Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(2): 387-399.e17, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30270043

RESUMO

HIV-1 broadly neutralizing antibodies (bnAbs) are difficult to induce with vaccines but are generated in ∼50% of HIV-1-infected individuals. Understanding the molecular mechanisms of host control of bnAb induction is critical to vaccine design. Here, we performed a transcriptome analysis of blood mononuclear cells from 47 HIV-1-infected individuals who made bnAbs and 46 HIV-1-infected individuals who did not and identified in bnAb individuals upregulation of RAB11FIP5, encoding a Rab effector protein associated with recycling endosomes. Natural killer (NK) cells had the highest differential expression of RAB11FIP5, which was associated with greater dysregulation of NK cell subsets in bnAb subjects. NK cells from bnAb individuals had a more adaptive/dysfunctional phenotype and exhibited impaired degranulation and cytokine production that correlated with RAB11FIP5 transcript levels. Moreover, RAB11FIP5 overexpression modulated the function of NK cells. These data suggest that NK cells and Rab11 recycling endosomal transport are involved in regulation of HIV-1 bnAb development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Anticorpos Neutralizantes/imunologia , Infecções por HIV/imunologia , Vacinas contra a AIDS/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Adulto , Linfócitos B/imunologia , Linhagem Celular , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica/métodos , Anticorpos Anti-HIV/imunologia , Infecções por HIV/fisiopatologia , HIV-1/patogenicidade , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/fisiologia , Masculino , Pessoa de Meia-Idade
2.
J Cell Sci ; 137(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37840525

RESUMO

Cell shape changes mainly rely on the remodeling of the actin cytoskeleton. Multiciliated cells (MCCs) of the mucociliary epidermis of Xenopus laevis embryos, as they mature, dramatically reshape their apical domain to grow cilia, in coordination with the underlying actin cytoskeleton. Crumbs (Crb) proteins are multifaceted transmembrane apical polarity proteins known to recruit actin linkers and promote apical membrane growth. Here, we identify the homeolog Crb3.L as an important player for the migration of centrioles or basal bodies (collectively centrioles/BBs) and apical domain morphogenesis in MCCs. Crb3.L is present in cytoplasmic vesicles close to the ascending centrioles/BBs, where it partially colocalizes with Rab11a. Crb3.L morpholino-mediated depletion in MCCs caused abnormal migration of centrioles/BBs, a reduction of their apical surface, disorganization of their apical actin meshwork and defective ciliogenesis. Rab11a morpholino-mediated depletion phenocopied Crb3.L loss-of-function in MCCs. Thus, the control of centrioles/BBs migration by Crb3.L might be mediated by Rab11a-dependent apical trafficking. Furthermore, we show that both phospho-activated ERM (pERM; Ezrin-Radixin-Moesin) and Crb3.L are recruited to the growing apical domain of MCCs, where Crb3.L likely anchors pERM, allowing actin-dependent expansion of the apical membrane.


Assuntos
Citoesqueleto de Actina , Actinas , Actinas/metabolismo , Morfolinos/metabolismo , Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Cílios/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(31): e2303238120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37494394

RESUMO

Endothelial cells (ECs) line the lumen of all blood vessels and regulate functions, including contractility. Physiological stimuli, such as acetylcholine (ACh) and intravascular flow, activate transient receptor potential vanilloid 4 (TRPV4) channels, which stimulate small (SK3)- and intermediate (IK)-conductance Ca2+-activated potassium channels in ECs to produce vasodilation. Whether physiological vasodilators also modulate the surface abundance of these ion channels in ECs to elicit functional responses is unclear. Here, we show that ACh and intravascular flow stimulate rapid anterograde trafficking of an intracellular pool of SK3 channels in ECs of resistance-size arteries, which increases surface SK3 protein more than two-fold. In contrast, ACh and flow do not alter the surface abundance of IK or TRPV4 channels. ACh triggers SK3 channel trafficking by activating TRPV4-mediated Ca2+ influx, which stimulates Rab11A, a Rab GTPase associated with recycling endosomes. Superresolution microscopy data demonstrate that SK3 trafficking specifically increases the size of surface SK3 clusters which overlap with TRPV4 clusters. We also show that Rab11A-dependent trafficking of SK3 channels is an essential contributor to vasodilator-induced SK current activation in ECs and vasorelaxation. In summary, our data demonstrate that vasodilators activate Rab11A, which rapidly delivers an intracellular pool of SK3 channels to the vicinity of surface TRPV4 channels in ECs. This trafficking mechanism increases surface SK3 cluster size, elevates SK3 current density, and produces vasodilation. These data also demonstrate that SK3 and IK channels are differentially regulated by trafficking-dependent and -independent signaling mechanisms in endothelial cells.


Assuntos
Canais de Cátion TRPV , Vasodilatadores , Vasodilatadores/farmacologia , Canais de Cátion TRPV/metabolismo , Células Endoteliais/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Artérias/metabolismo , Vasodilatação , Acetilcolina/metabolismo , Endotélio Vascular/metabolismo
4.
J Cell Sci ; 136(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37232246

RESUMO

Endocytic recycling controls the return of internalised cargoes to the plasma membrane to coordinate their positioning, availability and downstream signalling. The Rab4 and Rab11 small GTPase families regulate distinct recycling routes, broadly classified as fast recycling from early endosomes (Rab4) and slow recycling from perinuclear recycling endosomes (Rab11), and both routes handle a broad range of overlapping cargoes to regulate cell behaviour. We adopted a proximity labelling approach, BioID, to identify and compare the protein complexes recruited by Rab4a, Rab11a and Rab25 (a Rab11 family member implicated in cancer aggressiveness), revealing statistically robust protein-protein interaction networks of both new and well-characterised cargoes and trafficking machinery in migratory cancer cells. Gene ontological analysis of these interconnected networks revealed that these endocytic recycling pathways are intrinsically connected to cell motility and cell adhesion. Using a knock-sideways relocalisation approach, we were further able to confirm novel links between Rab11, Rab25 and the ESCPE-1 and retromer multiprotein sorting complexes, and identify new endocytic recycling machinery associated with Rab4, Rab11 and Rab25 that regulates cancer cell migration in the 3D matrix.


Assuntos
Proteínas rab de Ligação ao GTP , Proteínas rab4 de Ligação ao GTP , Humanos , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab4 de Ligação ao GTP/metabolismo , Transporte Biológico , Transporte Proteico/fisiologia , Endossomos/metabolismo
5.
Development ; 149(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189830

RESUMO

Within a cell, vesicles play a crucial role in the transport of membrane material and proteins to a given target membrane, and thus regulate a variety of cellular functions. Vesicular transport occurs by means of, among others, endocytosis, where cargoes are taken up by the cell and are processed further upon vesicular trafficking, i.e. transported back to the plasma membrane via recycling endosomes or the degraded by fusion of the vesicles with lysosomes. During evolution, a variety of vesicles with individual functions arose, with some of them building up highly specialised subcellular compartments. In this study, we have analysed the biosynthesis of a new vesicular compartment present in the valve cells of Drosophila melanogaster. We show that the compartment is formed by invaginations of the plasma membrane and grows via re-routing of the recycling endosomal pathway. This is achieved by inactivation of other membrane-consuming pathways and a plasma membrane-like molecular signature of the compartment in these highly specialised heart cells.


Assuntos
Drosophila melanogaster , Endossomos , Animais , Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Endocitose , Endossomos/metabolismo , Valvas Cardíacas/metabolismo , Transporte Proteico , Proteínas rab de Ligação ao GTP/metabolismo
6.
EMBO Rep ; 24(9): e56240, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37424454

RESUMO

RAB11 small GTPases and associated recycling endosome have been localized to mitotic spindles and implicated in regulating mitosis. However, the physiological significance of such regulation has not been observed in mammalian tissues. We have used newly engineered mouse models to investigate intestinal epithelial renewal in the absence of single or double isoforms of RAB11 family members: Rab11a and Rab11b. Comparing with single knockouts, mice with compound ablation demonstrate a defective cell cycle entry and robust mitotic arrest followed by apoptosis, leading to a total penetrance of lethality within 3 days of gene ablation. Upon Rab11 deletion ex vivo, enteroids show abnormal mitotic spindle formation and cell death. Untargeted proteomic profiling of Rab11a and Rab11b immunoprecipitates has uncovered a shared interactome containing mitotic spindle microtubule regulators. Disrupting Rab11 alters kinesin motor KIF11 function and impairs bipolar spindle formation and cell division. These data demonstrate that RAB11A and RAB11B redundantly control mitotic spindle function and intestinal progenitor cell division, a mechanism that may be utilized to govern the homeostasis and renewal of other mammalian tissues.


Assuntos
Proteômica , Proteínas rab de Ligação ao GTP , Animais , Camundongos , Mamíferos/metabolismo , Mitose , Proteínas rab de Ligação ao GTP/metabolismo , Fuso Acromático/metabolismo , Células-Tronco/metabolismo
7.
Exp Cell Res ; 439(1): 114092, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754617

RESUMO

Asymmetric stem cell divisions play instrumental roles in the maintenance, growth and differentiation of organs. Failure of asymmetric stem cell divisions may result in an array of developmental disorders, including cancer. It is well established that the gene, inscuteable, acts as the upstream component of asymmetric cell divisions. In Drosophila larval midgut, a founder adult midgut precursor (AMP) experiences an asymmetric division to instruct its first daughter to become a peripheral cell that serves as a niche where the AMP and its future daughters can remain undifferentiated. The present study demonstrates that inscuteable expressing stem cells require Rab11, a conserved small Ras-like GTPase, for proper proliferation and differentiation. As insc-GAL4 mediated Rab11RNAi in Drosophila larval and adult midguts show the disruption of the niche microenvironment of adult midgut precursors as well as elevated DPP signalling at the larval stage, which is associated with aberrant over-proliferation and early differentiation of larval AMPs and adult intestinal stem cells. The observed connections between Rab11, larval AMP proliferation, niche establishment, and DPP signalling highlight the potential for Rab11 to serve as a key regulatory factor in maintaining tissue homeostasis and balanced cellular growth.


Assuntos
Diferenciação Celular , Proteínas de Drosophila , Larva , Transdução de Sinais , Proteínas rab de Ligação ao GTP , Animais , Diferenciação Celular/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/genética , Proliferação de Células , Células-Tronco/metabolismo , Células-Tronco/citologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Nicho de Células-Tronco
8.
Mol Cell Neurosci ; 128: 103914, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38086519

RESUMO

The exocyst protein complex is important for targeted vesicle fusion in a variety of cell types, however, its function in neurons is still not entirely known. We found that presynaptic knockdown (KD) of the exocyst component sec15 by transgenic RNAi expression caused a number of unexpected morphological and physiological defects in the synapse. These include the development of active zones (AZ) devoid of essential presynaptic proteins, an increase in the branching of the presynaptic arbor, the appearance of satellite boutons, and a decrease in the amplitude of stimulated postsynaptic currents as well as a decrease in the frequency of spontaneous synaptic vesicle release. We also found the release of extracellular vesicles from the presynaptic neuron was greatly diminished in the Sec15 KDs. These effects were mimicked by presynaptic knockdown of Rab11, a protein known to interact with the exocyst. sec15 RNAi expression caused an increase in phosphorylated Mothers against decapentaplegic (pMad) in the presynaptic terminal, an indication of enhanced bone morphogenic protein (BMP) signaling. Some morphological phenotypes caused by Sec15 knockdown were reduced by attenuation of BMP signaling through knockdown of wishful thinking (Wit), while other phenotypes were unaffected. Individual knockdown of multiple proteins of the exocyst complex also displayed a morphological phenotype similar to Sec15 KD. We conclude that Sec15, functioning as part of the exocyst complex, is critically important for proper formation and function of neuronal synapses. We propose a model in which Sec15 is involved in the trafficking of vesicles from the recycling endosome to the cell membrane as well as possibly trafficking extracellular vesicles for presynaptic release and these processes are necessary for the correct structure and function of the synapse.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Animais Geneticamente Modificados/metabolismo , Sinapses/metabolismo , Neurônios/metabolismo , Proteínas de Transporte Vesicular/metabolismo
9.
Traffic ; 23(7): 374-390, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35575181

RESUMO

E-cadherin has a fundamental role in epithelial tissues by providing cell-cell adhesion. Polarised E-cadherin exocytosis to the lateral plasma membrane is central for cell polarity and epithelial homeostasis. Loss of E-cadherin secretion compromises tissue integrity and is a prerequisite for metastasis. Despite this pivotal role of E-cadherin secretion, the transport mechanism is still unknown. Here we identify Myosin V as the motor for E-cadherin secretion. Our data reveal that Myosin V and F-actin are required for the formation of a continuous apicolateral E-cadherin belt, the zonula adherens. We show by live imaging how Myosin V transports E-cadherin vesicles to the plasma membrane, and distinguish two distinct transport tracks: an apical actin network leading to the zonula adherens and parallel actin bundles leading to the basal-most region of the lateral membrane. E-cadherin secretion starts in endosomes, where Rab11 and Sec15 recruit Myosin V for transport to the zonula adherens. We also shed light on the endosomal sorting of E-cadherin by showing how Rab7 and Snx16 cooperate in moving E-cadherin into the Rab11 compartment. Thus, our data help to understand how polarised E-cadherin secretion maintains epithelial architecture and prevents metastasis.


Assuntos
Caderinas/metabolismo , Miosina Tipo V/metabolismo , Actinas/metabolismo , Junções Aderentes/metabolismo , Animais , Adesão Celular , Endossomos/metabolismo , Exocitose , Humanos , Metástase Neoplásica/prevenção & controle
10.
Traffic ; 23(12): 558-567, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224049

RESUMO

Intracellular compartmentalization of ligands, receptors and signaling molecules has been recognized as an important regulator of inflammation. The toll-like receptor (TLR) 2 pathway utilizes the trafficking molecule adaptor protein 3 (AP-3) to activate interleukin (IL)-6 signaling from within phagosomal compartments. To better understand the vesicular pathways that may contribute to intracellular signaling and cooperate with AP-3, we performed a vesicular siRNA screen. We identified Rab8 and Rab11 GTPases as important in IL-6 induction upon stimulation with the TLR2 ligand Pam3 CSK4 or the pathogen, Borrelia burgdorferi (Bb), the causative agent of Lyme disease. These Rabs were recruited to late and lysosomal stage phagosomes and co-transported with TLR2 signaling adaptors and effectors, such as MyD88, TRAM and TAK1, in an AP-3-dependent manner. Our data support a model where AP-3 mediates the recruitment of recycling and secretory vesicles and the assembly of signaling complexes at the phagosome.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Borrelia burgdorferi/metabolismo , Ligantes , Doença de Lyme/genética , Doença de Lyme/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fagossomos/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Proteínas rab de Ligação ao GTP , Animais , Camundongos
11.
J Mol Cell Cardiol ; 194: 46-58, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38950816

RESUMO

BACKGROUNDS: Pathological cardiac hypertrophy is considered one of the independent risk factors for heart failure, with a rather complex pathogenic machinery. Sorting nexins (SNXs), denoting a diverse family of cytoplasmic- and membrane-associated phosphoinositide-binding proteins, act as a pharmacological target against specific cardiovascular diseases including heart failure. Family member SNX5 was reported to play a pivotal role in a variety of biological processes. However, contribution of SNX5 to the development of cardiac hypertrophy, remains unclear. METHODS: Mice underwent transverse aortic constriction (TAC) to induce cardiac hypertrophy and simulate pathological conditions. TAC model was validated using echocardiography and histological staining. Expression of SNX5 was assessed by western blotting. Then, SNX5 was delivered through intravenous administration of an adeno-associated virus serotype 9 carrying cTnT promoter (AAV9-cTnT-SNX5) to achieve SNX5 cardiac-specific overexpression. To assess the impact of SNX5, morphological analysis, echocardiography, histological staining, hypertrophic biomarkers, and cardiomyocyte contraction were evaluated. To unravel potential molecular events associated with SNX5, interactome analysis, fluorescence co-localization, and membrane protein profile were evaluated. RESULTS: Our results revealed significant downregulated protein level of SNX5 in TAC-induced hypertrophic hearts in mice. Interestingly, cardiac-specific overexpression of SNX5 improved cardiac function, with enhanced left ventricular ejection fraction, fraction shortening, as well as reduced cardiac fibrosis. Mechanistically, SNX5 directly bound to Rab11a, increasing membrane accumulation of Rab11a (a Rab GTPase). Afterwards, this intricate molecular interaction upregulated the membrane content of low-density lipoprotein receptor-related protein 6 (LRP6), a key regulator against cardiac hypertrophy. Our comprehensive assessment of siRab11a expression in HL-1 cells revealed its role in antagonism of LRP6 membrane accumulation under SNX5 overexpression. CONCLUSIONS: This study revealed that binding of SNX5 with LRP6 triggers their membrane translocation through Rab11a assisting, defending against cardiac remodeling and cardiac dysfunction under pressure overload. These findings provide new insights into the previously unrecognized role of SNX5 in the progression of cardiac hypertrophy.


Assuntos
Cardiomegalia , Miócitos Cardíacos , Transporte Proteico , Nexinas de Classificação , Proteínas rab de Ligação ao GTP , Animais , Masculino , Camundongos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/genética , Membrana Celular/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Nexinas de Classificação/metabolismo , Nexinas de Classificação/genética
12.
Dev Biol ; 499: 59-74, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37172642

RESUMO

The molecular links between tissue-level morphogenesis and the differentiation of cell lineages in the pancreas remain elusive despite a decade of studies. We previously showed that in pancreas both processes depend on proper lumenogenesis. The Rab GTPase Rab11 is essential for epithelial lumen formation in vitro, however few studies have addressed its functions in vivo and none have tested its requirement in pancreas. Here, we show that Rab11 is critical for proper pancreas development. Co-deletion of the Rab11 isoforms Rab11A and Rab11B in the developing pancreatic epithelium (Rab11pancDKO) results in ∼50% neonatal lethality and surviving adult Rab11pancDKO mice exhibit defective endocrine function. Loss of both Rab11A and Rab11B in the embryonic pancreas results in morphogenetic defects of the epithelium, including defective lumen formation and lumen interconnection. In contrast to wildtype cells, Rab11pancDKO cells initiate the formation of multiple ectopic lumens, resulting in a failure to coordinate a single apical membrane initiation site (AMIS) between groups of cells. This results in an inability to form ducts with continuous lumens. Here, we show that these defects are due to failures in vesicle trafficking, as apical and junctional components remain trapped within Rab11pancDKO cells. Together, these observations suggest that Rab11 directly regulates epithelial lumen formation and morphogenesis. Our report links intracellular trafficking to organ morphogenesis in vivo and presents a novel framework for decoding pancreatic development.


Assuntos
Pâncreas , Proteínas rab de Ligação ao GTP , Camundongos , Animais , Epitélio/metabolismo , Membrana Celular/metabolismo , Isoformas de Proteínas/metabolismo , Pâncreas/metabolismo , Morfogênese , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
13.
J Biol Chem ; 299(1): 102764, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463963

RESUMO

The formation of complexes between Rab11 and its effectors regulates multiple aspects of membrane trafficking, including recycling and ciliogenesis. WD repeat-containing protein 44 (WDR44) is a structurally uncharacterized Rab11 effector that regulates ciliogenesis by competing with prociliogenesis factors for Rab11 binding. Here, we present a detailed biochemical and biophysical characterization of the WDR44-Rab11 complex and define specific residues mediating binding. Using AlphaFold2 modeling and hydrogen/deuterium exchange mass spectrometry, we generated a molecular model of the Rab11-WDR44 complex. The Rab11-binding domain of WDR44 interacts with switch I, switch II, and the interswitch region of Rab11. Extensive mutagenesis of evolutionarily conserved residues in WDR44 at the interface identified numerous complex-disrupting mutations. Using hydrogen/deuterium exchange mass spectrometry, we found that the dynamics of the WDR44-Rab11 interface are distinct from the Rab11 effector FIP3, with WDR44 forming a more extensive interface with the switch II helix of Rab11 compared with FIP3. The WDR44 interaction was specific to Rab11 over evolutionarily similar Rabs, with mutations defining the molecular basis of Rab11 specificity. Finally, WDR44 can be phosphorylated by Sgk3, with this leading to reorganization of the Rab11-binding surface on WDR44. Overall, our results provide molecular detail on how WDR44 interacts with Rab11 and how Rab11 can form distinct effector complexes that regulate membrane trafficking events.


Assuntos
GTP Fosfo-Hidrolases , Quinase I-kappa B , Modelos Moleculares , Proteínas rab de Ligação ao GTP , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Quinase I-kappa B/metabolismo , Ligação Proteica , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/metabolismo , Espectrometria de Massas
14.
EMBO J ; 39(16): e103009, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32720716

RESUMO

Exosomes are secreted extracellular vesicles carrying diverse molecular cargos, which can modulate recipient cell behaviour. They are thought to derive from intraluminal vesicles formed in late endosomal multivesicular bodies (MVBs). An alternate exosome formation mechanism, which is conserved from fly to human, is described here, with exosomes carrying unique cargos, including the GTPase Rab11, generated in Rab11-positive recycling endosomal MVBs. Release of Rab11-positive exosomes from cancer cells is increased relative to late endosomal exosomes by reducing growth regulatory Akt/mechanistic Target of Rapamycin Complex 1 (mTORC1) signalling or depleting the key metabolic substrate glutamine, which diverts membrane flux through recycling endosomes. Vesicles produced under these conditions promote tumour cell proliferation and turnover and modulate blood vessel networks in xenograft mouse models in vivo. Their growth-promoting activity, which is also observed in vitro, is Rab11a-dependent, involves ERK-MAPK-signalling and is inhibited by antibodies against amphiregulin, an EGFR ligand concentrated on these vesicles. Therefore, glutamine depletion or mTORC1 inhibition stimulates release from Rab11a compartments of exosomes with pro-tumorigenic functions, which we propose promote stress-induced tumour adaptation.


Assuntos
Proliferação de Células , Exossomos , Glutamina/deficiência , Sistema de Sinalização das MAP Quinases , Neoplasias , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
15.
J Cell Sci ; 135(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36052645

RESUMO

Primary cilia are near-ubiquitously assembled on cells in the human body, and are broadly associated with genetic diseases and cancers. In the early stage of ciliogenesis, the ciliary vesicle (CV) is formed on the mother centriole, which nucleates the primary cilium. However, the regulatory mechanisms underlying CV formation have not yet been fully elucidated. Here, we found that the atypical small GTPase RAB-like 3 (RABL3) is necessary to assemble primary cilia in human cells. RABL3 directly interacts with RAB11 (herein referring to both RAB11A and RAB11B), which is involved in CV formation. RABL3 localizes around the centrosome during early ciliogenesis, reminiscent of RAB11 dynamics. Furthermore, RABL3 positively controls the CV formation like RAB11. These findings suggest that RABL3 plays an important role, in cooperation with RAB11, in CV formation during early ciliogenesis.


Assuntos
Cílios , Proteínas rab de Ligação ao GTP , Centríolos/metabolismo , Centrossomo/metabolismo , Cílios/metabolismo , Vesículas Citoplasmáticas/metabolismo , Humanos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
16.
Biochem Biophys Res Commun ; 703: 149653, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38364682

RESUMO

Cellular vesicle long-distance transport along the cytoplasmic actin network has recently been uncovered in several cell systems. In metaphase mouse oocytes, the motor protein myosin-5b (Myo5b) and the actin nucleation factor Spire are recruited to the Rab11a-positive vesicle membrane, forming a ternary complex of Myo5b/Spire/Rab11a that drives the vesicle long-distance transport to the oocyte cortex. However, the mechanism underlying the intermolecular regulation of the Myo5b/Spire/Rab11a complex remains unknown. In this study, we expressed and purified Myo5b, Spire2, and Rab11a proteins, and performed ATPase activity measurements, pulldown and single-molecule motility assays. Our results demonstrate that both Spire2 and Rab11a are required to activate Myo5b motor activity under physiological ionic conditions. The GTBM fragment of Spire2 stimulates the ATPase activity of Myo5b, while Rab11a enhances this activation. This activation occurs by disrupting the head-tail interaction of Myo5b. Furthermore, at the single-molecule level, we observed that the GTBM fragment of Spire2 and Rab11a coordinate to stimulate the Myo5b motility activity. Based on our results, we propose that upon association with the vesicle membrane, Myo5b, Spire2 and Rab11a form a ternary complex, and the inhibited Myo5b is synergistically activated by Spire2 and Rab11a, thereby triggering the long-distance transport of vesicles.


Assuntos
Actinas , Miosina Tipo V , Camundongos , Animais , Actinas/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Miosina Tipo V/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
17.
Development ; 148(3)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462110

RESUMO

Rab11 family-interacting protein 5 (Rab11fip5) is an adaptor protein that binds to the small GTPase Rab11, which has an important function in endosome recycling and trafficking of cellular proteins to the plasma membrane. Rab11fip5 is involved in many cellular processes, such as cytoskeleton rearrangement, iron uptake and exocytosis in neuroendocrine cells, and is also known as a candidate gene for autism-spectrum disorder. However, the role of Rab11fip5 during early embryonic development is not clearly understood. In this study, we identified Rab11fip5 as a protein that interacts with ephrinB1, a transmembrane ligand for Eph receptors. The PDZ binding motif in ephrinB1 and the Rab-binding domain in Rab11fip5 are necessary for their interaction in a complex. EphrinB1 and Rab11fip5 display overlapping expression in the telencephalon of developing amphibian embryos. The loss of Rab11fip5 function causes a reduction in telencephalon size and a decrease in the expression level of ephrinB1. Moreover, morpholino oligonucleotide-mediated knockdown of Rab11fip5 decreases cell proliferation in the telencephalon. The overexpression of ephrinB1 rescues these defects, suggesting that ephrinB1 recycling by the Rab11/Rab11fip5 complex is crucial for proper telencephalon development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Efrina-B1/metabolismo , Telencéfalo/crescimento & desenvolvimento , Telencéfalo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proliferação de Células , Citoesqueleto , Endossomos/metabolismo , Efrina-B1/genética , Exocitose , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Neurogênese , Telencéfalo/citologia , Xenopus laevis
18.
J Transl Med ; 22(1): 800, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210440

RESUMO

BACKGROUND: Recycling of integrin via endosomal vesicles is critical for the migration of cancer cells, which leads to the metastasis of pancreatic cancer and devastating cancer-related death. So, new diagnostic and therapeutic molecules which target the recycling of endosomal vesicles need to be developed. METHODS: Public databases including TCGA, ICGC, GSE21501, GSE28735, and GENT are analyzed to derive diagnostic and therapeutic targets. To reveal biological roles and underlying mechanisms of molecular targets, various molecular biological experiments were conducted. RESULTS: First, we identified UNC13D's overexpression in patients with pancreatic cancer (n = 824) and its prognostic significance and high hazard ratio (HR) in four independent pancreatic cancer cohorts (TCGA, n = 178, p = 0.014, HR = 3.629; ICGC, n = 91, p = 0.000, HR = 4.362; GSE21501, n = 102, p = 0.002, HR = 2.339; GSE28735, n = 45, p = 0.022, HR = 2.681). Additionally, its expression is associated with the clinicopathological progression of pancreatic cancer. Further biological studies have shown that UNC13D regulates the migration of pancreatic cancer cells by coupling the exocytosis of recycling endosomes with focal adhesion turnover via the regulation of FAK phosphorylation. Immunoprecipitation and immunocytochemistry showed the formation of the RAB11-UNC13D-FAK axis in endosomes during integrin recycling. We observed that UNC13D directly interacted with the FERM domain of FAK and regulated FAK phosphorylation in a calcium-dependent manner. Finally, we found co-expression of UNC13D and FAK showed the poorest survival (TCGA, p = 0.000; ICGC, p = 0.036; GSE28735, p = 0.006). CONCLUSIONS: We highlight that UNC13D, a novel prognostic factor, promotes pancreatic cancer progression by coupling integrin recycling with focal adhesion turnover via the RAB11-UNC13D-FAK axis for the migration of pancreatic cancer cells.


Assuntos
Movimento Celular , Adesões Focais , Integrinas , Neoplasias Pancreáticas , Proteínas rab de Ligação ao GTP , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Proteínas rab de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Adesões Focais/metabolismo , Integrinas/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Feminino , Masculino , Transdução de Sinais , Pessoa de Meia-Idade , Prognóstico , Regulação Neoplásica da Expressão Gênica , Endossomos/metabolismo , Progressão da Doença
19.
J Biomed Sci ; 31(1): 65, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943128

RESUMO

BACKGROUND: Enterovirus 71 (EV-A71) causes Hand, Foot and Mouth Disease (HFMD) in children and has been associated with neurological complications. The molecular mechanisms involved in EV-A71 pathogenesis have remained elusive. METHODS: A siRNA screen in EV-A71 infected-motor neurons was performed targeting 112 genes involved in intracellular membrane trafficking, followed by validation of the top four hits using deconvoluted siRNA. Downstream approaches including viral entry by-pass, intracellular viral genome quantification by qPCR, Western blot analyses, and Luciferase reporter assays allowed determine the stage of the infection cycle the top candidate, RAB11A was involved in. Proximity ligation assay, co-immunoprecipitation and multiplex confocal imaging were employed to study interactions between viral components and RAB11A. Dominant negative and constitutively active RAB11A constructs were used to determine the importance of the protein's GTPase activity during EV-A71 infection. Mass spectrometry and protein interaction analyses were employed for the identification of RAB11A's host interacting partners during infection. RESULTS: Small GTPase RAB11A was identified as a novel pro-viral host factor during EV-A71 infection. RAB11A and RAB11B isoforms were interchangeably exploited by strains from major EV-A71 genogroups and by Coxsackievirus A16, another major causative agent of HFMD. We showed that RAB11A was not involved in viral entry, IRES-mediated protein translation, viral genome replication, and virus exit. RAB11A co-localized with replication organelles where it interacted with structural and non-structural viral components. Over-expression of dominant negative (S25N; GDP-bound) and constitutively active (Q70L; GTP-bound) RAB11A mutants had no effect on EV-A71 infection outcome, ruling out RAB11A's involvement in intracellular trafficking of viral or host components. Instead, decreased ratio of intracellular mature viral particles to viral RNA copies and increased VP0:VP2 ratio in siRAB11-treated cells supported a role in provirion maturation hallmarked by VP0 cleavage into VP2 and VP4. Finally, chaperones, not trafficking and transporter proteins, were found to be RAB11A's top interacting partners during EV-A71 infection. Among which, CCT8 subunit from the chaperone complex TRiC/CCT was further validated and shown to interact with viral structural proteins specifically, representing yet another novel pro-viral host factor during EV-A71 infection. CONCLUSIONS: This study describes a novel, unconventional role for RAB11A during viral infection where it participates in the complex process of virus morphogenesis by recruiting essential chaperone proteins.


Assuntos
Enterovirus Humano A , Proteínas rab de Ligação ao GTP , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Enterovirus Humano A/genética , Enterovirus Humano A/fisiologia , Enterovirus Humano A/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Replicação Viral
20.
EMBO Rep ; 23(12): e55851, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36285521

RESUMO

The Hippo pathway is an evolutionarily conserved developmental pathway that controls organ size by integrating diverse regulatory inputs, including actomyosin-mediated cytoskeletal tension. Despite established connections between the actomyosin cytoskeleton and the Hippo pathway, the upstream regulation of actomyosin in the Hippo pathway is less defined. Here, we identify the phosphoinositide-3-phosphatase Myotubularin (Mtm) as a novel upstream regulator of actomyosin that functions synergistically with the Hippo pathway during growth control. Mechanistically, Mtm regulates membrane phospholipid PI(3)P dynamics, which, in turn, modulates actomyosin activity through Rab11-mediated vesicular trafficking. We reveal PI(3)P dynamics as a novel mode of upstream regulation of actomyosin and establish Rab11-mediated vesicular trafficking as a functional link between membrane lipid dynamics and actomyosin activation in the context of growth control. Our study also shows that MTMR2, the human counterpart of Drosophila Mtm, has conserved functions in regulating actomyosin activity and tissue growth, providing new insights into the molecular basis of MTMR2-related peripheral nerve myelination and human disorders.


Assuntos
Actomiosina , Via de Sinalização Hippo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA