Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(22): 10962-10967, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31085632

RESUMO

Polar growth in Agrobacterium pirates and repurposes well-known bacterial cell cycle proteins, such as FtsZ, FtsA, PopZ, and PodJ. Here we identify a heretofore unknown protein that we name GROWTH POLE RING (GPR) due to its striking localization as a hexameric ring at the growth pole during polar growth. GPR also localizes at the midcell late in the cell cycle just before division, where it is then poised to be precisely localized at new growth poles in sibling cells. GPR is 2,115 aa long, with two N-terminal transmembrane domains placing the bulk of the protein in the cytoplasm, N- and C-terminal proline-rich disordered regions, and a large 1,700-aa central region of continuous α-helical domains. This latter region contains 12 predicted adjacent or overlapping apolipoprotein domains that may function to sequester lipids during polar growth. Stable genetic deletion or riboswitch-controlled depletion results in spherical cells that grow poorly; thus, GPR is essential for wild-type growth and morphology. As GPR has no predicted enzymatic domains and it forms a distinct 200-nm-diameter ring, we propose that GPR is a structural component of an organizing center for peptidoglycan and membrane syntheses critical for cell envelope formation during polar growth. GPR homologs are found in numerous Rhizobiales; thus, our results and proposed model are fundamental to understanding polar growth strategy in a variety of bacterial species.


Assuntos
Agrobacterium tumefaciens , Proteínas de Bactérias , Proteínas de Ciclo Celular , Agrobacterium tumefaciens/citologia , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Divisão Celular/fisiologia , Forma Celular/genética , Forma Celular/fisiologia
2.
Genome ; 61(9): 685-697, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30075086

RESUMO

The ubiquitin-mediated post-translational regulatory pathway regulates a broad range of cell functions in all eukaryotes. It requires the involvement of a large number of E3 ligases, of which more than one third belongs to the RING protein family as in Arabidopsis thaliana. In this study, a total of 756 RING domains in 734 predicted proteins were identified in Brassica oleracea. Their encoding genes were characterized by RING domain type, additional domain, and expression pattern, and mapped on the nine chromosomes of B. oleracea. Comparison of these results with B. rapa and A. thaliana revealed some common as well as species-specific features. Our results showed that the differential gene loss following the whole genome triplication has largely contributed to the RING protein gene number variation among these species, although other factors such as tandem duplication, RING domain loss, or modification had also contributed to this variation. Analysis of RNA-seq data showed that these RING protein genes were functionally diversified and involved in all the stages of plant growth and development, and that the triplicated members were also diverged in expression with one member often more dominantly expressed over the two others in the majority of cases. Our study lays the foundation for further functional determination of each RING protein gene among species of the genus Brassica.


Assuntos
Brassica/genética , Proteínas de Plantas/genética , Domínios RING Finger , Sintenia , Ubiquitina-Proteína Ligases/genética , Arabidopsis/genética , Evolução Molecular , Genoma de Planta , Proteínas de Plantas/química , Polimorfismo Genético , Ubiquitina-Proteína Ligases/química
3.
J Exp Bot ; 66(1): 293-306, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25371505

RESUMO

Tropospheric ozone causes various negative effects on plants and affects the yield and quality of agricultural crops. Here, we report a genome-wide association study (GWAS) in rice (Oryza sativa L.) to determine candidate loci associated with ozone tolerance. A diversity panel consisting of 328 accessions representing all subgroups of O. sativa was exposed to ozone stress at 60 nl l(-1) for 7h every day throughout the growth season, or to control conditions. Averaged over all genotypes, ozone significantly affected biomass-related traits (plant height -1.0%, shoot dry weight -15.9%, tiller number -8.3%, grain weight -9.3%, total panicle weight -19.7%, single panicle weight -5.5%) and biochemical/physiological traits (symptom formation, SPAD value -4.4%, foliar lignin content +3.4%). A wide range of genotypic variance in response to ozone stress were observed in all phenotypes. Association mapping based on more than 30 000 single-nucleotide polymorphism (SNP) markers yielded 16 significant markers throughout the genome by applying a significance threshold of P<0.0001. Furthermore, by determining linkage disequilibrium blocks associated with significant SNPs, we gained a total of 195 candidate genes for these traits. The following sequence analysis revealed a number of novel polymorphisms in two candidate genes for the formation of visible leaf symptoms, a RING and an EREBP gene, both of which are involved in cell death and stress defence reactions. This study demonstrated substantial natural variation of responses to ozone in rice and the possibility of using GWAS in elucidating the genetic factors underlying ozone tolerance.


Assuntos
Adaptação Fisiológica/genética , Poluentes Atmosféricos/metabolismo , Variação Genética , Estudo de Associação Genômica Ampla , Oryza/genética , Ozônio/metabolismo , Mapeamento Cromossômico , Desequilíbrio de Ligação , Oryza/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único
4.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798368

RESUMO

The 91 kDa oligomeric ring-shaped ligand binding protein TRAP (trp RNA binding attenuation protein) regulates the expression of a series of genes involved in tryptophan (Trp) biosynthesis in bacilli. When cellular Trp levels rise, the free amino acid binds to sites buried in the interfaces between each of the 11 (or 12, depending on the species) protomers in the ring. Crystal structures of Trp-bound TRAP show the Trp ligands are sequestered from solvent by a pair of loops from adjacent protomers that bury the bound ligand via polar contacts to several threonine residues. Binding of the Trp ligands occurs cooperatively, such that successive binding events occur with higher apparent affinity but the structural basis for this cooperativity is poorly understood. We used solution methyl-TROSY NMR relaxation experiments focused on threonine and isoleucine sidechains, as well as magic angle spinning solid-state NMR 13C-13C and 15N-13C chemical shift correlation spectra on uniformly labeled samples recorded at 800 and 1200 MHz, to characterize the structure and dynamics of the protein. Methyl 13C relaxation dispersion experiments on ligand-free apo TRAP revealed concerted exchange dynamics on the µs-ms time scale, consistent with transient sampling of conformations that could allow ligand binding. Cross-correlated relaxation experiments revealed widespread disorder on fast timescales. Chemical shifts for methyl-bearing side chains in apo- and Trp-bound TRAP revealed subtle changes in the distribution of sampled sidechain rotameric states. These observations reveal a pathway and mechanism for induced conformational changes to generate homotropic Trp-Trp binding cooperativity.

5.
mBio ; 12(3)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006657

RESUMO

The Agrobacterium growth pole ring (GPR) protein forms a hexameric ring at the growth pole (GP) that is essential for polar growth. GPR is large (2,115 amino acids) and contains 1,700 amino acids of continuous α-helices. To dissect potential GPR functional domains, we created deletions of regions with similarity to human apolipoprotein A-IV (396 amino acids), itself composed of α-helical domains. We also tested deletions of the GPR C terminus. Deletions were inducibly expressed as green fluorescent protein (GFP) fusion proteins and tested for merodiploid interference with wild-type (WT) GPR function, for partial function in cells lacking GPR, and for formation of paired fluorescent foci (indicative of hexameric rings) at the GP. Deletion of domains similar to human apolipoprotein A-IV in GPR caused defects in cell morphology when expressed in trans to WT GPR and provided only partial complementation to cells lacking GPR. Agrobacterium-specific domains A-IV-1 and A-IV-4 contain predicted coiled coil (CC) regions of 21 amino acids; deletion of CC regions produced severe defects in cell morphology in the interference assay. Mutants that produced the most severe effects on cell shape also failed to form paired polar foci. Modeling of A-IV-1 and A-IV-4 reveals significant similarity to the solved structure of human apolipoprotein A-IV. GPR C-terminal deletions profoundly blocked complementation. Finally, peptidoglycan (PG) synthesis is abnormally localized circumferentially in cells lacking GPR. The results support the hypothesis that GPR plays essential roles as an organizing center for membrane and PG synthesis during polar growth.IMPORTANCE Bacterial growth and division are extensively studied in model systems (Escherichia coli, Bacillus subtilis, and Caulobacter crescentus) that grow by dispersed insertion of new cell wall material along the length of the cell. An alternative growth mode-polar growth-is used by some Actinomycetales and Proteobacteria species. The latter phylum includes the family Rhizobiaceae, in which many species, including Agrobacterium tumefaciens, exhibit polar growth. Current research aims to identify growth pole (GP) factors. The Agrobacterium growth pole ring (GPR) protein is essential for polar growth and forms a striking hexameric ring structure at the GP. GPR is long (2,115 amino acids), and little is known about regions essential for structure or function. Genetic analyses demonstrate that the C terminus of GPR, and two internal regions with homology to human apolipoproteins (that sequester lipids), are essential for GPR function and localization to the GP. We hypothesize that GPR is an organizing center for membrane and cell wall synthesis during polar growth.


Assuntos
Agrobacterium tumefaciens/genética , Apolipoproteínas/genética , Proteínas de Ciclo Celular/genética , Polaridade Celular/genética , Parede Celular/metabolismo , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/crescimento & desenvolvimento , Apolipoproteínas/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas de Fluorescência Verde
6.
Methods Mol Biol ; 1604: 217-227, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28986837

RESUMO

The smallest arenaviral protein is the zinc-finger protein (Z) that belongs to the RING finger protein family. Z serves as a main component required for virus budding from the membrane of the infected cells through self-oligomerization, a process that can be aided by the viral nucleoprotein (NP) to form the viral matrix of progeny virus particles. Z has also been shown to be essential for mediating viral transcriptional repression activity by locking the L polymerase onto the viral promoter in a catalytically inactive state, thus limiting viral replication. The Z protein has also recently been shown to inhibit the type I interferon-induction pathway by directly binding to the intracellular pathogen-sensor proteins RIG-I and MDA5, and thus inhibiting their normal functions. This chapter describes several assays used to examine the important roles of the arenaviral Z protein in mediating virus budding (i.e., either Z self-budding or NP-Z budding activities), viral transcriptional inhibition in a viral minigenome (MG) assay, and type I IFN suppression in an IFN-ß promoter-mediated luciferase reporter assay.


Assuntos
Arenavirus/metabolismo , Liberação de Vírus/fisiologia , Replicação Viral/fisiologia , Arenavirus/genética , Interferon beta/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Vírus Pichinde/genética , Vírus Pichinde/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Liberação de Vírus/genética , Replicação Viral/genética
7.
J Mol Biol ; 425(22): 4099-111, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23871895

RESUMO

Protein ubiquitylation depends upon the concerted action of ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s). All E2s have a conserved ubiquitin-conjugating (UBC) domain but many have variable extensions N- and C-terminal to the UBC domain. For many E2s, the function of the extension is not well understood. Here, we show that the N-terminal extension of the UBE2E proteins regulates formation of polyubiquitin chains by the processive UBC domain. Target proteins are therefore monoubiquitylated by full-length UBE2E, whereas the UBC domain alone polyubiquitylates proteins. Although the N-terminal extension of UBE2E1 is largely disordered in solution, these residues have a critical role in limiting chain building, and when fused to the highly processive E2, UBE2D2, ubiquitylation is limited. For some E2s, interaction of ubiquitin with the 'backside' of the UBC domain promotes polyubiquitylation. However, interaction of ubiquitin with the backside of the UBC domain of UBE2E1 does not appear to be important for processivity. This study underscores the importance of studying full-length E2 proteins and not just the highly conserved core domain.


Assuntos
Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Enzimas de Conjugação de Ubiquitina/química , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Ubiquitina/química , Ubiquitinação
8.
FEBS Lett ; 587(16): 2584-90, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23831064

RESUMO

AtATL78 is an Arabidopsis RING E3 ubiquitin ligase. RT-PCR and promoter-GUS assays revealed that AtATL78 was up-regulated by cold stress and down-regulated by drought. AtATL78 was localized at the plasma-membrane. Suppression of AtATL78 increased tolerance to cold stress but decreased tolerance to drought. Our data suggests that AtATL78 is a negative regulator of cold stress response and a positive regulator of drought stress response in Arabidopsis. These results further suggest that AtATL78 plays opposing roles in cold and drought stress responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Ubiquitina-Proteína Ligases/metabolismo , Membrana Celular/metabolismo , Temperatura Baixa , Secas , Glucuronidase/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA