Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 422
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 86: 715-748, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28441057

RESUMO

Oxidative stress is two sided: Whereas excessive oxidant challenge causes damage to biomolecules, maintenance of a physiological level of oxidant challenge, termed oxidative eustress, is essential for governing life processes through redox signaling. Recent interest has focused on the intricate ways by which redox signaling integrates these converse properties. Redox balance is maintained by prevention, interception, and repair, and concomitantly the regulatory potential of molecular thiol-driven master switches such as Nrf2/Keap1 or NF-κB/IκB is used for system-wide oxidative stress response. Nonradical species such as hydrogen peroxide (H2O2) or singlet molecular oxygen, rather than free-radical species, perform major second messenger functions. Chemokine-controlled NADPH oxidases and metabolically controlled mitochondrial sources of H2O2 as well as glutathione- and thioredoxin-related pathways, with powerful enzymatic back-up systems, are responsible for fine-tuning physiological redox signaling. This makes for a rich research field spanning from biochemistry and cell biology into nutritional sciences, environmental medicine, and molecular knowledge-based redox medicine.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Regulação da Expressão Gênica , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , NADPH Oxidases/genética , Fator 2 Relacionado a NF-E2/genética , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/genética , Oxirredução , Transdução de Sinais , Oxigênio Singlete/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
2.
Nano Lett ; 24(1): 370-377, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38154104

RESUMO

The selective interaction of cytochrome c (Cyt c) with cardiolipin (CL) is involved in mitochondrial membrane permeabilization, an essential step for the release of apoptosis activators. The structural basis and modulatory mechanism are, however, poorly understood. Here, we report that Cyt c can induce CL peroxidation independent of reactive oxygen species, which is controlled by its redox states. The structural basis of the Cyt c-CL binding was unveiled by comprehensive spectroscopic investigation and mass spectrometry. The Cyt c-induced permeabilization and its effect on membrane collapse, pore formation, and budding are observed by confocal microscopy. Moreover, cytochrome c oxidase dysfunction is found to be associated with the initiation of Cyt c redox-controlled membrane permeabilization. These results verify the significance of a redox-dependent modulation mechanism at the early stage of apoptosis, which can be exploited for the design of cytochrome c oxidase-targeted apoptotic inducers in cancer therapy.


Assuntos
Citocromos c , Análise Espectral Raman , Citocromos c/química , Citocromos c/metabolismo , Citocromos c/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxirredução , Cardiolipinas/química , Cardiolipinas/metabolismo , Cardiolipinas/farmacologia , Membranas Mitocondriais/metabolismo , Apoptose
3.
Metab Eng ; 85: 116-130, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059674

RESUMO

Nanobodies are single-domain antibody fragments that have garnered considerable use as diagnostic and therapeutic agents as well as research tools. However, obtaining pure VHHs, like many proteins, can be laborious and inconsistent. High level cytoplasmic expression in E. coli can be challenging due to improper folding and insoluble aggregation caused by reduction of the conserved disulfide bond. We report a systems engineering approach leveraging engineered strains of E. coli, in combination with a two-stage process and simplified downstream purification, enabling improved, robust, soluble cytoplasmic nanobody expression, as well as rapid cell autolysis and purification. This approach relies on the dynamic control over the reduction potential of the cytoplasm, incorporates lysis enzymes for purification, and can also integrate dynamic expression of protein folding catalysts. Collectively, the engineered system results in more robust growth and protein expression, enabling efficient scalable nanobody production, and purification from high throughput microtiter plates, to routine shake flask cultures and larger instrumented bioreactors. We expect this system will expedite VHH development.

4.
J Exp Bot ; 75(9): 2740-2753, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38366668

RESUMO

Ascorbic acid (AsA) plays an indispensable role in plants, serving as both an antioxidant and a master regulator of the cellular redox balance. Ascorbate oxidase (AO) is a blue copper oxidase that is responsible for the oxidation of AsA with the concomitant production of water. For many decades, AO was erroneously postulated as an enzyme without any obvious advantage, as it decreases the AsA pool size and thus is expected to weaken plant stress resistance. It was only a decade ago that this perspective shifted towards the fundamental role of AO in orchestrating both AsA and oxygen levels by influencing the overall redox balance in the extracellular matrix. Consistent with its localization in the apoplast, AO is involved in cell expansion, division, resource allocation, and overall plant yield. An increasing number of transgenic studies has demonstrated that AO can also facilitate communication between the surrounding environment and the cell, as its gene expression is highly responsive to factors such as hormonal signaling, oxidative stress, and mechanical injury. This review aims to describe the multiple functions of AO in plant growth, development, and stress resilience, and explore any additional roles the enzyme might have in fruits during the course of ripening.


Assuntos
Ascorbato Oxidase , Ascorbato Oxidase/metabolismo , Ascorbato Oxidase/genética , Plantas/enzimologia , Plantas/metabolismo , Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Ascórbico/metabolismo , Desenvolvimento Vegetal
5.
Environ Sci Technol ; 58(1): 935-946, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38133817

RESUMO

Magnetite is a common mixed Fe(II,III) iron oxide in mineral deposits and the product of (anaerobic) iron corrosion. In various Earth systems, magnetite surfaces participate in surface-mediated redox reactions. The reactivity and redox properties of the magnetite surface depend on the surface speciation, which varies with environmental conditions. In this study, Kohn-Sham density functional theory (DFT + U method) was used to examine the stability and speciation of the prevalent magnetite crystal face {111} in a wide range of pH and Eh conditions. The simulations reveal that the oxidation state and speciation of the surface depend strongly on imposed redox conditions and, in general, may differ from those of the bulk state. Corresponding predominant phase diagrams for the surface speciation and structure were calculated from first principles. Furthermore, classical molecular dynamics simulations were conducted investigating the mobility of water near the magnetite surface. The obtained knowledge of the surface structure and oxidation state of iron is essential for modeling retention of redox-sensitive nuclides.


Assuntos
Óxido Ferroso-Férrico , Ferro , Óxido Ferroso-Férrico/química , Ferro/química , Oxirredução , Minerais , Água
6.
J Biochem Mol Toxicol ; 38(5): e23718, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38738849

RESUMO

According to the pathophysiological mechanisms linking particulate matter (PM2.5) exposure and cardiovascular diseases, PM2.5 may directly translocate into the blood stream and remote target organs and thereby induce cardiovascular effects. The toxicity of PM2.5 is known to induce oxidative stress in pulmonary tissue, but its impact on the redox state in heart (distant organ) is unknown and how it modulates the cardiac response to ischemia reperfusion (IR) remains unclear. In the present study, we evaluated the toxic effect of PM2.5 on cardiac physiology in the presence and absence of IR after introducing PM2.5 into the blood. Female Wistar rats were injected with diesel particulate matter (DPM) via i.p & i.v routes at a concentration of 10 µg/ml. The toxic impact of PM2.5 not only adversely affects the cardiac ultra-structure (leading to nuclear infiltration, edema, irregularities in heart muscle and nuclear infiltration), but also altered the cellular redox balance, elevated inflammation and promoted the upregulation of proapoptotic mediator genes at the basal level of myocardium. The results showed alterations in cardiac ultrastructure, elevated oxidative stress and significant redox imbalance, increased inflammation and proapoptotic mediators at the basal level of myocardium. Moreover, the cardioprotective pro survival signaling axis was declined along with an increased NF-kB activation at the basal level. IR inflicted further injury with deterioration of cardiac hemodynamic indices (Heart rate [HR], Left ventricular developed pressure [LVDP], Left ventricular end-diastolic pressure [LVEDP] and rate pressure product [RPP]) along with prominent inactivation of signaling pathways. Furthermore, the levels of GSH/GSSG, NADH/NAD, NADPH/NADP were significantly low along with increased lipid peroxidation in mitochondria of PM2.5 treated IR rat hearts. This observation was supported by downregulation of glutaredoxin and peroxiredoxin genes in the myocardium. Similarly the presence of oxidative stress inducing metals was found at a higher concentration in cardiac mitochondria. Thus, the toxic impact of PM2.5 in heart augment the IR associated pathological changes by altering the physiological response, initiating cellular metabolic alterations in mitochondria and modifying the signaling molecules.


Assuntos
Mitocôndrias Cardíacas , Traumatismo por Reperfusão Miocárdica , Material Particulado , Transdução de Sinais , Animais , Feminino , Ratos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , NF-kappa B/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
7.
Cell Mol Life Sci ; 81(1): 12, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129330

RESUMO

Friedreich ataxia (FA) is a rare, recessive neuro-cardiodegenerative disease caused by deficiency of the mitochondrial protein frataxin. Mitochondrial dysfunction, a reduction in the activity of iron-sulfur enzymes, iron accumulation, and increased oxidative stress have been described. Dorsal root ganglion (DRG) sensory neurons are among the cellular types most affected in the early stages of this disease. However, its effect on mitochondrial function remains to be elucidated. In the present study, we found that in primary cultures of DRG neurons as well as in DRGs from the FXNI151F mouse model, frataxin deficiency resulted in lower activity and levels of the electron transport complexes, mainly complexes I and II. In addition, altered mitochondrial morphology, indicative of degeneration was observed in DRGs from FXNI151F mice. Moreover, the NAD+/NADH ratio was reduced and sirtuin activity was impaired. We identified alpha tubulin as the major acetylated protein from DRG homogenates whose levels were increased in FXNI151F mice compared to WT mice. In the mitochondria, superoxide dismutase (SOD2), a SirT3 substrate, displayed increased acetylation in frataxin-deficient DRG neurons. Since SOD2 acetylation inactivates the enzyme, and higher levels of mitochondrial superoxide anion were detected, oxidative stress markers were analyzed. Elevated levels of hydroxynonenal bound to proteins and mitochondrial Fe2+ accumulation was detected when frataxin decreased. Honokiol, a SirT3 activator, restores mitochondrial respiration, decreases SOD2 acetylation and reduces mitochondrial superoxide levels. Altogether, these results provide data at the molecular level of the consequences of electron transport chain dysfunction, which starts negative feedback, contributing to neuron lethality. This is especially important in sensory neurons which have greater susceptibility to frataxin deficiency compared to other tissues.


Assuntos
Ataxia de Friedreich , Sirtuína 3 , Sirtuínas , Camundongos , Animais , Sirtuína 3/metabolismo , Gânglios Espinais/metabolismo , Sirtuínas/metabolismo , Acetilação , Proteínas de Ligação ao Ferro/genética , Frataxina , Mitocôndrias/metabolismo , Superóxido Dismutase/metabolismo , Ferro/metabolismo
8.
Fungal Genet Biol ; 167: 103810, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37172803

RESUMO

Cellular redox homeostasis has a major effect on cell functions and its maintenance is supported by glutathione and protein thiols which serve as redox buffers in cells. The regulation of the glutathione biosynthetic pathway is a focus of a lot of scientific research. However, still little is known about how complex cellular networks influence glutathione homeostasis. In this work was used an experimental system based on an S. cerevisiae yeast mutant with a lack of the glutathione reductase enzyme and allyl alcohol as a precursor of acrolein inside the cell to determine the cellular processes influencing glutathione homeostasis. The absence of Glr1p slows down the growth rate of the cell population, especially in the presence of allyl alcohol, but does not lead to complete inhibition of the cell's reproductive capacity. It also amends the GSH/GSSG ratio and the share of NADPH and NADP+ in the total NADP(H) pool. The obtained results show that potential pathways involved in the maintenance of redox homeostasis are based from one side on de novo synthesis of GSH as indicated by increased activity of γ-GCS and increased expression of GSH1 gene in the Δglr1 mutant, from the other hand, on increased the level of NADPH. This is because the lower ratio of GSH/GSSG can be counterbalanced with the NADPH/NADP+ alternative system. The higher level of NADPH can be used by the thioredoxin system and other enzymes requiring NADPH to reduce cytosolic GSSG and maintain glutathione redox potential.


Assuntos
Glutationa , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Dissulfeto de Glutationa/metabolismo , NADP/genética , NADP/metabolismo , Glutationa/genética , Glutationa/metabolismo , Oxirredução
9.
New Phytol ; 237(2): 548-562, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946378

RESUMO

Hypersensitive response (HR)-conferred resistance is associated with induction of programmed cell death and pathogen spread restriction in its proximity. The exact role of chloroplastic reactive oxygen species and its link with salicylic acid (SA) signaling in HR remain unexplained. To unravel this, we performed a detailed spatiotemporal analysis of chloroplast redox response in palisade mesophyll and upper epidermis to potato virus Y (PVY) infection in a resistant potato genotype and its transgenic counterpart with impaired SA accumulation and compromised resistance. Besides the cells close to the cell death zone, we detected individual cells with oxidized chloroplasts further from the cell death zone. These are rare in SA-deficient plants, suggesting their role in signaling for resistance. We confirmed that chloroplast redox changes play important roles in signaling for resistance, as blocking chloroplast redox changes affected spatial responses at the transcriptional level. Through spatiotemporal study of stromule induction after PVY infection, we show that stromules are induced by cell death and also as a response to PVY multiplication at the front of infection. Overall induction of stromules is attenuated in SA-deficient plants.


Assuntos
Potyvirus , Solanum tuberosum , Cloroplastos/metabolismo , Oxirredução , Comunicação Celular , Transdução de Sinais , Apoptose , Potyvirus/fisiologia , Solanum tuberosum/genética , Doenças das Plantas/genética
10.
Plant Cell Environ ; 46(12): 3737-3747, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37614199

RESUMO

Identifying traits that exhibit improved drought resistance is highly important to cope with the challenges of predicted climate change. We investigated the response of state transition mutants to drought. Compared with the wild type, state transition mutants were less affected by drought. Photosynthetic parameters in leaves probed by chlorophyll fluorescence confirmed that mutants possess a more reduced plastoquinone (PQ) pool, as expected due to the absence of state transitions. Seedlings of the mutants showed an enhanced growth of the primary root and more lateral root formation. The photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, leading to an oxidised PQ pool, inhibited primary root growth in wild type and mutants, while the cytochrome b6 f complex inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone, leading to a reduced PQ pool, stimulated root growth. A more reduced state of the PQ pool was associated with a slight but significant increase in singlet oxygen production. Singlet oxygen may trigger a, yet unknown, signalling cascade promoting root growth. We propose that photosynthetic mutants with a deregulated ratio of photosystem II to photosystem I activity can provide a novel path for improving crop drought resistance.


Assuntos
Complexo de Proteína do Fotossistema II , Plastoquinona , Complexo de Proteína do Fotossistema II/metabolismo , Resistência à Seca , Oxigênio Singlete , Oxirredução , Fotossíntese/fisiologia , Clorofila , Transporte de Elétrons , Luz
11.
Glob Chang Biol ; 29(11): 2926-2952, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36799496

RESUMO

Solar-induced chlorophyll fluorescence (SIF) is a remotely sensed optical signal emitted during the light reactions of photosynthesis. The past two decades have witnessed an explosion in availability of SIF data at increasingly higher spatial and temporal resolutions, sparking applications in diverse research sectors (e.g., ecology, agriculture, hydrology, climate, and socioeconomics). These applications must deal with complexities caused by tremendous variations in scale and the impacts of interacting and superimposing plant physiology and three-dimensional vegetation structure on the emission and scattering of SIF. At present, these complexities have not been overcome. To advance future research, the two companion reviews aim to (1) develop an analytical framework for inferring terrestrial vegetation structures and function that are tied to SIF emission, (2) synthesize progress and identify challenges in SIF research via the lens of multi-sector applications, and (3) map out actionable solutions to tackle these challenges and offer our vision for research priorities over the next 5-10 years based on the proposed analytical framework. This paper is the first of the two companion reviews, and theory oriented. It introduces a theoretically rigorous yet practically applicable analytical framework. Guided by this framework, we offer theoretical perspectives on three overarching questions: (1) The forward (mechanism) question-How are the dynamics of SIF affected by terrestrial ecosystem structure and function? (2) The inference question: What aspects of terrestrial ecosystem structure, function, and service can be reliably inferred from remotely sensed SIF and how? (3) The innovation question: What innovations are needed to realize the full potential of SIF remote sensing for real-world applications under climate change? The analytical framework elucidates that process complexity must be appreciated in inferring ecosystem structure and function from the observed SIF; this framework can serve as a diagnosis and inference tool for versatile applications across diverse spatial and temporal scales.


Assuntos
Clorofila , Ecossistema , Clorofila/análise , Fluorescência , Monitoramento Ambiental , Estações do Ano , Fotossíntese/fisiologia
12.
FASEB J ; 36(4): e22261, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35332570

RESUMO

Alpinetin is a plant flavonoid isolated from Alpinia katsumadai Hayata with antioxidant and anti-inflammatory properties. Monocyte infiltration into the intima promotes atherosclerotic development and causes plaque instability at the later stage, which is profoundly influenced by various oxidants. In this study, we investigated whether alpinetin restores the redox state to inhibit monocyte infiltration and ameliorates atherosclerosis. ApoE-deficient (ApoE-/- ) mice were fed a high-fat diet and treated with alpinetin. We found that alpinetin significantly attenuated atherosclerotic lesions and reduced necrotic core size associated with the reduction in infiltrated macrophages within the plaques. Alpinetin inhibited macrophage adhesion and migration, and the expression of chemokines and adhesion molecules, such as MCP-1, VCAM-1, and ICAM-1. Intraplaque MMP2 and MMP9 were reduced, while collagen contents were increased and elastin fiber was prevented from degradation in the alpinetin-treated mice. Data further showed that alpinetin reduced reactive oxygen species generation and promoted thiol-dependent glutathione and thioredoxin antioxidant systems in macrophages. Alpinetin activated Nfr2, an upstream activator of the thiol-dependent redox signaling by increasing the nuclear translocation. The nuclear accumulation of Nrf2 was enhanced by reducing nuclear export, which was achieved through the regulation of the GSk3ß/Fyn pathway. Finally, inhibition of Nrf2 in HFD-apoE-/- mice blockaded the effect of alpinetin, which increased aortic macrophage recruitment and aggravated atherosclerosis concurrently with elevating the expression of MCP-1, VCAM-1, and ICAM-1. Altogether, these findings indicated that alpinetin improved Nrf2-mediated redox homeostasis, which consequently inhibited macrophage infiltration and atherosclerosis, suggesting a useful compound for treating atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Antioxidantes/farmacologia , Aterosclerose/metabolismo , Flavanonas , Glicogênio Sintase Quinase 3 beta/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Placa Aterosclerótica/metabolismo , Compostos de Sulfidrila/farmacologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
13.
Rev Med Virol ; 32(3): e2308, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34694662

RESUMO

High-risk human papillomavirus (HR-HPV) infection is a necessary cause for the development of cervical cancer. Moreover, HR-HPV is also associated with cancers in the anus, vagina, vulva, penis and oropharynx. HR-HPVs target and modify the function of different cell biomolecules, such as glucose, amino acids, lipids and transcription factors (TF), such as p53, nuclear factor erythroid 2-related factor 2 (Nrf2), among others. The latter is a master TF that maintains redox homeostasis. Nrf2 also induces the transcription of genes associated with cell detoxification. Since both processes are critical for cell physiology, Nrf2 deregulation is associated with cancer development. Nrf2 is a crucial molecule in HPV-related cancer development but underexplored. Moreover, Nrf2 activation is also associated with resistance to chemotherapy and radiotherapy in these cancers. This review focusses on the importance of Nrf2 during HPV-related cancer development, resistance to therapy and potential therapies associated with Nrf2 as a molecular target.


Assuntos
Alphapapillomavirus , Fator 2 Relacionado a NF-E2 , Neoplasias , Infecções por Papillomavirus , Alphapapillomavirus/patogenicidade , Feminino , Humanos , Masculino , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/virologia , Infecções por Papillomavirus/complicações
14.
BMC Nephrol ; 24(1): 273, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723426

RESUMO

BACKGROUND AND AIM: Maintenance haemodialysis patients have increased morbidity and mortality which is mainly driven by an elevated inflammation level due to the uraemic milieu. A major part of this increased inflammation level is the degree of oxidative stress which can be assessed by albumin redox state (ARS). Aim of this study was to evaluate how the ARS is affected by a haemodialysis treatment and different dialyzer properties. METHODS: ARS was determined before and after haemodialysis treatment by fractionating it into reduced human mercaptalbumin (HMA), reversibly oxidized human non-mercaptalbumin 1 (HNA-1), and irreversibly oxidized human non-mercaptalbumin 2 (HNA-2) by high-performance liquid chromatography. In healthy individuals, albumin circulates in the following proportions: HMA 70-80%, HNA-1 20-30% and HNA-2 2-5%. High flux (FX 100 [Fresenius Medical Care], BG 1.8 [Toray], Xevonta Hi 18 [B. Braun], CTA-2000 [Kawasumi]) and low flux FX10 [Fresenius Medical Care] dialyzers were used. RESULTS: 58 patients (59% male, median age 68 years, median time on haemodialysis 32 month) were included in the study. Before haemodialysis treatment, HMA (median 55.9%, IQR 50.1-61.2%) was substantially lower than in healthy individuals. Accordingly, oxidized albumin fractions were above the level of healthy individuals (median HNA-1 38.5%, IQR 33.3-43.2%; median HNA-2 5.8%, IQR 5.1-6.7%). Before haemodialysis treatment HMA was significantly higher in patients usually treated with high flux membranes (p < 0.01). After haemodialysis treatment there was a significant increase of HMA and a decrease of HNA-1 and HNA-2 (p < 0.01). These effects were more pronounced in patients treated with high flux dialyzers (p < 0.01). There were no differences of ARS alteration with regard to the dialyzer´s sterilization mode or the presence of diabetes. CONCLUSION: The study confirms that the ARS is positively altered by haemodialysis and shows for the first time that this effect depends on dialyzer properties.


Assuntos
Nível de Saúde , Inflamação , Humanos , Masculino , Idoso , Feminino , Oxirredução , Estresse Oxidativo , Diálise Renal
15.
Metab Brain Dis ; 38(3): 1025-1034, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36522491

RESUMO

Oxidative stress (OS) is well established as a major event in Alzheimer's disease (AD) pathology. One of the mostly-researched classes of antioxidants to manage with overwhelming OS include flavonoids. This study was aimed to investigate the protective effect of A. congolensis extract (HEEAC) on AlCl3-mediated AD-like OS and assess the contribution of its antioxidant flavonoid contents. Female Wistar (250-300 g) rats received orally 50 mg/Kg bw of AlCl3, followed one hour later by doses (150 or 300 mg/kg) of HEEAC or vitamin E at 100 mg/kg daily for eight consecutive weeks. OS related biomarkers were evaluated at the end of treatment. To assess the contribution of flavonoid contents to its activity, HEEAC was fractioned using solvent of varying polarities. Flavonoid-rich extracts obtained were tested for their antioxidant capacity. AlCl3 administration significantly lowered antioxidant enzymes (catalase, glutathione peroxidase) and aconitase levels, reduced total thiol and thiol protein levels and increased lipid peroxidation and protein oxidation levels in brain. When co-administrated with HEEAC at 150 mg/kg, all of these OS related biomarkers were significantly moderated. The efficacity of the extract was significantly higher than vitamin E. Flavonoid-rich fractions extracted mainly n-butanol fraction show strong antioxidant activity, which can be considered as the major antioxidant fraction of this plant. HEEAC protect brain cells against oxidative damage induced by AlCl3, specifically through the strong antioxidant property of its n-butanol flavonoid-rich fraction, which may be a promising agent for preventing oxidative damage in AD.


Assuntos
Doença de Alzheimer , Sapotaceae , Ratos , Animais , Antioxidantes/uso terapêutico , Cloreto de Alumínio , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Sapotaceae/metabolismo , 1-Butanol/farmacologia , Ratos Wistar , Estresse Oxidativo , Vitamina E/farmacologia , Peroxidação de Lipídeos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
16.
Proc Natl Acad Sci U S A ; 117(26): 14756-14763, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32546521

RESUMO

Since the initial discovery of low-temperature alkaline hydrothermal vents off the Mid-Atlantic Ridge axis nearly 20 y ago, the observation that serpentinizing systems produce abundant H2 has strongly influenced models of atmospheric evolution and geological scenarios for the origin of life. Nevertheless, the principal mechanisms that generate H2 in these systems, and how secular changes in seawater composition may have modified serpentinization-driven H2 fluxes, remain poorly constrained. Here, we demonstrate that the dominant mechanism for H2 production during low-temperature serpentinization is directly related to a Si deficiency in the serpentine structure, which itself is caused by low SiO2(aq) concentrations in serpentinizing fluids derived from modern seawater. Geochemical calculations explicitly incorporating this mechanism illustrate that H2 production is directly proportional to both the SiO2(aq) concentration and temperature of serpentinization. These results imply that, before the emergence of silica-secreting organisms, elevated SiO2(aq) concentrations in Precambrian seawater would have generated serpentinites that produced up to two orders of magnitude less H2 than their modern counterparts, consistent with Fe-oxidation states measured on ancient igneous rocks. A mechanistic link between the marine Si cycle and off-axis H2 production requires a reevaluation of the processes that supplied H2 to prebiotic and early microbial systems, as well as those that balanced ocean-atmosphere redox through time.


Assuntos
Evolução Biológica , Hidrogênio/química , Água do Mar/química , Atmosfera , Ciências da Terra , Planeta Terra , Fontes Hidrotermais , Ferro/química , Oxirredução , Dióxido de Silício/química
17.
Proc Natl Acad Sci U S A ; 117(27): 15911-15922, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32576690

RESUMO

Through a process called "bioturbation," burrowing macrofauna have altered the seafloor habitat and modified global carbon cycling since the Cambrian. However, the impact of macrofauna on the community structure of microorganisms is poorly understood. Here, we show that microbial communities across bioturbated, but geochemically and sedimentologically divergent, continental margin sites are highly similar but differ clearly from those in nonbioturbated surface and underlying subsurface sediments. Solid- and solute-phase geochemical analyses combined with modeled bioturbation activities reveal that dissolved O2 introduction by burrow ventilation is the major driver of archaeal community structure. By contrast, solid-phase reworking, which regulates the distribution of fresh, algal organic matter, is the main control of bacterial community structure. In nonbioturbated surface sediments and in subsurface sediments, bacterial and archaeal communities are more divergent between locations and appear mainly driven by site-specific differences in organic carbon sources.


Assuntos
Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Microbiota/fisiologia , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Carbono/metabolismo , Nitrogênio/metabolismo , Oxigênio/metabolismo , Filogenia , Água do Mar/química , Água do Mar/microbiologia
18.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835457

RESUMO

Succinate dehydrogenase (SDH) is one of the enzymes of the tricarboxylic acid cycle (Krebs cycle) and complex II of the mitochondrial respiratory chain. A class of fungicides (SDHIs) targets the complex II reaction in the SDH. A large number of those in use have been shown to inhibit SDH in other phyla, including humans. This raises questions about possible effects on human health and non-target organisms in the environment. The present document will address metabolic consequences in mammals; it is neither a review on SDH nor is it about the toxicology of SDHIs. Most clinically relevant observations are linked to a severe decrease in SDH activity. Here we shall examine the mechanisms for compensating a loss of SDH activity and their possible weaknesses or adverse consequences. It can be expected that a mild inhibition of SDH will be compensated by the kinetic properties of this enzyme, but this implies a proportionate increase in succinate concentration. This would be relevant for succinate signaling and epigenetics (not reviewed here). With regard to metabolism, exposure of the liver to SDHIs would increase the risk for non-alcoholic fatty liver disease (NAFLD). Higher levels of inhibition may be compensated by modification of metabolic fluxes with net production of succinate. SDHIs are much more soluble in lipids than in water; consequently, a different diet composition between laboratory animals and humans is expected to influence their absorption.


Assuntos
Fungicidas Industriais , Praguicidas , Animais , Humanos , Succinato Desidrogenase/metabolismo , Fungicidas Industriais/farmacologia , Metabolismo Energético , Succinatos , Mamíferos/metabolismo
19.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37629048

RESUMO

Multidomain proteins can exhibit sophisticated functions based on cooperative interactions and allosteric regulation through spatial rearrangements of the multiple domains. This study explored the potential of using multidomain proteins as a basis for Förster resonance energy transfer (FRET) biosensors, focusing on protein disulfide isomerase (PDI) as a representative example. PDI, a well-studied multidomain protein, undergoes redox-dependent conformational changes, enabling the exposure of a hydrophobic surface extending across the b' and a' domains that serves as the primary binding site for substrates. Taking advantage of the dynamic domain rearrangements of PDI, we developed FRET-based biosensors by fusing the b' and a' domains of thermophilic fungal PDI with fluorescent proteins as the FRET acceptor and donor, respectively. Both experimental and computational approaches were used to characterize FRET efficiency in different redox states. In vitro and in vivo evaluations demonstrated higher FRET efficiency of this biosensor in the oxidized form, reflecting the domain rearrangement and its responsiveness to intracellular redox environments. This novel approach of exploiting redox-dependent domain dynamics in multidomain proteins offers promising opportunities for designing innovative FRET-based biosensors with potential applications in studying cellular redox regulation and beyond.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Isomerases de Dissulfetos de Proteínas , Isomerases de Dissulfetos de Proteínas/genética , Regulação Alostérica , Sítios de Ligação , Oxirredução
20.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769127

RESUMO

Glaucoma is a multifactorial neurodegenerative illness requiring early diagnosis and strict monitoring of the disease progression. Current exams for diagnosis and prognosis are based on clinical examination, intraocular pressure (IOP) measurements, visual field tests, and optical coherence tomography (OCT). In this scenario, there is a critical unmet demand for glaucoma-related biomarkers to enhance clinical testing for early diagnosis and tracking of the disease's development. The introduction of validated biomarkers would allow for prompt intervention in the clinic to help with prognosis prediction and treatment response monitoring. This review aims to report the latest acquisitions on biomarkers in glaucoma, from imaging analysis to genetics and metabolic markers.


Assuntos
Inteligência Artificial , Glaucoma , Humanos , Medicina de Precisão , Glaucoma/diagnóstico , Glaucoma/genética , Glaucoma/terapia , Tomografia de Coerência Óptica/métodos , Biomarcadores , Oxirredução , Pressão Intraocular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA