Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Exp Cell Res ; 436(2): 113978, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382805

RESUMO

Osteosarcoma (OS) is one of the most prevalent primary bone tumors with a high degree of metastasis and poor prognosis. Epithelial-to-mesenchymal transition (EMT) is a cellular mechanism that contributes to the invasion and metastasis of cancer cells, and OS cells have been reported to exhibit EMT-like characteristics. Our previous studies have shown that the interaction between tumor necrosis factor superfamily member 11 (TNFRSF11A; also known as RANK) and its ligand TNFSF11 (also known as RANKL) promotes the EMT process in breast cancer cells. However, whether the interaction between RANK and RANKL enhances aggressive behavior by inducing EMT in OS cells has not yet been elucidated. In this study, we showed that the interaction between RANK and RANKL increased the migration, invasion, and metastasis of OS cells by promoting EMT. Importantly, we clarified that the RANK/RANKL axis induces EMT by activating the nuclear factor-kappa B (NF-κB) pathway. Furthermore, the NF-κB inhibitor dimethyl fumarate (DMF) suppressed migration, invasion, and EMT in OS cells. Our results suggest that the RANK/RANKL axis may serve as a potential tumor marker and promising therapeutic target for OS metastasis. Furthermore, DMF may have clinical applications in the treatment of lung metastasis in patients with OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Linhagem Celular Tumoral , Invasividade Neoplásica , Osteossarcoma/patologia , Neoplasias Ósseas/patologia , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética
2.
Small ; 20(22): e2307595, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38126648

RESUMO

In the osteoporotic microenvironment, the acidic microenvironment generated by excessive osteoclasts not only causes irreversible bone mineral dissolution, but also promotes reactive oxygen species (ROS) production to induce osteoblast senescence and excessive receptor activator of nuclear factor kappa-B ligand (RANKL) production, which help to generate more osteoclasts. Hence, targeting the acidic microenvironment and RANKL production may break this vicious cycle to rescue osteoporosis. To achieve this, an acid-responsive and neutralizing system with high in vivo gene editing capacity is developed by loading sodium bicarbonate (NaHCO3) and RANKL-CRISPR/Cas9 (RC) plasmid in a metal-organic framework. This results showed ZIF8-NaHCO3@Cas9 (ZNC) effective neutralized acidic microenvironment and inhibited ROS production . Surprisingly, nanoparticles loaded with NaHCO3 and plasmids show higher transfection efficiency in the acidic environments as compared to the ones loaded with plasmid only. Finally, micro-CT proves complete reversal of bone volume in ovariectomized mice after ZNC injection into the bone remodeling site. Overall, the newly developed nanoparticles show strong effect in neutralizing the acidic microenvironment to achieve bone protection through promoting osteogenesis and inhibiting osteolysis in a bidirectional manner. This study provides new insights into the treatment of osteoporosis for biomedical and clinical therapies.


Assuntos
Edição de Genes , Estruturas Metalorgânicas , Osteoclastos , Osteoporose , Animais , Osteoporose/metabolismo , Osteoclastos/metabolismo , Camundongos , Estruturas Metalorgânicas/química , Ligante RANK/metabolismo , Feminino , Sistemas CRISPR-Cas , Espécies Reativas de Oxigênio/metabolismo , Bicarbonato de Sódio/química , Ácidos/química , Nanopartículas/química , Osteogênese/efeitos dos fármacos , Plasmídeos/genética
3.
J Pharmacol Sci ; 154(2): 113-126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246725

RESUMO

Excessive bone resorption caused by upregulated osteoclast activity is a key factor in osteoporosis pathogenesis. Farrerol is a typical natural flavanone and exhibits various pharmacological actions. However, the role and mechanism of action of farrerol in osteoclast differentiation regulation remain unclear. This study aimed to evaluate the effects and mechanism of farrerol on the inhibition of osteoclastogenesis. Tartrate-resistant acid phosphatase staining, F-actin staining, and the pit formation assay were performed to examine the differentiation and functions of osteoclasts in vitro. The expression of proteins associated with the nuclear factor kappa B and mitogen-activated protein kinase signaling pathways was analyzed by western blotting. Dual X-ray absorptiometry, microcomputed tomography, and histopathological and immunohistochemical analyses were performed to determine the therapeutic effect of farrerol in vivo bone loss prevention. The effects of farrerol on osteoblastic bone formation were assessed using alkaline phosphatase, alizarin red S staining, and calcein-alizarin red S double labeling. Farrerol inhibited osteoclastogenesis and bone resorption in osteoclasts by suppressing nuclear factor kappa B signaling rather than mitogen-activated protein kinase signaling in vitro. Farrerol protected mice against ovariectomy-induced bone loss by inhibiting osteoclast-mediated bone resorption, instead of promoting osteoblast-mediated bone formation in vivo. The findings of the current study revealed that farrerol is a potential therapeutic agent for osteoporosis.


Assuntos
Antraquinonas , Reabsorção Óssea , Cromonas , Osteoporose Pós-Menopausa , Osteoporose , Feminino , Humanos , Animais , Camundongos , NF-kappa B , Osteoclastos , Osteoporose Pós-Menopausa/tratamento farmacológico , Microtomografia por Raio-X , Transdução de Sinais , Osteoporose/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno , Reabsorção Óssea/tratamento farmacológico
4.
Mol Cells ; 47(4): 100059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38554844

RESUMO

Periodontitis (PD) is an inflammatory disease with alveolar bone destruction by osteoclasts (OCs). In PD, both inflammation and OC activation are significantly influenced by periodontal ligament fibroblasts (PDL-Fib). Yet, whether PDL-Fib has heterogeneity and whether distinct PDL-Fib subsets have specific functions have not been investigated. In this study, we discovered the complexity of PDL-Fib in PD, utilizing single-cell RNA sequencing data from human PD patients. We identified distinct subpopulations of PDL-Fib: one expressing interleukin-1 beta (IL-1ß) and another expressing the receptor activator of nuclear factor-kappa B ligand (RANKL), both crucial in OC differentiation and bone resorption. In periodontal tissues of mice with PD, active IL-1ß, cleaved caspase 1, and nucleotide-binding oligomerization domain-like receptor 3 (NLPR3) were significantly elevated, implicating the NLRP3 inflammasome in IL-1ß production. Upon stimulation of PDL-Fib with LPS from Porphyromonas gingivalis (pg), the most well-characterized periodontal bacteria, a more rapid increase in IL-1ß, followed by RANKL induction, was observed. IL-1ß and tumor necrosis factor alpha (TNF-α), another LPS-responsive cytokine, effectively increased RANKL in PDL-Fib, suggesting an indirect effect of pgLPS through IL-1ß and TNF-α on RANKL induction. Immunohistological analyses of mouse periodontal tissues also showed markedly elevated levels of IL-1ß and RANKL upon PD induction and displayed separate locations of IL-1ß-expressing PDL-Fib and RANKL-expressing PDL-Fib in PD. The heterogenic feature of fibroblasts expressing IL-1ß and RANKL was also mirrored in our combined cross-tissue single-cell RNA sequencing datasets analysis. In summary, our study elucidates the heterogeneity of PDL-Fib, highlighting distinct functional groups for producing RANKL and IL-1ß, which collectively promote OC generation and bone destruction in PD.


Assuntos
Fibroblastos , Interleucina-1beta , Ligamento Periodontal , Periodontite , Ligante RANK , Animais , Humanos , Masculino , Camundongos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/patologia , Periodontite/metabolismo , Periodontite/genética , Periodontite/patologia , Ligante RANK/metabolismo , Ligante RANK/genética , Análise da Expressão Gênica de Célula Única
5.
Bol. méd. Hosp. Infant. Méx ; 79(5): 275-283, Sep.-Oct. 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1403651

RESUMO

Abstract Duchenne muscular dystrophy (DMD) is an X-linked inherited disorder. Patients present with decreased bone mineral density (BMD) due to glucocorticoid therapy and progressive muscle weakness. Bone remodeling allows bone volume and structure to be maintained and controlled by local and systemic factors. These include the receptor activator of the nuclear factor-kB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system, a determining pathway in the balance between bone formation and resorption. Disruptions in this complex, caused by factors such as glucocorticoids, can affect bone metabolism. The extensive action of the RANK/RANKL/OPG pathway suggests an influence on dystrophic muscle pathophysiology. This review aimed to highlight some aspects of the RANK/RANKL/OPG system, the effect of glucocorticoids on this pathway, and the pathophysiology of the patient with DMD.


Resumen La distrofia muscular de Duchenne (DMD) es un trastorno hereditario ligado al cromosoma X. Los pacientes presentan una disminución de la densidad mineral ósea (DMO) debido a los efectos adversos del tratamiento con glucocorticoides y a la debilidad muscular progresiva. El remodelado óseo permite mantener el volumen y la estructura ósea, proceso controlado por factores locales y sistémicos. Entre ellos destaca el sistema del receptor activador del factor nuclear-kB (RANK), su ligando natural RANKL (RANKL) y la osteoprotegerina (OPG), una vía determinante en el equilibrio entre la resorción y formación ósea. Las alteraciones en este complejo, originadas por factores como los glucocorticoides, pueden afectar el metabolismo óseo. La amplia acción de RANKL y OPG ha sugerido una influencia en la fisiopatología de la DMD. El objetivo de esta revisión fue destacar algunos aspectos del sistema RANK/RANKL/OPG, el efecto de los glucocorticoides en esta vía y la fisiopatología del paciente con DMD.

6.
J. appl. oral sci ; 28: e20190409, 2020. graf
Artigo em Inglês | LILACS, BBO | ID: biblio-1090768

RESUMO

Abstract Menopause induces oral bone loss, leading to various oral diseases. Mastication importantly affects bone metabolism in the jawbone. Objective: To analyze the effect of enhanced masticatory force on osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), and mechano-growth factor (MGF) in alveolar bone of ovariectomized rats and to study the mechanics mechanism of the alveolar bone of ovariectomized rats response to enhanced masticatory force. Methodology: Thirty Sprague Dawley rats were randomly divided into three groups: sham-operation group (fat around the removed ovary + normal hard diet), model group (ovariectomy + normal hard diet), and experimental group (ovariectomy + high hard diet). It was a 2-month experiment. Enzyme-linked immunosorbent assay (ELISA) detected serum estradiol (E2), osteocalcin (BGP) and alkaline phosphatase (ALP) in rats. Bone histomorphometric indices in the third molar region of maxilla were detected by micro-CT; protein expressions of OPG, RANKL, and MGF in the third molar region of maxilla was detected by Western blot; and gene expression of OPG, RANKL, and MGF in the third molar region of maxilla was detected by Quantitative Real-Time PCR. Results: Comparing with model group, serum E2 in experimental group increased but not significantly, serum BGP and serum ALP in experimental group decreased but not significantly, OPG in experimental group in alveolar bone increased significantly, RANKL in experimental group in alveolar bone decreased significantly, RANKL/OPG ratio in experimental group decreased significantly, MGF in experimental group in alveolar bone increased significantly, bone volume to total volume fraction increased significantly in experimental group, trabecular thickness increased significantly in experimental group, and trabecular separation decreased significantly in experimental group. Conclusion: Enhanced masticatory force affected the expression of OPG, RANKL, and MGF in alveolar bone of ovariectomized rats, improved the quality of jaw bone of ovariectomized rats, and delayed oral bone loss by ovariectomy.


Assuntos
Animais , Feminino , Força de Mordida , Fator de Crescimento Insulin-Like I/análise , Ovariectomia , Ligante RANK/análise , Osteoprotegerina/análise , Processo Alveolar/fisiopatologia , Osteocalcina/sangue , Western Blotting , Reação em Cadeia da Polimerase , Ratos Sprague-Dawley , Fosfatase Alcalina/sangue , Estradiol/sangue , Microtomografia por Raio-X , ELISPOT
7.
J. appl. oral sci ; 23(1): 33-41, Jan-Feb/2015. graf
Artigo em Inglês | LILACS, BBO | ID: lil-741589

RESUMO

Objectives Sumac (Rhus coriaria L.) is widely used spice which has several properties such as antioxidant, anti-inflammatory and antimicrobial. The purpose of this animal study was to evaluate the effects of sumac extract on levels of receptor activator of nuclear factor-kappa B ligand (RANKL), osteoprotegerin (OPG) expression, serum oxidative status, and alveolar bone loss in experimental periodontitis. Material and Methods Twenty-four Wistar rats were separated into three groups: non-ligated (NL, n=8), ligature only (LO, n=8), and ligature and treated with sumac extract (S, n=8) (20 mg/kg per day for 11 days). A 4/0 silk suture was placed around the mandibular right first molars subgingivally; after 11 days, the rats were sacrificed, and alveolar bone loss was histometrically measured. The detection of RANKL and OPG were immunohistochemically performed. Levels of serum total antioxidant status (TAS)/total oxidant status (TOS), and oxidative stress index (OSI) were also analyzed. Results Alveolar bone loss was significantly greater in the LO group compared to the S and NL groups (p<0.05). The number of inflammatory cell infiltrate (ICI) and osteoclasts in the LO group was significantly higher than that of the NL and S groups (p<0.05). The number of osteoblasts in the LO and S groups was significantly higher than that of the NL group (p<0.05). There were significantly more RANKL-positive cells in the LO group than in the S and NL groups (p<0.05). OPG-positive cells were higher in S group than in LO and NL groups (p<0.05). TOS and OSI levels were significantly reduced in S group compared to LO group (P<0.05) and TAS levels were similar in S and NL group (p>0.05). Conclusions The present study showed that systemic administration of sumac extract may reduce alveolar bone loss by affecting RANKL/OPG balance, TOS and OSI levels in periodontal disease in rats. .


Assuntos
Animais , Masculino , Perda do Osso Alveolar/tratamento farmacológico , Osteoprotegerina/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Periodontite/tratamento farmacológico , Extratos Vegetais/farmacologia , Ligante RANK/efeitos dos fármacos , Rhus/química , Perda do Osso Alveolar/patologia , Antioxidantes/análise , Contagem de Células , Imuno-Histoquímica , Osteoblastos , Osteoprotegerina/análise , Oxidantes/sangue , Periodontite/patologia , Ligante RANK/análise , Distribuição Aleatória , Ratos Wistar , Reprodutibilidade dos Testes
8.
Araraquara; s.n; 2009. 154 p. ilus.
Tese em Português | LILACS, BBO | ID: lil-590726

RESUMO

A reabsorcao do osso alveolar e uma das principais caracteristicas associadas a progressao da doenca periodontal. Apesar da enorme complexidade da microbiota envolvida, considera-se que bacterias Gram-negativas tenham um papel relevante em sua etiopatogenese. Um dos fatores de virulencia destes microrganismos e representado por um componente de sua parede externa denominado lipopolissacarideo (LPS). A presenca de LPS na proximidade dos tecidos periodontais e capaz de induzir a producao de diversos mediadores inflamatorios que levam a degradacao tanto do tecido conjuntivo quanto osseo. Atualmente acredita-se que a interacao do ligante do receptor-ativador do fator nuclear kappa-B (RANKL) com seu receptor (RANK) presente em precursores hematopoieticos e necessaria e suficiente para a inducao da diferenciacao de osteoclastos. Por outro lado, a ligacao de RANKL com seu falso-receptor, denominado osteoprotegerina (OPG), reduz sua biodisponibilidade e inibe, desta forma, a osteoclastogenese. Assim, a razao da expressao de RANKL e OPG e considerada como o principal determinante do “turnover” do tecido osseo. A producao de RANKL e OPG depende das vias de sinalizacao ativadas, as quais sao influenciadas pela natureza do estimulo extracelular. Atualmente, a familia de receptores NLRs (nod-like receptors) foi identificada como receptor intracelular para componentes bacterianos e agentes moduladores de diferentes vias de sinalizacao. Considerando a relevancia do LPS bacteriano na patogenese da doenca periodontal, o papel do RANKL no processo de reabsorcao ossea e a possivel implicacao das proteinas Nod na transducao de sinais regulando a expressao de RANKL, o objetivo geral deste projeto foi estudar os mecanismos de regulacao da expressao de RANKL induzido por LPS bacteriano em celulas relevantes do periodonto (macrofagos, osteoblastos e fibroblastos). Os objetivos especificos propostos...


Bone resorption is one of the major characteristics of destructive periodontal disease. Despite the great number of different bacterial species in the dental biofilm, Gramnegative microorganisms were demonstrated to have a very important role on periodontal disease pathogenesis. Lipopolysaccharide (LPS) is a bacterial cell wall component, which is acknowledged as one of the main virulence factors of these microorganisms. The mere presence of LPS in proximity with the periodontal tissues initiates the expression and production of inflammatory mediators and other cytokines which can culminate in degradation of both soft and hard tissues. It is currently accepted that the interaction between receptor-activator of nuclear factor kappa-B ligand (RANKL) and its receptor (RANK) is both necessary and sufficient to induce osteoclast differentiation and activation. However, RANKL can interact with its soluble decoy receptor osteoprotegerin (OPG) inhibiting osteoclastogenesis by decreasing the bioavailability of RANKL. Production of RANKL/OPG is the result of the signaling pathways activated by external stimuli. Recently, the NLR (nod-like receptors) family was identified as cytosolic receptors for bacterial components and also, as capable of modulating different signaling pathways. Considering the relevance of LPS and RANKL in bone resorption and the possible implication of Nod proteins in signal transduction regulating RANKL expression, the aim of this study was to evaluate the influence of different intracellular signaling pathways on the regulation of RANKL expression induced by LPS in relevant cells of the periodontium (macrophages, osteoblasts and fibroblasts). The specific objectives proposed were to determine after LPS and interleukin-1 beta stimulation the role of MyD88-dependent and independent signaling pathways, Nod1 and Nod2 on the expression of RANKL, OPG, IL-10 and IFN-beta...


Assuntos
Sistema de Sinalização das MAP Quinases , NF-kappa B , Proteínas Adaptadoras de Sinalização NOD , Receptor Ativador de Fator Nuclear kappa-B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA