiático , Genótipo , Tuberculose/genética , Frequência do Gene , Receptores de Interleucina/genética
16.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36614228

RESUMO

Clubroot disease is a soil-borne disease caused by Plasmodiophora brassicae. It occurs in cruciferous crops exclusively, and causes serious damage to the economic value of cruciferous crops worldwide. Although different measures have been taken to prevent the spread of clubroot disease, the most fundamental and effective way is to explore and use disease-resistance genes to breed resistant varieties. However, the resistance level of plant hosts is influenced both by environment and pathogen race. In this work, we described clubroot disease in terms of discovery and current distribution, life cycle, and race identification systems; in particular, we summarized recent progress on clubroot control methods and breeding practices for resistant cultivars. With the knowledge of these identified resistance loci and R genes, we discussed feasible strategies for disease-resistance breeding in the future.


Assuntos
Brassicaceae , Plasmodioforídeos , Brassicaceae/genética , Melhoramento Vegetal , Resistência à Doença/genética , Genes de Plantas , China , Plasmodioforídeos/genética , Doenças das Plantas/genética
17.
Physiol Mol Biol Plants ; 29(6): 871-887, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37520805

RESUMO

Deployment of single or multiple blast resistance (R) genes in rice plant is considered to be the most promising approach to enhance resistance against blast disease caused by fungus Magnaporthe oryzae. At the proteome level, relatively little information about R gene mediated defence mechanisms for single and stacking resistance characteristics is available. The overall objective of this study is to look at the proteomics of rice plants that have R genes; Pi54, Pi54rh and stacked Pi54 + Pi54rh in response to rice blast infection. In this study 'isobaric tag for relative and absolute quantification' (iTRAQ)-based proteomics analysis was performed in rice plants at 72-h post inoculation with Magnaporthe oryzae and various differentially expressed proteins were identified in these three transgenic lines in comparison to wild type during resistance response to blast pathogen. Through STRING analysis, the observed proteins were further examined to anticipate their linked partners, and it was shown that several defense-related proteins were co-expressed. These proteins can be employed as targets in future rice resistance breeding against Magnaporthe oryzae. The current study is the first to report a proteomics investigation of rice lines that express single blast R gene Pi54, Pi54rh and stacked (Pi54 + Pi54rh) during incompatible interaction with Magnaporthe oryzae. The differentially expressed proteins indicated that secondary metabolites, reactive oxygen species-related proteins, phenylpropanoid, phytohormones and pathogenesis-related proteins have a substantial relationship with the defense response against Magnaporthe oryzae. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01327-3.

18.
Funct Integr Genomics ; 22(5): 879-889, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35596045

RESUMO

Garden cress (Lepidium sativum L.) is a Brassicaceae crop recognized as a healthy vegetable and a medicinal plant. Lepidium is one of the largest genera in Brassicaceae, yet, the genus has not been a focus of extensive genomic research. In the present work, garden cress genome was sequenced using the long read high-fidelity sequencing technology. A de novo, draft genome assembly that spans 336.5 Mb was produced, corresponding to 88.6% of the estimated genome size and representing 90% of the evolutionarily expected orthologous gene content. Protein coding gene content was structurally predicted and functionally annotated, resulting in the identification of 25,668 putative genes. A total of 599 candidate disease resistance genes were identified by predicting resistance gene domains in gene structures, and 37 genes were detected as orthologs of heavy metal associated protein coding genes. In addition, 4289 genes were assigned as "transcription factor coding." Six different machine learning algorithms were trained and tested for their performance in classifying miRNA coding genomic sequences. Logistic regression proved the best performing trained algorithm, thus utilized for pre-miRNA coding loci identification in the assembly. Repetitive DNA analysis involved the characterization of transposable element and microsatellite contents. L. sativum chloroplast genome was also assembled and functionally annotated. Data produced in the present work is expected to constitute a foundation for genomic research in garden cress and contribute to genomics-assisted crop improvement and genome evolution studies in the Brassicaceae family.


Assuntos
Lepidium sativum , MicroRNAs , Elementos de DNA Transponíveis , Genômica , Lepidium sativum/genética , Fatores de Transcrição
19.
Planta ; 256(4): 66, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36036325

RESUMO

MAIN CONCLUSION: By constructing an F2 population, a new potential dominant resistance gene to TuMV in Brassica rapa was mapped and identified. Brassica rapa is the most widely grown vegetable crop in China, and turnip mosaic virus (TuMV) is a great threat to its production. Hence, it is a very important work to excavate more and novel resistance genes in B. rapa. In this study, the resistant line B80124 and the susceptible line B80450 were used to construct the F2 populations, and through genetic analysis, the resistance to TuMV was found to be controlled by a dominant gene. Bulked segregant analysis sequence (BSA-seq) was used for the primary mapping, and an intersection (22.25-25.03 Mb) was obtained. After fine mapping using single nucleotide polymorphisms (SNP) markers, the candidate region was narrowed to 330 kb between the SNP markers A06S11 and A06S14, including eight genes relating to disease resistance. Using the transcriptome analysis and sequence identification, BraA06g035130.3C was screened as the final candidate gene, and it contained two deletion mutations, leading to frameshift in the susceptible line B80450. In addition, the phylogenetic analysis, hydrophilia and hydrophobicity analysis, subcellular location prediction analysis, amino acid bias analysis, and 3D modeling structures of BraA06g035130.3C were conducted to predict its functions. This study was conducive to the identification of a new TuMV resistance gene in B. rapa, which is of important scientific significance and application value for the improvement of TuMV resistance traits and molecular design breeding for Brassica crops.


Assuntos
Brassica rapa , Genes Dominantes , Filogenia , Doenças das Plantas , Potyvirus
20.
J Virol ; 95(23): e0119921, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34495696

RESUMO

African swine fever (ASF) is a severe hemorrhagic infectious disease in pigs caused by African swine fever virus (ASFV), leading to devastating economic losses in epidemic regions. Its control currently depends on thorough culling and clearance of the diseased and surrounding suspected pigs. An ASF vaccine has been extensively explored for years worldwide, especially in hog-intensive areas where it is highly desired, but it is still unavailable for numerous reasons. Here, we report another ASF vaccine candidate, named SY18ΔI226R, bearing a deletion of the I226R gene with a replacement of an enhanced green fluorescent protein (eGFP) expression cassette at the right end of the viral genome. This deletion results in the complete loss of virulence of SY18 as the gene-deleted strain does not cause any clinical symptoms in all pigs inoculated with a dosage of either 104.0 or 107.0 50% tissue culture infective doses (TCID50). Apparent viremia with a gradual decline was monitored, while virus shedding was detected only occasionally in oral or anal swabs. ASFV-specific antibody appeared at 9 days postinoculation. After intramuscular challenge with its parental strain ASFV SY18 at 21 days postinoculation, all the challenged pigs survived, without obvious febrile or abnormal clinical signs. No viral DNA could be detected upon the dissection of any tissue when viremia disappeared. These results indicated that SY18ΔI226R is safe in swine and elicits robust immunity to virulent ASFV infection. IMPORTANCE Outbreaks of African swine fever have resulted in devastating losses to the swine industry worldwide, but there is currently no commercial vaccine available. Although several vaccine candidates have been reported, none has been approved for use for several reasons, especially ones concerning biosafety. Here, we identified a new undescribed functional gene, I226R. When deleted from the ASFV genome, the virus completely loses its virulence in swine. Importantly, pigs infected with this gene-deleted virus were resistant to infection by intramuscular challenge with 102.5 or 104.0 TCID50 of its virulent parental virus. Furthermore, the nucleic acid of the gene-deleted virus and its virulent parental virus was rarely detected from oral or anal swabs. Viruses could not be detected in any tissues after necropsy when viremia became negative, indicating that robust immunity was achieved. Therefore, SY18ΔI226R is a novel, ideal, and efficacious vaccine candidate for genotype II ASF.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Deleção de Genes , Genoma Viral , Febre Suína Africana/patologia , Febre Suína Africana/prevenção & controle , Animais , DNA Viral , Genes Virais/genética , Genótipo , Análise de Sequência , Suínos , Vacinas Virais/imunologia , Viremia/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA