Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.026
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 169(5): 945-955.e10, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525759

RESUMO

Gene-editing technologies have made it feasible to create nonhuman primate models for human genetic disorders. Here, we report detailed genotypes and phenotypes of TALEN-edited MECP2 mutant cynomolgus monkeys serving as a model for a neurodevelopmental disorder, Rett syndrome (RTT), which is caused by loss-of-function mutations in the human MECP2 gene. Male mutant monkeys were embryonic lethal, reiterating that RTT is a disease of females. Through a battery of behavioral analyses, including primate-unique eye-tracking tests, in combination with brain imaging via MRI, we found a series of physiological, behavioral, and structural abnormalities resembling clinical manifestations of RTT. Moreover, blood transcriptome profiling revealed that mutant monkeys resembled RTT patients in immune gene dysregulation. Taken together, the stark similarity in phenotype and/or endophenotype between monkeys and patients suggested that gene-edited RTT founder monkeys would be of value for disease mechanistic studies as well as development of potential therapeutic interventions for RTT.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett/genética , Animais , Encéfalo/fisiologia , Cromossomos Humanos X , Ritmo Circadiano , Modelos Animais de Doenças , Eletrocardiografia , Feminino , Edição de Genes , Humanos , Macaca fascicularis , Imageamento por Ressonância Magnética , Masculino , Mutação , Dor , Síndrome de Rett/fisiopatologia , Sono , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Transcriptoma
2.
Genes Dev ; 37(19-20): 863-864, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914350

RESUMO

Mutations in the methyl-DNA binding domain of MECP2 cause Rett syndrome; however, distinct mutations are associated with different severity of the disease. Live-cell imaging and single-molecule tracking are sensitive methods to quantify the DNA binding affinity and diffusion dynamics of nuclear proteins. In this issue of Genes & Development, Zhou and colleagues (pp. 883-900) used these imaging methods to quantitatively describe the partial loss of DNA binding resulting from a novel pathological MECP2 mutation with intermediate disease severity. These data demonstrate how single-molecule tracking can advance understanding of the molecular mechanisms connecting MECP2 mutations with Rett syndrome pathophysiology.


Assuntos
Síndrome de Rett , Humanos , Síndrome de Rett/genética , Proteína 2 de Ligação a Metil-CpG/genética , DNA/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Domínios Proteicos
3.
Genes Dev ; 37(19-20): 883-900, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890975

RESUMO

Loss-of-function mutations in MECP2 cause Rett syndrome (RTT), a severe neurological disorder that mainly affects girls. Mutations in MECP2 do occur in males occasionally and typically cause severe encephalopathy and premature lethality. Recently, we identified a missense mutation (c.353G>A, p.Gly118Glu [G118E]), which has never been seen before in MECP2, in a young boy who suffered from progressive motor dysfunction and developmental delay. To determine whether this variant caused the clinical symptoms and study its functional consequences, we established two disease models, including human neurons from patient-derived iPSCs and a knock-in mouse line. G118E mutation partially reduces MeCP2 abundance and its DNA binding, and G118E mice manifest RTT-like symptoms seen in the patient, affirming the pathogenicity of this mutation. Using live-cell and single-molecule imaging, we found that G118E mutation alters MeCP2's chromatin interaction properties in live neurons independently of its effect on protein levels. Here we report the generation and characterization of RTT models of a male hypomorphic variant and reveal new insight into the mechanism by which this pathological mutation affects MeCP2's chromatin dynamics. Our ability to quantify protein dynamics in disease models lays the foundation for harnessing high-resolution single-molecule imaging as the next frontier for developing innovative therapies for RTT and other diseases.


Assuntos
Cromatina , Síndrome de Rett , Feminino , Humanos , Masculino , Camundongos , Animais , Cromatina/metabolismo , Encéfalo/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett/genética , Mutação , Neurônios/metabolismo
4.
Annu Rev Neurosci ; 45: 425-445, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35436413

RESUMO

Mounting evidence indicates that microglia, which are the resident immune cells of the brain, play critical roles in a diverse array of neurodevelopmental processes required for proper brain maturation and function. This evidence has ultimately led to growing speculation that microglial dysfunction may play a role in neurodevelopmental disorder (NDD) pathoetiology. In this review, we first provide an overview of how microglia mechanistically contribute to the sculpting of the developing brain and neuronal circuits. To provide an example of how disruption of microglial biology impacts NDD development, we also highlight emerging evidence that has linked microglial dysregulation to autism spectrum disorder pathogenesis. In recent years, there has been increasing interest in how the gut microbiome shapes microglial biology. In the last section of this review, we put a spotlight on this burgeoning area of microglial research and discuss how microbiota-dependent modulation of microglial biology is currently thought to influence NDD progression.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/patologia , Encéfalo/fisiologia , Humanos , Microglia/fisiologia , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/patologia
5.
Mol Cell ; 81(6): 1260-1275.e12, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33561390

RESUMO

DNA methylation is implicated in neuronal biology via the protein MeCP2, the mutation of which causes Rett syndrome. MeCP2 recruits the NCOR1/2 co-repressor complexes to methylated cytosine in the CG dinucleotide, but also to sites of non-CG methylation, which are abundant in neurons. To test the biological significance of the dual-binding specificity of MeCP2, we replaced its DNA binding domain with an orthologous domain from MBD2, which can only bind mCG motifs. Knockin mice expressing the domain-swap protein displayed severe Rett-syndrome-like phenotypes, indicating that normal brain function requires the interaction of MeCP2 with sites of non-CG methylation, specifically mCAC. The results support the notion that the delayed onset of Rett syndrome is due to the simultaneous post-natal accumulation of mCAC and its reader MeCP2. Intriguingly, genes dysregulated in both Mecp2 null and domain-swap mice are implicated in other neurological disorders, potentially highlighting targets of relevance to the Rett syndrome phenotype.


Assuntos
Metilação de DNA , Proteína 2 de Ligação a Metil-CpG/metabolismo , Neurônios/metabolismo , Animais , Ilhas de CpG , Técnicas de Introdução de Genes , Células HeLa , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Transgênicos , Mutação , Células NIH 3T3 , Neurônios/patologia , Domínios Proteicos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia
6.
Mol Cell ; 77(2): 294-309.e9, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31784358

RESUMO

Mutations in the methyl-DNA-binding repressor protein MeCP2 cause the devastating neurodevelopmental disorder Rett syndrome. It has been challenging to understand how MeCP2 regulates transcription because MeCP2 binds broadly across the genome and MeCP2 mutations are associated with widespread small-magnitude changes in neuronal gene expression. We demonstrate here that MeCP2 represses nascent RNA transcription of highly methylated long genes in the brain through its interaction with the NCoR co-repressor complex. By measuring the rates of transcriptional initiation and elongation directly in the brain, we find that MeCP2 has no measurable effect on transcriptional elongation, but instead represses the rate at which Pol II initiates transcription of highly methylated long genes. These findings suggest a new model of MeCP2 function in which MeCP2 binds broadly across highly methylated regions of DNA, but acts at transcription start sites to attenuate transcriptional initiation.


Assuntos
Metilação de DNA/genética , Proteína 2 de Ligação a Metil-CpG/genética , Proteínas Repressoras/genética , Transcrição Gênica/genética , Animais , Encéfalo/fisiologia , DNA/genética , Masculino , Camundongos , Camundongos Knockout , Mutação/genética , Neurônios/fisiologia , RNA/genética , Síndrome de Rett/genética
7.
Mol Cell ; 77(2): 279-293.e8, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31784360

RESUMO

The genomes of mammalian neurons contain uniquely high levels of non-CG DNA methylation that can be bound by the Rett syndrome protein, MeCP2, to regulate gene expression. How patterns of non-CG methylation are established in neurons and the mechanism by which this methylation works with MeCP2 to control gene expression is unclear. Here, we find that genes repressed by MeCP2 are often located within megabase-scale regions of high non-CG methylation that correspond with topologically associating domains of chromatin folding. MeCP2 represses enhancers found in these domains that are enriched for non-CG and CG methylation, with the strongest repression occurring for enhancers located within MeCP2-repressed genes. These alterations in enhancer activity provide a mechanism for how MeCP2 disruption in disease can lead to widespread changes in gene expression. Hence, we find that DNA topology can shape non-CG DNA methylation across the genome to dictate MeCP2-mediated enhancer regulation in the brain.


Assuntos
Cromossomos/genética , Metilação de DNA/genética , Elementos Facilitadores Genéticos/genética , Proteína 2 de Ligação a Metil-CpG/genética , Proteínas Repressoras/genética , Animais , Encéfalo/fisiologia , Feminino , Regulação da Expressão Gênica/genética , Genoma/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos
8.
Mol Cell ; 79(1): 84-98.e9, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32526163

RESUMO

Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT.


Assuntos
Azepinas/farmacologia , Encéfalo/patologia , Proteínas de Ciclo Celular/metabolismo , Interneurônios/patologia , Proteína 2 de Ligação a Metil-CpG/fisiologia , Síndrome de Rett/patologia , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos , Triazóis/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Feminino , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fenótipo , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Fatores de Transcrição/genética
9.
Proc Natl Acad Sci U S A ; 121(9): e2312757121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386709

RESUMO

MECP2, CDKL5, and FMR1 are three X-linked neurodevelopmental genes associated with Rett, CDKL5-, and fragile-X syndrome, respectively. These syndromes are characterized by distinct constellations of severe cognitive and neurobehavioral anomalies, reflecting the broad but unique expression patterns of each of the genes in the brain. As these disorders are not thought to be neurodegenerative and may be reversible, a major goal has been to restore expression of the functional proteins in the patient's brain. Strategies have included gene therapy, gene editing, and selective Xi-reactivation methodologies. However, tissue penetration and overall delivery to various regions of the brain remain challenging for each strategy. Thus, gaining insights into how much restoration would be required and what regions/cell types in the brain must be targeted for meaningful physiological improvement would be valuable. As a step toward addressing these questions, here we perform a meta-analysis of single-cell transcriptomics data from the human brain across multiple developmental stages, in various brain regions, and in multiple donors. We observe a substantial degree of expression variability for MECP2, CDKL5, and FMR1 not only across cell types but also between donors. The wide range of expression may help define a therapeutic window, with the low end delineating a minimum level required to restore physiological function and the high end informing toxicology margin. Finally, the inter-cellular and inter-individual variability enable identification of co-varying genes and will facilitate future identification of biomarkers.


Assuntos
Encéfalo , Síndromes Epilépticas , Terapia Genética , Espasmos Infantis , Humanos , Encéfalo/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Genes Ligados ao Cromossomo X , Terapia Genética/métodos , Proteínas Serina-Treonina Quinases/genética
10.
RNA ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379106

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder caused by loss-of-function mutations in the methyl CpG binding protein 2 (MECP2) gene. Despite its severe phenotype, studies in mouse models suggest that restoring MeCP2 levels can reverse RTT symptomology. Nevertheless, traditional gene therapy approaches are hindered by MECP2's narrow therapeutic window, complicating the safe delivery of viral constructs without overshooting the threshold for toxicity. The 3' untranslated region (3'UTR) plays a key role in gene regulation, where factors like miRNAs bind to pre-mRNA and fine-tune expression. Given that each miRNA's contribution is modest, blocking miRNA binding may represent a potential therapeutic strategy for diseases with high dosage sensitivity, like RTT. Here, we present a series of site-blocking antisense oligonucleotides (sbASOs) designed to outcompete repressive miRNA binding at the MECP2 3'UTR. This strategy aims to increase MECP2 levels in patients with missense or late-truncating mutations, where the hypomorphic nature of the protein can be offset by increased abundance. Our results demonstrate that sbASOs can elevate MECP2 levels in a dose-dependent manner in SH-SY5Y and patient fibroblast cell lines, plateauing at levels projected to be safe. Confirming in vivo functionality, sbASO administration in wild-type mice led to significant MeCP2 upregulation and the emergence of phenotypes associated with MeCP2 overexpression. In a T158M neural stem cell model of RTT, sbASO treatment significantly increased MECP2 expression and levels of the downstream effector protein, brain-derived neurotrophic factor (BDNF). These findings highlight the potential of sbASO-based therapies for MECP2-related disorders and advocate for their continued development.

11.
Proc Natl Acad Sci U S A ; 120(44): e2310344120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871205

RESUMO

Mutations in MECP2 give rise to Rett syndrome (RTT), an X-linked neurodevelopmental disorder that results in broad cognitive impairments in females. While the exact etiology of RTT symptoms remains unknown, one possible explanation for its clinical presentation is that loss of MECP2 causes miswiring of neural circuits due to defects in the brain's capacity to respond to changes in neuronal activity and sensory experience. Here, we show that MeCP2 is phosphorylated at four residues in the mouse brain (S86, S274, T308, and S421) in response to neuronal activity, and we generate a quadruple knock-in (QKI) mouse line in which all four activity-dependent sites are mutated to alanines to prevent phosphorylation. QKI mice do not display overt RTT phenotypes or detectable gene expression changes in two brain regions. However, electrophysiological recordings from the retinogeniculate synapse of QKI mice reveal that while synapse elimination is initially normal at P14, it is significantly compromised at P20. Notably, this phenotype is distinct from the synapse refinement defect previously reported for Mecp2 null mice, where synapses initially refine but then regress after the third postnatal week. We thus propose a model in which activity-induced phosphorylation of MeCP2 is critical for the proper timing of retinogeniculate synapse maturation specifically during the early postnatal period.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Síndrome de Rett , Feminino , Camundongos , Animais , Fosforilação , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Encéfalo/metabolismo , Sinapses/metabolismo , Neurônios/metabolismo , Camundongos Knockout , Modelos Animais de Doenças
12.
Proc Natl Acad Sci U S A ; 120(2): e2122467120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36598943

RESUMO

Forkhead box G1 (FOXG1) has important functions in neuronal differentiation and balances excitatory/inhibitory network activity. Thus far, molecular processes underlying FOXG1 function are largely unexplored. Here, we present a multiomics data set exploring how FOXG1 impacts neuronal maturation at the chromatin level in the mouse hippocampus. At a genome-wide level, FOXG1 i) both represses and activates transcription, ii) binds mainly to enhancer regions, iii) reconfigures the epigenetic landscape through bidirectional alteration of H3K27ac, H3K4me3, and chromatin accessibility, and iv) operates synergistically with NEUROD1. Interestingly, we could not detect a clear hierarchy of FOXG1 and NEUROD1, but instead, provide the evidence that they act in a highly cooperative manner to control neuronal maturation. Genes affected by the chromatin alterations impact synaptogenesis and axonogenesis. Inhibition of histone deacetylases partially rescues transcriptional alterations upon FOXG1 reduction. This integrated multiomics view of changes upon FOXG1 reduction reveals an unprecedented multimodality of FOXG1 functions converging on neuronal maturation. It fuels therapeutic options based on epigenetic drugs to alleviate, at least in part, neuronal dysfunction.


Assuntos
Fatores de Transcrição Forkhead , Síndrome de Rett , Camundongos , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Síndrome de Rett/genética , Epigênese Genética , Cromatina/genética , Cromatina/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
13.
J Neurosci ; 44(12)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38199865

RESUMO

Regression is a key feature of neurodevelopmental disorders such as autism spectrum disorder, Fragile X syndrome, and Rett syndrome (RTT). RTT is caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). It is characterized by an early period of typical development with subsequent regression of previously acquired motor and speech skills in girls. The syndromic phenotypes are individualistic and dynamic over time. Thus far, it has been difficult to capture these dynamics and syndromic heterogeneity in the preclinical Mecp2-heterozygous female mouse model (Het). The emergence of computational neuroethology tools allows for robust analysis of complex and dynamic behaviors to model endophenotypes in preclinical models. Toward this first step, we utilized DeepLabCut, a marker-less pose estimation software to quantify trajectory kinematics and multidimensional analysis to characterize behavioral heterogeneity in Het in the previously benchmarked, ethologically relevant social cognition task of pup retrieval. We report the identification of two distinct phenotypes of adult Het: Het that display a delay in efficiency in early days and then improve over days like wild-type mice and Het that regress and perform worse in later days. Furthermore, regression is dependent on age and behavioral context and can be detected in the initial days of retrieval. Together, the novel identification of two populations of Het suggests differential effects on neural circuitry, opens new avenues to investigate the underlying molecular and cellular mechanisms of heterogeneity, and designs better studies for stratifying therapeutics.


Assuntos
Transtorno do Espectro Autista , Síndrome de Rett , Humanos , Feminino , Animais , Camundongos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Fenótipo , Mutação/genética , Comportamento Social , Modelos Animais de Doenças
14.
Brain ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39300821

RESUMO

MECP2 deficiency causes a broad spectrum of neuropsychiatric disorders that can affect both genders. Rett syndrome is the most common and is characterized by an apparently normal growth period followed by a regression phase in which patients lose most of their previously acquired skills. After this dramatic period, various symptoms progressively appear, including severe intellectual disability, epilepsy, apraxia, breathing abnormalities and motor deterioration. MECP2 encodes for an epigenetic transcription factor that is particularly abundant in the brain; consequently, several transcriptional defects characterize the Rett syndrome brain. The well-known deficiency of several neurotrophins and growth factors, together with the positive effects exerted by Trofinetide, a synthetic analogue of insulin-like growth factor 1, in Rett patients and in mouse models of Mecp2 deficiency, prompted us to investigate the therapeutic potential of nerve growth factor. Initial in vitro studies demonstrated a healing effect of rhNGF on neuronal maturation and activity in cultured Mecp2-null neurons. Subsequently, we designed in vivo studies with clear translational potential using intranasally administered recombinant human GMP-grade NGF (rhNGF) already used in the clinic. Efficacy of rhNGF in vivo in Mecp2-null hemizygous male mice and heterozygous female mice was assessed. General well-being was evaluated by a conventional phenotypic score and motor performance through the Pole and Beam Walking tests, while cognitive function and interaction with the environment were measured by the Novel Object Recognition Test and the Marble Burying test, respectively. At the end of the treatment, mouse cortices were dissected and bulk RNA sequencing was performed to identify the molecular pathways involved in the protective effects of rhNGF. rhNGF exerted positive effects on cognitive and motor functions in both male and female mouse models of Rett syndrome. In male hemizygous mice, which suffer from significantly more severe and rapidly advancing symptoms, the drug's ability to slow the disease's progression was more pronounced. The unbiased research for the molecular mechanisms triggering the observed benefits revealed a strong positive effect on gene sets related to oxidative phosphorylation, mitochondrial structure and function. These results were validated by demonstrating the drug's ability to improve mitochondrial structure and respiration in Mecp2-null cerebral cortices. Furthermore, GO analyses indicated that NGF exerted the expected improvement in neuronal maturation. We conclude that intranasal administration of rhNGF is a non-invasive and effective route of administration for the treatment of Rett syndrome and possibly for other neurometabolic disorders with overt mitochondrial dysfunction.

15.
Cell Mol Life Sci ; 81(1): 410, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305343

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder caused by de novo mutations in the MECP2 gene. Although miRNAs in extracellular vesicles (EVs) have been suggested to play an essential role in several neurological conditions, no prior study has utilized brain organoids to profile EV-derived miRNAs during normal and RTT-affected neuronal development. Here we report the spatiotemporal expression pattern of EV-derived miRNAs in region-specific forebrain organoids generated from female hiPSCs with a MeCP2:R255X mutation and the corresponding isogenic control. EV miRNA and protein expression profiles were characterized at day 0, day 13, day 40, and day 75. Several members of the hsa-miR-302/367 cluster were identified as having a time-dependent expression profile with RTT-specific alterations at the latest developmental stage. Moreover, the miRNA species of the chromosome 14 miRNA cluster (C14MC) exhibited strong upregulation in RTT forebrain organoids irrespective of their spatiotemporal location. Together, our results suggest essential roles of the C14MC and hsa-miR-302/367 clusters in EVs during normal and RTT-associated neurodevelopment, displaying promising prospects as biomarkers for monitoring RTT progression.


Assuntos
Encéfalo , Vesículas Extracelulares , Proteína 2 de Ligação a Metil-CpG , MicroRNAs , Organoides , Síndrome de Rett , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Humanos , Organoides/metabolismo , Organoides/patologia , Feminino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , Prosencéfalo/metabolismo
16.
Mol Cell Neurosci ; 129: 103933, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663691

RESUMO

Astrocytes are in constant communication with neurons during the establishment and maturation of functional networks in the developing brain. Astrocytes release extracellular vesicles (EVs) containing microRNA (miRNA) cargo that regulates transcript stability in recipient cells. Astrocyte released factors are thought to be involved in neurodevelopmental disorders. Healthy astrocytes partially rescue Rett Syndrome (RTT) neuron function. EVs isolated from stem cell progeny also correct aspects of RTT. EVs cross the blood-brain barrier (BBB) and their cargo is found in peripheral blood which may allow non-invasive detection of EV cargo as biomarkers produced by healthy astrocytes. Here we characterize miRNA cargo and sequence motifs in healthy human astrocyte derived EVs (ADEVs). First, human induced Pluripotent Stem Cells (iPSC) were differentiated into Neural Progenitor Cells (NPCs) and subsequently into astrocytes using a rapid differentiation protocol. iPSC derived astrocytes expressed specific markers, displayed intracellular calcium transients and secreted ADEVs. miRNAs were identified by RNA-Seq on astrocytes and ADEVs and target gene pathway analysis detected brain and immune related terms. The miRNA profile was consistent with astrocyte identity, and included approximately 80 miRNAs found in astrocytes that were relatively depleted in ADEVs suggestive of passive loading. About 120 miRNAs were relatively enriched in ADEVs and motif analysis discovered binding sites for RNA binding proteins FUS, SRSF7 and CELF5. miR-483-5p was the most significantly enriched in ADEVs. This miRNA regulates MECP2 expression in neurons and has been found differentially expressed in blood samples from RTT patients. Our results identify potential miRNA biomarkers selectively sorted into ADEVs and implicate RNA binding protein sequence dependent mechanisms for miRNA cargo loading.


Assuntos
Astrócitos , Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Neurônios , Humanos , Vesículas Extracelulares/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Astrócitos/metabolismo , Neurônios/metabolismo , Diferenciação Celular , Células Cultivadas , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia
17.
Proc Natl Acad Sci U S A ; 119(33): e2206053119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939700

RESUMO

Rett syndrome is a neurological disease due to loss-of-function mutations in the transcription factor, Methyl CpG binding protein 2 (MECP2). Because overexpression of endogenous MECP2 also causes disease, we have exploited a targeted RNA-editing approach to repair patient mutations where levels of MECP2 protein will never exceed endogenous levels. Here, we have constructed adeno-associated viruses coexpressing a bioengineered wild-type ADAR2 catalytic domain (Editasewt) and either Mecp2-targeting or nontargeting gfp RNA guides. The viruses are introduced systemically into male mice containing a guanosine to adenosine mutation that eliminates MeCP2 protein and causes classic Rett syndrome in humans. We find that in the mutant mice injected with the Mecp2-targeting virus, the brainstem exhibits the highest RNA-editing frequency compared to other brain regions. The efficiency is sufficient to rescue MeCP2 expression and function in the brainstem of mice expressing the Mecp2-targeting virus. Correspondingly, we find that abnormal Rett-like respiratory patterns are alleviated, and survival is prolonged, compared to mice injected with the control gfp guide virus. The levels of RNA editing among most brain regions corresponds to the distribution of guide RNA rather than Editasewt. Our results provide evidence that a targeted RNA-editing approach can alleviate a hallmark symptom in a mouse model of human disease.


Assuntos
Tronco Encefálico , Proteína 2 de Ligação a Metil-CpG , Edição de RNA , Transtornos Respiratórios , Síndrome de Rett , Animais , Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Mutação , Transtornos Respiratórios/genética , Transtornos Respiratórios/terapia , Síndrome de Rett/genética , Síndrome de Rett/terapia
18.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074918

RESUMO

MeCP2 is associated with Rett syndrome (RTT), MECP2 duplication syndrome, and a number of conditions with isolated features of these diseases, including autism, intellectual disability, and motor dysfunction. MeCP2 is known to broadly bind methylated DNA, but the precise molecular mechanism driving disease pathogenesis remains to be determined. Using proximity-dependent biotinylation (BioID), we identified a transcription factor 20 (TCF20) complex that interacts with MeCP2 at the chromatin interface. Importantly, RTT-causing mutations in MECP2 disrupt this interaction. TCF20 and MeCP2 are highly coexpressed in neurons and coregulate the expression of key neuronal genes. Reducing Tcf20 partially rescued the behavioral deficits caused by MECP2 overexpression, demonstrating a functional relationship between MeCP2 and TCF20 in MECP2 duplication syndrome pathogenesis. We identified a patient exhibiting RTT-like neurological features with a missense mutation in the PHF14 subunit of the TCF20 complex that abolishes the MeCP2-PHF14-TCF20 interaction. Our data demonstrate the critical role of the MeCP2-TCF20 complex for brain function.


Assuntos
Proteína 2 de Ligação a Metil-CpG/metabolismo , Complexos Multiproteicos/metabolismo , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/metabolismo , Fatores de Transcrição/metabolismo , Alelos , Animais , Biomarcadores , Encéfalo/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Mutação , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Sinapses/metabolismo , Fatores de Transcrição/genética
19.
J Physiol ; 602(1): 93-112, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38063489

RESUMO

The Kölliker-Fuse nucleus (KF), which is part of the parabrachial complex, participates in the generation of eupnoea under resting conditions and the control of active abdominal expiration when increased ventilation is required. Moreover, dysfunctions in KF neuronal activity are believed to play a role in the emergence of respiratory abnormalities seen in Rett syndrome (RTT), a progressive neurodevelopmental disorder associated with an irregular breathing pattern and frequent apnoeas. Relatively little is known, however, about the intrinsic dynamics of neurons within the KF and how their synaptic connections affect breathing pattern control and contribute to breathing irregularities. In this study, we use a reduced computational model to consider several dynamical regimes of KF activity paired with different input sources to determine which combinations are compatible with known experimental observations. We further build on these findings to identify possible interactions between the KF and other components of the respiratory neural circuitry. Specifically, we present two models that both simulate eupnoeic as well as RTT-like breathing phenotypes. Using nullcline analysis, we identify the types of inhibitory inputs to the KF leading to RTT-like respiratory patterns and suggest possible KF local circuit organizations. When the identified properties are present, the two models also exhibit quantal acceleration of late-expiratory activity, a hallmark of active expiration featuring forced exhalation, with increasing inhibition to KF, as reported experimentally. Hence, these models instantiate plausible hypotheses about possible KF dynamics and forms of local network interactions, thus providing a general framework as well as specific predictions for future experimental testing. KEY POINTS: The Kölliker-Fuse nucleus (KF), a part of the parabrachial complex, is involved in regulating normal breathing and controlling active abdominal expiration during increased ventilation. Dysfunction in KF neuronal activity is thought to contribute to respiratory abnormalities seen in Rett syndrome (RTT). This study utilizes computational modelling to explore different dynamical regimes of KF activity and their compatibility with experimental observations. By analysing different model configurations, the study identifies inhibitory inputs to the KF that lead to RTT-like respiratory patterns and proposes potential KF local circuit organizations. Two models are presented that simulate both normal breathing and RTT-like breathing patterns. These models provide testable hypotheses and specific predictions for future experimental investigations, offering a general framework for understanding KF dynamics and potential network interactions.


Assuntos
Núcleo de Kölliker-Fuse , Síndrome de Rett , Humanos , Núcleo de Kölliker-Fuse/fisiologia , Respiração , Neurônios , Simulação por Computador
20.
Curr Issues Mol Biol ; 46(8): 8424-8440, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39194714

RESUMO

Rett syndrome (RTT) is a paediatric neurodevelopmental disorder spanning four developmental stages. This multi-system disorder offers a unique window to explore genotype-phenotype relationships in a disease model. However, genetic prognosticators of RTT have limited clinical value due to the disorder's heterogeneity on multiple levels. This case report used a precision medicine approach to better understand the clinical phenotype of RTT twins with an identical pathogenic MECP2 mutation and discordant neurodevelopmental profiles. Targeted genotyping, objective physiological monitoring of heart rate variability (HRV) parameters, and clinical severity were assessed in a RTT twin pair (5 years 7 months old) with an identical pathogenic MECP2 mutation. Longitudinal assessment of autonomic HRV parameters was conducted using the Empatica E4 wristband device, and clinical severity was assessed using the RTT-anchored Clinical Global Impression Scale (RTT-CGI) and the Multi-System Profile of Symptoms Scale (MPSS). Genotype data revealed impaired BDNF function for twin A when compared to twin B. Twin A also had poorer autonomic health than twin B, as indicated by lower autonomic metrics (autonomic inflexibility). Hospitalisation, RTT-CGI-S, and MPSS subscale scores were used as measures of clinical severity, and these were worse in twin A. Treatment using buspirone shifted twin A from an inflexible to a flexible autonomic profile. This was mirrored in the MPSS scores, which showed a reduction in autonomic and cardiac symptoms following buspirone treatment. Our findings showed that a combination of a co-occurring rs6265 BDNF polymorphism, and worse autonomic and clinical profiles led to a poorer prognosis for twin A compared to twin B. Buspirone was able to shift a rigid autonomic profile to a more flexible one for twin A and thereby prevent cardiac and autonomic symptoms from worsening. The clinical profile for twin A represents a departure from the disorder trajectory typically observed in RTT and underscores the importance of wider genotype profiling and longitudinal objective physiological monitoring alongside measures of clinical symptoms and severity when assessing genotype-phenotype relationships in RTT patients with identical pathogenic mutations. A precision medicine approach that assesses genetic and physiological risk factors can be extended to other neurodevelopmental disorders to monitor risk when genotype-phenotype relationships are not so obvious.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA