Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 52(6): 1309-1324, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31050280

RESUMO

BACKGROUND/AIMS: Different approaches have been considered to improve heart reconstructive medicine and direct delivery of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) appears to be highly promising in this context. However, low cell persistence post-transplantation remains a bottleneck hindering the approach. Here, we present a novel strategy to overcome the low engraftment of PSC-CMs during the early post-transplantation phase into the myocardium of both healthy and cryoinjured syngeneic mice. METHODS: Adult murine bone marrow mesenchymal stem cells (MSCs) and PSC-CMs were co-cultured on thermo-responsive polymers and later detached through temperature reduction, resulting in the protease-free generation of cell clusters (micro-tissues) composed of both cells types. Micro-tissues were transplanted into healthy and cryo-injured murine hearts. Short term cell retention was quantified by real-time-PCR. Longitudinal cell tracking was performed by bioluminescence imaging for four weeks. Transplanted cells were further detected by immunofluorescence staining of tissue sections. RESULTS: We demonstrated that in vitro grown micro-tissues consisting of PSC-CMs and MSCs can increase cardiomyocyte retention by >10fold one day post-transplantation, but could not fully rescue a further cell loss between day 1 and day 2. Neutrophil infiltration into the transplanted area was detected in healthy hearts and could be attributed to the cellular implantation rather than tissue damage exerted by the transplantation cannula. Injected PSC-CMs were tracked and successfully detected for up to four weeks by bioluminescence imaging. CONCLUSION: This approach demonstrated that in vitro grown micro-tissues might contribute to the development of cardiac cell replacement therapies.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Miocárdio/patologia , Miócitos Cardíacos/transplante , Animais , Células da Medula Óssea/citologia , Linhagem Celular , Rastreamento de Células , Técnicas de Cocultura , Imunidade Inata , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Microscopia de Fluorescência , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miocárdio/imunologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Infiltração de Neutrófilos , Imagem Óptica , Células-Tronco Pluripotentes/citologia , Polímeros/química
2.
J Clin Med ; 12(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36902839

RESUMO

Beneficial effects have been observed following the transplant of lipoaspirates containing adipose-derived stem cells into chronic wounds caused by oncologic radiotherapy. It is not yet certain whether adipose-derived stem cells are resistant to radiation exposure. Therefore, the aims of this study were to isolate stromal vascular fraction from human breast tissue exposed to radiotherapy and determine the presence of adipose-derived stem cells. Stromal vascular fraction from irradiated donor tissue was compared to commercially sourced pre-adipocytes. Immunocytochemistry was used to determine the presence of adipose-derived stem cell markers. Conditioned media from stromal vascular fraction isolated from irradiated donors was used as a treatment in a scratch wound assay of dermal fibroblasts also isolated from irradiated donors and compared to pre-adipocyte conditioned media and serum free control. This is the first report of human stromal vascular fraction being cultured from previously irradiated breast tissue. Stromal vascular fraction conditioned media from irradiated donors had a similar effect in increasing the migration of dermal fibroblasts from irradiated skin to pre-adipocyte conditioned media from healthy donors. Therefore, the ability of adipose-derived stem cells in the stromal vascular fraction to stimulate dermal fibroblasts in wound healing appears to be preserved following radiotherapy. This study demonstrates that stromal vascular fraction from irradiated patients is viable, functional and may have potential for regenerative medicine techniques following radiotherapy.

3.
Cancers (Basel) ; 12(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326172

RESUMO

The epigenome denotes all the information related to gene expression that is not contained in the DNA sequence but rather results from chemical changes to histones and DNA. Epigenetic modifications act in a cooperative way towards the regulation of gene expression, working at the transcriptional or post-transcriptional level, and play a key role in the determination of phenotypic variations in cells containing the same genotype. Epigenetic modifications are important considerations in relation to anti-cancer therapy and regenerative/reconstructive medicine. Moreover, a range of clinical trials have been performed, exploiting the potential of epigenetics in stem cell engineering towards application in disease treatments and diagnostics. Epigenetic studies will most likely be the basis of future cancer therapies, as epigenetic modifications play major roles in tumour formation, malignancy and metastasis. In fact, a large number of currently designed or tested clinical approaches, based on compounds regulating epigenetic pathways in various types of tumours, employ these mechanisms in stem cell bioengineering.

4.
Nanomaterials (Basel) ; 9(1)2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621188

RESUMO

We have tested titanium (Ti) plates that are used for bone reconstruction in maxillofacial surgery, in combination with five types of novel long-resorbable biomaterials: (i) PCL0-polycaprolactone without additives, (ii) PCLMWCNT-polycaprolactone with the addition of multiwall carbon nanotubes (MWCNT), (iii) PCLOH-polycaprolactone doped with multiwall carbon nanotubes (MWCNT) containing ⁻OH hydroxyl groups, (iv) PCLCOOH-polycaprolactone with the addition of multiwall carbon nanotubes (MWCNT) containing carboxyl groups, and (v) PCLTI-polycaprolactone with the addition of Ti nanoparticles. The structure and properties of the obtained materials have been examined with the use of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and/or X-ray powder diffraction (XRD). Titanium BR plates have been covered with: (i) PCL0 fibers (PCL0BR-connection plates), (ii) PCLMWCNT fibers (PCLMWCNTBR-plates), (iii) PCLOH fibers (PCLOHBR-plates), (iv) PCLCOOH (PCLCOOHBR-plates), (v) PCLTI fiber (PCLTIBR-connection plates). Such modified titanium plates were exposed to X-ray doses corresponding to those applied in head and neck tumor treatment. The potential leaching of toxic materials upon the irradiation of such modified titanium plates, and their effect on normal human dermal fibroblasts (NHDF) have been assessed by MTT assay. The presented results show variable biological responses depending on the modifications to titanium plates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA