Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.547
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(8): 2068-2083.e11, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33861964

RESUMO

Understanding population health disparities is an essential component of equitable precision health efforts. Epidemiology research often relies on definitions of race and ethnicity, but these population labels may not adequately capture disease burdens and environmental factors impacting specific sub-populations. Here, we propose a framework for repurposing data from electronic health records (EHRs) in concert with genomic data to explore the demographic ties that can impact disease burdens. Using data from a diverse biobank in New York City, we identified 17 communities sharing recent genetic ancestry. We observed 1,177 health outcomes that were statistically associated with a specific group and demonstrated significant differences in the segregation of genetic variants contributing to Mendelian diseases. We also demonstrated that fine-scale population structure can impact the prediction of complex disease risk within groups. This work reinforces the utility of linking genomic data to EHRs and provides a framework toward fine-scale monitoring of population health.


Assuntos
Etnicidade/genética , Saúde da População , Bases de Dados Genéticas , Registros Eletrônicos de Saúde , Genômica , Humanos , Autorrelato
2.
Am J Hum Genet ; 111(1): 11-23, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181729

RESUMO

Precision medicine initiatives across the globe have led to a revolution of repositories linking large-scale genomic data with electronic health records, enabling genomic analyses across the entire phenome. Many of these initiatives focus solely on research insights, leading to limited direct benefit to patients. We describe the biobank at the Colorado Center for Personalized Medicine (CCPM Biobank) that was jointly developed by the University of Colorado Anschutz Medical Campus and UCHealth to serve as a unique, dual-purpose research and clinical resource accelerating personalized medicine. This living resource currently has more than 200,000 participants with ongoing recruitment. We highlight the clinical, laboratory, regulatory, and HIPAA-compliant informatics infrastructure along with our stakeholder engagement, consent, recontact, and participant engagement strategies. We characterize aspects of genetic and geographic diversity unique to the Rocky Mountain region, the primary catchment area for CCPM Biobank participants. We leverage linked health and demographic information of the CCPM Biobank participant population to demonstrate the utility of the CCPM Biobank to replicate complex trait associations in the first 33,674 genotyped individuals across multiple disease domains. Finally, we describe our current efforts toward return of clinical genetic test results, including high-impact pathogenic variants and pharmacogenetic information, and our broader goals as the CCPM Biobank continues to grow. Bringing clinical and research interests together fosters unique clinical and translational questions that can be addressed from the large EHR-linked CCPM Biobank resource within a HIPAA- and CLIA-certified environment.


Assuntos
Sistema de Aprendizagem em Saúde , Medicina de Precisão , Humanos , Bancos de Espécimes Biológicos , Colorado , Genômica
3.
Annu Rev Pharmacol Toxicol ; 63: 65-76, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662581

RESUMO

A long-standing recognition that information from human genetics studies has the potential to accelerate drug discovery has led to decades of research on how to leverage genetic and phenotypic information for drug discovery. Established simple and advanced statistical methods that allow the simultaneous analysis of genotype and clinical phenotype data by genome- and phenome-wide analyses, colocalization analyses with quantitative trait loci data from transcriptomics and proteomics data sets from different tissues, and Mendelian randomization are essential tools for drug development in the postgenomic era. Numerous studies have demonstrated how genomic data provide opportunities for the identification of new drug targets, the repurposing of drugs, and drug safety analyses. With an increase in the number of biobanks that enable linking in-depth omics data with rich repositories of phenotypic traits via electronic health records, more powerful ways for the evaluation and validation of drug targets will continue to expand across different disciplines of clinical research.


Assuntos
Registros Eletrônicos de Saúde , Estudo de Associação Genômica Ampla , Humanos , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Fenótipo , Descoberta de Drogas
4.
Trends Genet ; 39(10): 773-786, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482451

RESUMO

Co-occurrence of diseases decreases patient quality of life, complicates treatment choices, and increases mortality. Analyses of electronic health records present a complex scenario of comorbidity relationships that vary by age, sex, and cohort under study. The study of similarities between diseases using 'omics data, such as genes altered in diseases, gene expression, proteome, and microbiome, are fundamental to uncovering the origin of, and potential treatment for, comorbidities. Recent studies have produced a first generation of genetic interpretations for as much as 46% of the comorbidities described in large cohorts. Integrating different sources of molecular information and using artificial intelligence (AI) methods are promising approaches for the study of comorbidities. They may help to improve the treatment of comorbidities, including the potential repositioning of drugs.


Assuntos
Inteligência Artificial , Qualidade de Vida , Humanos , Comorbidade
5.
Am J Hum Genet ; 110(9): 1522-1533, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37607538

RESUMO

Population-scale biobanks linked to electronic health record data provide vast opportunities to extend our knowledge of human genetics and discover new phenotype-genotype associations. Given their dense phenotype data, biobanks can also facilitate replication studies on a phenome-wide scale. Here, we introduce the phenotype-genotype reference map (PGRM), a set of 5,879 genetic associations from 523 GWAS publications that can be used for high-throughput replication experiments. PGRM phenotypes are standardized as phecodes, ensuring interoperability between biobanks. We applied the PGRM to five ancestry-specific cohorts from four independent biobanks and found evidence of robust replications across a wide array of phenotypes. We show how the PGRM can be used to detect data corruption and to empirically assess parameters for phenome-wide studies. Finally, we use the PGRM to explore factors associated with replicability of GWAS results.


Assuntos
Bancos de Espécimes Biológicos , Ciência de Dados , Humanos , Fenômica , Fenótipo , Genótipo
6.
Am J Hum Genet ; 110(11): 1950-1958, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37883979

RESUMO

As large-scale genomic screening becomes increasingly prevalent, understanding the influence of actionable results on healthcare utilization is key to estimating the potential long-term clinical impact. The eMERGE network sequenced individuals for actionable genes in multiple genetic conditions and returned results to individuals, providers, and the electronic health record. Differences in recommended health services (laboratory, imaging, and procedural testing) delivered within 12 months of return were compared among individuals with pathogenic or likely pathogenic (P/LP) findings to matched individuals with negative findings before and after return of results. Of 16,218 adults, 477 unselected individuals were found to have a monogenic risk for arrhythmia (n = 95), breast cancer (n = 96), cardiomyopathy (n = 95), colorectal cancer (n = 105), or familial hypercholesterolemia (n = 86). Individuals with P/LP results more frequently received services after return (43.8%) compared to before return (25.6%) of results and compared to individuals with negative findings (24.9%; p < 0.0001). The annual cost of qualifying healthcare services increased from an average of $162 before return to $343 after return of results among the P/LP group (p < 0.0001); differences in the negative group were non-significant. The mean difference-in-differences was $149 (p < 0.0001), which describes the increased cost within the P/LP group corrected for cost changes in the negative group. When stratified by individual conditions, significant cost differences were observed for arrhythmia, breast cancer, and cardiomyopathy. In conclusion, less than half of individuals received billed health services after monogenic return, which modestly increased healthcare costs for payors in the year following return.


Assuntos
Neoplasias da Mama , Cardiomiopatias , Adulto , Humanos , Feminino , Estudos Prospectivos , Aceitação pelo Paciente de Cuidados de Saúde , Arritmias Cardíacas , Neoplasias da Mama/genética , Cardiomiopatias/genética
7.
Circulation ; 149(14): e1028-e1050, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38415358

RESUMO

A major focus of academia, industry, and global governmental agencies is to develop and apply artificial intelligence and other advanced analytical tools to transform health care delivery. The American Heart Association supports the creation of tools and services that would further the science and practice of precision medicine by enabling more precise approaches to cardiovascular and stroke research, prevention, and care of individuals and populations. Nevertheless, several challenges exist, and few artificial intelligence tools have been shown to improve cardiovascular and stroke care sufficiently to be widely adopted. This scientific statement outlines the current state of the art on the use of artificial intelligence algorithms and data science in the diagnosis, classification, and treatment of cardiovascular disease. It also sets out to advance this mission, focusing on how digital tools and, in particular, artificial intelligence may provide clinical and mechanistic insights, address bias in clinical studies, and facilitate education and implementation science to improve cardiovascular and stroke outcomes. Last, a key objective of this scientific statement is to further the field by identifying best practices, gaps, and challenges for interested stakeholders.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Acidente Vascular Cerebral , Estados Unidos , Humanos , Inteligência Artificial , American Heart Association , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/prevenção & controle , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/prevenção & controle
8.
Am J Hum Genet ; 109(3): 433-445, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35196515

RESUMO

Biobanks linked to massive, longitudinal electronic health record (EHR) data make numerous new genetic research questions feasible. One among these is the study of biomarker trajectories. For example, high blood pressure measurements over visits strongly predict stroke onset, and consistently high fasting glucose and Hb1Ac levels define diabetes. Recent research reveals that not only the mean level of biomarker trajectories but also their fluctuations, or within-subject (WS) variability, are risk factors for many diseases. Glycemic variation, for instance, is recently considered an important clinical metric in diabetes management. It is crucial to identify the genetic factors that shift the mean or alter the WS variability of a biomarker trajectory. Compared to traditional cross-sectional studies, trajectory analysis utilizes more data points and captures a complete picture of the impact of time-varying factors, including medication history and lifestyle. Currently, there are no efficient tools for genome-wide association studies (GWASs) of biomarker trajectories at the biobank scale, even for just mean effects. We propose TrajGWAS, a linear mixed effect model-based method for testing genetic effects that shift the mean or alter the WS variability of a biomarker trajectory. It is scalable to biobank data with 100,000 to 1,000,000 individuals and many longitudinal measurements and robust to distributional assumptions. Simulation studies corroborate that TrajGWAS controls the type I error rate and is powerful. Analysis of eleven biomarkers measured longitudinally and extracted from UK Biobank primary care data for more than 150,000 participants with 1,800,000 observations reveals loci that significantly alter the mean or WS variability.


Assuntos
Bancos de Espécimes Biológicos , Estudo de Associação Genômica Ampla , Biomarcadores , Estudos Transversais , Registros Eletrônicos de Saúde , Humanos , Estudos Longitudinais
9.
Am J Hum Genet ; 109(9): 1591-1604, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998640

RESUMO

Diagnosis for rare genetic diseases often relies on phenotype-driven methods, which hinge on the accuracy and completeness of the rare disease phenotypes in the underlying annotation knowledgebase. Existing knowledgebases are often manually curated with additional annotations found in published case reports. Despite their potential, real-world data such as electronic health records (EHRs) have not been fully exploited to derive rare disease annotations. Here, we present open annotation for rare diseases (OARD), a real-world-data-derived resource with annotation for rare-disease-related phenotypes. This resource is derived from the EHRs of two academic health institutions containing more than 10 million individuals spanning wide age ranges and different disease subgroups. By leveraging ontology mapping and advanced natural-language-processing (NLP) methods, OARD automatically and efficiently extracts concepts for both rare diseases and their phenotypic traits from billing codes and lab tests as well as over 100 million clinical narratives. The rare disease prevalence derived by OARD is highly correlated with those annotated in the original rare disease knowledgebase. By performing association analysis, we identified more than 1 million novel disease-phenotype association pairs that were previously missed by human annotation, and >60% were confirmed true associations via manual review of a list of sampled pairs. Compared to the manual curated annotation, OARD is 100% data driven and its pipeline can be shared across different institutions. By supporting privacy-preserving sharing of aggregated summary statistics, such as term frequencies and disease-phenotype associations, it fills an important gap to facilitate data-driven research in the rare disease community.


Assuntos
Processamento de Linguagem Natural , Doenças Raras , Registros Eletrônicos de Saúde , Humanos , Fenótipo , Doenças Raras/genética
10.
Am J Hum Genet ; 109(10): 1742-1760, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36152628

RESUMO

Complex traits are influenced by genetic risk factors, lifestyle, and environmental variables, so-called exposures. Some exposures, e.g., smoking or lipid levels, have common genetic modifiers identified in genome-wide association studies. Because measurements are often unfeasible, exposure polygenic risk scores (ExPRSs) offer an alternative to study the influence of exposures on various phenotypes. Here, we collected publicly available summary statistics for 28 exposures and applied four common PRS methods to generate ExPRSs in two large biobanks: the Michigan Genomics Initiative and the UK Biobank. We established ExPRSs for 27 exposures and demonstrated their applicability in phenome-wide association studies and as predictors for common chronic conditions. Especially the addition of multiple ExPRSs showed, for several chronic conditions, an improvement compared to prediction models that only included traditional, disease-focused PRSs. To facilitate follow-up studies, we share all ExPRS constructs and generated results via an online repository called ExPRSweb.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Lipídeos , Herança Multifatorial/genética , Fatores de Risco
11.
Hum Genomics ; 18(1): 31, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523305

RESUMO

PURPOSE: Coding mutations in the Transthyretin (TTR) gene cause a hereditary form of amyloidosis characterized by a complex genotype-phenotype correlation with limited information regarding differences among worldwide populations. METHODS: We compared 676 diverse individuals carrying TTR amyloidogenic mutations (rs138065384, Phe44Leu; rs730881165, Ala81Thr; rs121918074, His90Asn; rs76992529, Val122Ile) to 12,430 non-carriers matched by age, sex, and genetically-inferred ancestry to assess their clinical presentations across 1,693 outcomes derived from electronic health records in UK biobank. RESULTS: In individuals of African descent (AFR), Val122Ile mutation was linked to multiple outcomes related to the circulatory system (fold-enrichment = 2.96, p = 0.002) with the strongest associations being cardiac congenital anomalies (phecode 747.1, p = 0.003), endocarditis (phecode 420.3, p = 0.006), and cardiomyopathy (phecode 425, p = 0.007). In individuals of Central-South Asian descent (CSA), His90Asn mutation was associated with dermatologic outcomes (fold-enrichment = 28, p = 0.001). The same TTR mutation was linked to neoplasms in European-descent individuals (EUR, fold-enrichment = 3.09, p = 0.003). In EUR, Ala81Thr showed multiple associations with respiratory outcomes related (fold-enrichment = 3.61, p = 0.002), but the strongest association was with atrioventricular block (phecode 426.2, p = 2.81 × 10- 4). Additionally, the same mutation in East Asians (EAS) showed associations with endocrine-metabolic traits (fold-enrichment = 4.47, p = 0.003). In the cross-ancestry meta-analysis, Val122Ile mutation was associated with peripheral nerve disorders (phecode 351, p = 0.004) in addition to cardiac congenital anomalies (fold-enrichment = 6.94, p = 0.003). CONCLUSIONS: Overall, these findings highlight that TTR amyloidogenic mutations present ancestry-specific and ancestry-convergent associations related to a range of health domains. This supports the need to increase awareness regarding the range of outcomes associated with TTR mutations across worldwide populations to reduce misdiagnosis and delayed diagnosis of TTR-related amyloidosis.


Assuntos
Amiloidose , Pré-Albumina , Humanos , Pré-Albumina/genética , Mutação , Amiloidose/diagnóstico , Amiloidose/genética , Fenótipo , Genética Populacional
12.
Arterioscler Thromb Vasc Biol ; 44(2): 491-504, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38095106

RESUMO

BACKGROUND: Venous thromboembolism (VTE) is a major cause of morbidity and mortality worldwide. Current risk assessment tools, such as the Caprini and Padua scores and Wells criteria, have limitations in their applicability and accuracy. This study aimed to develop machine learning models using structured electronic health record data to predict diagnosis and 1-year risk of VTE. METHODS: We trained and validated models on data from 159 001 participants in the Mount Sinai Data Warehouse. We then externally tested them on 401 723 participants in the UK Biobank and 123 039 participants in All of Us. All data sets contain populations of diverse ancestries and clinical histories. We used these data sets to develop small, medium, and large models with increasing features on a range of optimizing portability to maximizing performance. We make trained models publicly available in click-and-run format at https://doi.org/10.17632/tkwzysr4y6.6. RESULTS: In the holdout and external test sets, respectively, models achieved areas under the receiver operating characteristic curve of 0.80 to 0.83 and 0.72 to 0.82 for VTE diagnosis prediction and 0.76 to 0.78 and 0.64 to 0.69 for 1-year risk prediction, significantly outperforming the Padua score. Models also demonstrated robust performance across different VTE types and patient subsets, including ethnicity, age, and surgical and hospitalization status. Models identified both established and novel clinical features contributing to VTE risk, offering valuable insights into its underlying pathophysiology. CONCLUSIONS: Machine learning models using structured electronic health record data can significantly improve VTE diagnosis and 1-year risk prediction in diverse populations. Model probability scores exist on a continuum, affecting mortality risk in both healthy individuals and VTE cases. Integrating these models into electronic health record systems to generate real-time predictions may enhance VTE risk assessment, early detection, and preventative measures, ultimately reducing the morbidity and mortality associated with VTE.


Assuntos
Saúde da População , Tromboembolia Venosa , Humanos , Registros Eletrônicos de Saúde , Fatores de Risco , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/etiologia , Medição de Risco , Aprendizado de Máquina , Estudos Retrospectivos
13.
Am J Respir Crit Care Med ; 209(8): 960-972, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38127850

RESUMO

Rationale: Cardiovascular events after chronic obstructive pulmonary disease (COPD) exacerbations are recognized. Studies to date have been post hoc analyses of trials, did not differentiate exacerbation severity, included death in the cardiovascular outcome, or had insufficient power to explore individual outcomes temporally.Objectives: We explore temporal relationships between moderate and severe exacerbations and incident, nonfatal hospitalized cardiovascular events in a primary care-derived COPD cohort.Methods: We included people with COPD in England from 2014 to 2020, from the Clinical Practice Research Datalink Aurum primary care database. The index date was the date of first COPD exacerbation or, for those without exacerbations, date upon eligibility. We determined composite and individual cardiovascular events (acute coronary syndrome, arrhythmia, heart failure, ischemic stroke, and pulmonary hypertension) from linked hospital data. Adjusted Cox regression models were used to estimate average and time-stratified adjusted hazard ratios (aHRs).Measurements and Main Results: Among 213,466 patients, 146,448 (68.6%) had any exacerbation; 119,124 (55.8%) had moderate exacerbations, and 27,324 (12.8%) had severe exacerbations. A total of 40,773 cardiovascular events were recorded. There was an immediate period of cardiovascular relative rate after any exacerbation (1-14 d; aHR, 3.19 [95% confidence interval (CI), 2.71-3.76]), followed by progressively declining yet maintained effects, elevated after one year (aHR, 1.84 [95% CI, 1.78-1.91]). Hazard ratios were highest 1-14 days after severe exacerbations (aHR, 14.5 [95% CI, 12.2-17.3]) but highest 14-30 days after moderate exacerbations (aHR, 1.94 [95% CI, 1.63-2.31]). Cardiovascular outcomes with the greatest two-week effects after a severe exacerbation were arrhythmia (aHR, 12.7 [95% CI, 10.3-15.7]) and heart failure (aHR, 8.31 [95% CI, 6.79-10.2]).Conclusions: Cardiovascular events after moderate COPD exacerbations occur slightly later than after severe exacerbations; heightened relative rates remain beyond one year irrespective of severity. The period immediately after an exacerbation presents a critical opportunity for clinical intervention and treatment optimization to prevent future cardiovascular events.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Doença Pulmonar Obstrutiva Crônica , Humanos , Progressão da Doença , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Arritmias Cardíacas , Insuficiência Cardíaca/epidemiologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia
14.
Proc Natl Acad Sci U S A ; 119(18): e2107584119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476511

RESUMO

The extent to which evolution can rescue a species from extinction, or facilitate range expansion, depends critically on the rate, duration, and geographical extent of the evolutionary response to natural selection. Adaptive evolution can occur quickly, but the duration and geographical extent of contemporary evolution in natural systems remain poorly studied. This is particularly true for species with large geographical ranges and for timescales that lie between "long-term" field experiments and the fossil record. Here, we introduce the Virtual Common Garden (VCG) to investigate phenotypic evolution in natural history collections while controlling for phenotypic plasticity in response to local growing conditions. Reconstructing 150 y of evolution in Lythrum salicaria (purple loosestrife) as it invaded North America, we analyze phenology measurements of 3,429 herbarium records, reconstruct growing conditions from more than 12 million local temperature records, and validate predictions across three common gardens spanning 10° of latitude. We find that phenological clines have evolved repeatedly throughout the range, during the first century of evolution. Thereafter, the rate of microevolution stalls, recapitulating macroevolutionary stasis observed in the fossil record. Our study demonstrates that preserved specimens are a critical resource for investigating limits to evolution in natural populations. Our results show how natural selection and trade-offs measured in field studies predict adaptive divergence observable in herbarium specimens over 15 decades at a continental scale.


Assuntos
Evolução Biológica , Fósseis , Adaptação Fisiológica/genética , Plantas , Reprodução
15.
J Allergy Clin Immunol ; 153(3): 637-642, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224784

RESUMO

Here, we summarize the proceedings of the inaugural Artificial Intelligence in Primary Immune Deficiencies conference, during which experts and advocates gathered to advance research into the applications of artificial intelligence (AI), machine learning, and other computational tools in the diagnosis and management of inborn errors of immunity (IEIs). The conference focused on the key themes of expediting IEI diagnoses, challenges in data collection, roles of natural language processing and large language models in interpreting electronic health records, and ethical considerations in implementation. Innovative AI-based tools trained on electronic health records and claims databases have discovered new patterns of warning signs for IEIs, facilitating faster diagnoses and enhancing patient outcomes. Challenges in training AIs persist on account of data limitations, especially in cases of rare diseases, overlapping phenotypes, and biases inherent in current data sets. Furthermore, experts highlighted the significance of ethical considerations, data protection, and the necessity for open science principles. The conference delved into regulatory frameworks, equity in access, and the imperative for collaborative efforts to overcome these obstacles and harness the transformative potential of AI. Concerted efforts to successfully integrate AI into daily clinical immunology practice are still needed.


Assuntos
Inteligência Artificial , Doenças da Imunodeficiência Primária , Humanos , Aprendizado de Máquina , Processamento de Linguagem Natural , Coleta de Dados
16.
Artigo em Inglês | MEDLINE | ID: mdl-38996876

RESUMO

BACKGROUND: General pediatric providers are the front line for early peanut introduction discussions, but many providers believe that they are ill-equipped to handle such discussions, as the guidelines have changed quickly. OBJECTIVE: We hypothesized that a clinical decision support (CDS) tool could improve discussions of peanut introduction. METHODS: CDS tools were designed by stakeholders, improved through usability testing, and integrated into the current note templates. On the basis of queries of electronic health records, we did a preperformance versus postperformance evaluation of conversations regarding peanut introduction, barriers to peanut introduction, and percentage of 12-month well-child checkups (WCCs) that resulted in successful introduction of peanut. Providers completed surveys before and after intervention to assess their awareness of early peanut introduction and comfort using the CDS tools. RESULTS: Providers' awareness of early peanut introduction guidelines increased from 17.8% to 66.7% after the CDS tool was implemented; 79.1% of the providers were comfortable using the tool. The CDS tool improved peanut introduction conversations at the 4-month WCC from 2.4% to 81.2%, at the 6-month WCC from 3.0% to 84.2%, and at the 12-month WCC from 2.7% to 82.9%. In all, 56.6% of families had a plan to introduce peanut at the 4-month WCC. Of those who did not have a plan, the most common barrier was the family's unawareness of the benefits of early peanut introduction. At the 12-month WCC, 62.8% of families had introduced peanut without concerns. CONCLUSION: A point-of-care CDS tool encouraged more discussions of early peanut introduction between general pediatric providers and all patients. CDS tools should be considered in quality improvement projects as an implementation method for the most up-to-date guidelines.

17.
Diabetologia ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967665

RESUMO

AIMS/HYPOTHESIS: Few studies have examined the clinical characteristics associated with changes in weight before and after diagnosis of type 2 diabetes. Using a large real-world cohort, we derived trajectories of BMI before and after diabetes diagnosis, and examined the clinical characteristics associated with these trajectories, including assessing the impact of pre-diagnosis weight change on post-diagnosis weight change. METHODS: We performed an observational cohort study using electronic medical records from individuals in the Scottish Care Information Diabetes Collaboration database. Two trajectories were calculated, based on observed BMI measurements between 3 years and 6 months before diagnosis and between 1 and 5 years after diagnosis. In the post-diagnosis trajectory, each BMI measurement was time-dependently adjusted for the effects of diabetes medications and HbA1c change. RESULTS: A total of 2736 individuals were included in the study. There was a pattern of pre-diagnosis weight gain, with 1944 individuals (71%) gaining weight overall, and 875 (32%) gaining more than 0.5 kg/m2 per year. This was followed by a pattern of weight loss after diagnosis, with 1722 individuals (63%) losing weight. Younger age and greater social deprivation were associated with increased weight gain before diagnosis. Pre-diagnosis weight change was unrelated to post-diagnosis weight change, but post-diagnosis weight loss was associated with older age, female sex, higher BMI, higher HbA1c and weight gain during the peri-diagnosis period. When considering the peri-diagnostic period (defined as from 6 months before to 12 months after diagnosis), we identified 986 (36%) individuals who had a high HbA1c at diagnosis but who lost weight rapidly and were most aggressively treated at 1 year; this subgroup had the best glycaemic control at 5 years. CONCLUSIONS/INTERPRETATION: Average weight increases before diagnosis and decreases after diagnosis; however, there were significant differences across the population in terms of weight changes. Younger individuals gained weight pre-diagnosis, but, in older individuals, type 2 diabetes is less associated with weight gain, consistent with other drivers for diabetes aetiology in older adults. We have identified a substantial group of individuals who have a rapid deterioration in glycaemic control, together with weight loss, around the time of diagnosis, and who subsequently stabilise, suggesting that a high HbA1c at diagnosis is not inevitably associated with a poor outcome and may be driven by reversible glucose toxicity.

18.
Clin Infect Dis ; 78(6): 1531-1535, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38170452

RESUMO

Within a multistate clinical cohort, SARS-CoV-2 antiviral prescribing patterns were evaluated from April 2022-June 2023 among nonhospitalized patients with SARS-CoV-2 with risk factors for severe COVID-19. Among 3247 adults, only 31.9% were prescribed an antiviral agent (87.6% nirmatrelvir/ritonavir, 11.9% molnupiravir, 0.5% remdesivir), highlighting the need to identify and address treatment barriers.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Antivirais/uso terapêutico , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Idoso , Fatores de Risco , Ritonavir/uso terapêutico , COVID-19/epidemiologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Alanina/uso terapêutico , Alanina/análogos & derivados , Padrões de Prática Médica/estatística & dados numéricos , Citidina/análogos & derivados , Hidroxilaminas
19.
Emerg Infect Dis ; 30(7): 1374-1379, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38916563

RESUMO

Lyme disease surveillance based on provider and laboratory reports underestimates incidence. We developed an algorithm for automating surveillance using electronic health record data. We identified potential Lyme disease markers in electronic health record data (laboratory tests, diagnosis codes, prescriptions) from January 2017-December 2018 in 2 large practice groups in Massachusetts, USA. We calculated their sensitivities and positive predictive values (PPV), alone and in combination, relative to medical record review. Sensitivities ranged from 57% (95% CI 47%-69%) for immunoassays to 87% (95% CI 70%-100%) for diagnosis codes. PPVs ranged from 53% (95% CI 43%-61%) for diagnosis codes to 58% (95% CI 50%-66%) for immunoassays. The combination of a diagnosis code and antibiotics within 14 days or a positive Western blot had a sensitivity of 100% (95% CI 86%-100%) and PPV of 82% (95% CI 75%-89%). This algorithm could make Lyme disease surveillance more efficient and consistent.


Assuntos
Registros Eletrônicos de Saúde , Doença de Lyme , Humanos , Doença de Lyme/epidemiologia , Massachusetts/epidemiologia , Vigilância da População , Algoritmos , História do Século XXI
20.
Emerg Infect Dis ; 30(6): 1096-1103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781684

RESUMO

Viral respiratory illness surveillance has traditionally focused on single pathogens (e.g., influenza) and required fever to identify influenza-like illness (ILI). We developed an automated system applying both laboratory test and syndrome criteria to electronic health records from 3 practice groups in Massachusetts, USA, to monitor trends in respiratory viral-like illness (RAVIOLI) across multiple pathogens. We identified RAVIOLI syndrome using diagnosis codes associated with respiratory viral testing or positive respiratory viral assays or fever. After retrospectively applying RAVIOLI criteria to electronic health records, we observed annual winter peaks during 2015-2019, predominantly caused by influenza, followed by cyclic peaks corresponding to SARS-CoV-2 surges during 2020-2024, spikes in RSV in mid-2021 and late 2022, and recrudescent influenza in late 2022 and 2023. RAVIOLI rates were higher and fluctuations more pronounced compared with traditional ILI surveillance. RAVIOLI broadens the scope, granularity, sensitivity, and specificity of respiratory viral illness surveillance compared with traditional ILI surveillance.


Assuntos
Algoritmos , Registros Eletrônicos de Saúde , Infecções Respiratórias , Humanos , Infecções Respiratórias/virologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/diagnóstico , Estudos Retrospectivos , Influenza Humana/epidemiologia , Influenza Humana/diagnóstico , Influenza Humana/virologia , COVID-19/epidemiologia , COVID-19/diagnóstico , Vigilância da População/métodos , Massachusetts/epidemiologia , Adulto , Pessoa de Meia-Idade , SARS-CoV-2 , Masculino , Adolescente , Criança , Idoso , Feminino , Estações do Ano , Viroses/epidemiologia , Viroses/diagnóstico , Viroses/virologia , Pré-Escolar , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA