Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 524
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(27): e2304306120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364127

RESUMO

Understanding the fundamental interaction of nanoparticles at plant interfaces is critical for reaching field-scale applications of nanotechnology-enabled plant agriculture, as the processes between nanoparticles and root interfaces such as root compartments and root exudates remain largely unclear. Here, using iron deficiency-induced plant chlorosis as an indicator phenotype, we evaluated the iron transport capacity of Fe3O4 nanoparticles coated with citrate (CA) or polyacrylic acid (PAA) in the plant rhizosphere. Both nanoparticles can be used as a regulator of plant hormones to promote root elongation, but they regulate iron deficiency in plant in distinctive ways. In acidic root exudates secreted by iron-deficient Arabidopsis thaliana, CA-coated particles released fivefold more soluble iron by binding to acidic exudates mainly through hydrogen bonds and van der Waals forces and thus, prevented iron chlorosis more effectively than PAA-coated particles. We demonstrate through roots of mutants and visualization of pH changes that acidification of root exudates primarily originates from root tips and the synergistic mode of nanoparticle uptake and transformation in different root compartments. The nanoparticles entered the roots mainly through the epidermis but were not affected by lateral roots or root hairs. Our results show that magnetic nanoparticles can be a sustainable source of iron for preventing leaf chlorosis and that nanoparticle surface coating regulates this process in distinctive ways. This information also serves as an urgently needed theoretical basis for guiding the application of nanomaterials in agriculture.


Assuntos
Anemia Hipocrômica , Arabidopsis , Deficiências de Ferro , Nanopartículas de Magnetita , Ferro/metabolismo , Transporte Biológico , Anemia Hipocrômica/metabolismo , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo
2.
Mol Plant Microbe Interact ; 37(7): 552-560, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38619862

RESUMO

Diphenyl ether herbicides are extensively utilized in agricultural systems, but their residues threaten the health of sensitive rotation crops. Functional microbial strains can degrade diphenyl ether herbicides in the rhizosphere of crops, facilitating the restoration of a healthy agricultural environment. However, the interplay between microorganisms and plants in diphenyl ether herbicides degradation remains unclear. Thus, the herbicide-degrading strain Bacillus sp. Za and the sensitive crop, maize, were employed to uncover the interaction mechanism. The degradation of diphenyl ether herbicides by strain Bacillus sp. Za was promoted by root exudates. The strain induced root exudate re-secretion in diphenyl ether herbicide-polluted maize. We further showed that root exudates enhanced the rhizosphere colonization and the biofilm biomass of strain Za, augmenting its capacity to degrade diphenyl ether herbicide. Root exudates regulated gene fliZ, which is pivotal in biofilm formation. Wild-type strain Za significantly reduced herbicide toxicity to maize compared to the ZaΔfliZ mutant. Moreover, root exudates promoted strain Za growth and chemotaxis, which was related to biofilm formation. This mutualistic relationship between the microorganisms and the plants demonstrates the significance of plant-microbe interactions in shaping diphenyl ether herbicide degradation in rhizosphere soils. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.


Assuntos
Bacillus , Biofilmes , Herbicidas , Raízes de Plantas , Rizosfera , Zea mays , Zea mays/microbiologia , Bacillus/metabolismo , Bacillus/fisiologia , Herbicidas/metabolismo , Raízes de Plantas/microbiologia , Biodegradação Ambiental , Exsudatos de Plantas/metabolismo , Éteres Fenílicos/metabolismo , Poluentes do Solo/metabolismo
3.
BMC Plant Biol ; 24(1): 340, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671402

RESUMO

Astragalus mongholicus is a medicinal plant that is known to decrease in quality in response to continuous cropping. However, the differences in the root-associated microbiome and root exudates in the rhizosphere soil that may lead to these decreases are barely under studies. We investigated the plant biomass production, root-associated microbiota, and root exudates of A. mongholicus grown in two different fields: virgin soil (Field I) and in a long-term continuous cropping field (Field II). Virgin soil is soil that has never been cultivated for A. mongholicus. Plant physiological measurements showed reduced fresh and dry weight of A. mongholicus under continuous cropping conditions (i.e. Field II). High-throughput sequencing of the fungal and bacterial communities revealed differences in fungal diversity between samples from the two fields, including enrichment of potentially pathogenic fungi in the roots of A. mongholicus grown in Field II. Metabolomic analysis yielded 20 compounds in A. mongholicus root exudates that differed in relative abundance between rhizosphere samples from the two fields. Four of these metabolites (2-aminophenol, quinic acid, tartaric acid, and maleamate) inhibited the growth of A. mongholicus, the soil-borne pathogen Fusarium oxysporum, or both. This comprehensive analysis enhances our understanding of the A. mongholicus microbiome, root exudates, and interactions between the two in response to continuous cropping. These results offer new information for future design of effective, economical approaches to achieving food security.


Assuntos
Microbiota , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Raízes de Plantas/microbiologia , Astrágalo/microbiologia , Exsudatos de Plantas/metabolismo , Fungos/genética , Fungos/fisiologia , Produção Agrícola/métodos , Bactérias/genética , Bactérias/metabolismo
4.
BMC Plant Biol ; 24(1): 495, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831411

RESUMO

BACKGROUND: Phosphorus (P) and iron (Fe) deficiencies are relevant plants nutritional disorders, prompting responses such as increased root exudation to aid nutrient uptake, albeit at an energy cost. Reacquiring and reusing exudates could represent an efficient energy and nitrogen saving strategy. Hence, we investigated the impact of plant development, Fe and P deficiencies on this process. Tomato seedlings were grown hydroponically for 3 weeks in Control, -Fe, and -P conditions and sampled twice a week. We used Isotope Ratio Mass-Spectrometry to measure δ13C in roots and shoots after a 2-h exposure to 13C-labeled glycine (0, 50, or 500 µmol L-1). Plant physiology was assessed with an InfraRed Gas Analyzer and ionome with an Inductively Coupled Plasma Mass-Spectrometry. RESULTS: Glycine uptake varied with concentration, suggesting an involvement of root transporters with different substrate affinities. The uptake decreased over time, with -Fe and -P showing significantly higher values as compared to the Control. This highlights its importance during germination and in nutrient-deficient plants. Translocation to shoots declined over time in -P and Control but increased in -Fe plants, suggesting a role of Gly in the Fe xylem transport. CONCLUSIONS: Root exudates, i.e. glycine, acquisition and their subsequent shoot translocation depend on Fe and P deficiency. The present findings highlight the importance of this adaptation to nutrient deficiencies, that can potentially enhance plants fitness. A thorough comprehension of this trait holds potential significance for selecting cultivars that can better withstand abiotic stresses.


Assuntos
Glicina , Fósforo , Raízes de Plantas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Glicina/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Fósforo/metabolismo , Fósforo/deficiência , Deficiências de Ferro , Ferro/metabolismo , Transporte Biológico , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento
5.
BMC Plant Biol ; 24(1): 593, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910247

RESUMO

BACKGROUND: Long-term continuous cropping has resulted in the frequent occurrence of fusarium wilt of watermelon (Citrullus lanatus). AMF inoculation can alleviate the continuous cropping barrier and reduce the incidence of fusarium wilt of watermelon. Our previous study found that the root exudates of mycorrhizal watermelon can enhance watermelon resistance to this disorder. It is necessary to further isolate and identify the specific compounds in root exudates of mycorrhizal watermelon and explore their control effects on fusarium wilt of continuous cropping watermelon. RESULT: The results of this study showed that the root system of watermelon seedlings inoculated with AMF (Funneliformis mosseae or Glomus versiforme) secreted diisooctyl phthalate (A) and dibutyl phthalate (B). Compared with water treatment, treatment with 0.1 ml/L (A1, B1), 0.5 ml/L (A2, B2) and 1 ml/L (A3, B3) of A or B significantly increased soil enzyme activities, the numbers of bacteria and actinomycetes, and the bacteria/fungi ratio in the rhizosphere. Furthermore, the Disease indexes (DI) of A1 and B3 were 25% and 20%, respectively, while the prevention and control effects (PCE) were 68.8% and 75%, respectively. In addition, diisooctyl phthalate or dibutyl phthalate increased the proportions of Gemmatimonadetes, Chloroflexi, and Acidobacteria in the rhizosphere of continuous cropping watermelon, and decreased the proportions of Proteobacteria and Firmicutes, with Novosphingobium, Kaistobacter, Bacillus, and Acinetobacter as the predominant bacteria. Compared with the water treatment, the abundance of Neosphingosaceae, Kateybacterium and Bacillus in the A1 group was increased by 7.33, 2.14 and 2.18 times, respectively, while that in the B2 group was increased by 60.05%, 80.24% and 1 time, respectively. In addition, exogenous diisooctyl phthalate and dibutyl phthalate were shown to promote growth parameters (vine length, stem diameter, fresh weight and dry weight) and antioxidant enzyme system activities (SOD, POD and CAT) of continuous cropping watermelon. CONCLUSION: Lower watermelon fusarium wilt incidence in mycorrhizal watermelons was associated with phthalate secretion in watermelons after AMF inoculation. Exogenous diisooctyl phthalate and dibutyl phthalate could alleviate the continuous cropping disorder of watermelon, reduce the incidence of fusarium wilt, and promote the growth of watermelon by increasing the enzyme activities and the proportion of beneficial bacteria in rhizosphere soil. In addition, the low concentration of phthalate diisooctyl and high concentration of phthalic acid dibutyl works best. Therefore, a certain concentration of phthalates in the soil can help alleviate continuous cropping obstacles.


Assuntos
Citrullus , Fusarium , Micorrizas , Ácidos Ftálicos , Doenças das Plantas , Raízes de Plantas , Microbiologia do Solo , Citrullus/microbiologia , Citrullus/crescimento & desenvolvimento , Micorrizas/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Ácidos Ftálicos/metabolismo , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Solo/química , Rizosfera
6.
Appl Environ Microbiol ; 90(4): e0235123, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38517167

RESUMO

In rice paddies, soil and plant-derived organic matter are degraded anaerobically to methane (CH4), a powerful greenhouse gas. The highest rate of methane emission occurs during the reproductive stage of the plant when mostly dicarboxylic acids are exudated by the roots. The emission of methane at this stage depends largely on the cooperative interaction between dicarboxylic acid-fermenting bacteria and methanogenic archaea in the rhizosphere. The fermentation of tartrate, one of the major acids exudated, has been scarcely explored in rice paddy soils. In this work, we characterized an anaerobic consortium from rice paddy soil composed of four bacterial strains, whose principal member (LT8) can ferment tartrate, producing H2 and acetate. Tartrate fermentation was accelerated by co-inoculation with a hydrogenotrophic methanogen. The assembled genome of LT8 possesses a Na+-dependent oxaloacetate decarboxylase and shows that this bacterium likely invests part of the H2 produced to reduce NAD(P)+ to assimilate C from tartrate. The phylogenetic analysis of the 16S rRNA gene, the genome-based classification as well as the average amino acid identity (AAI) indicated that LT8 belongs to a new genus within the Sporomusaceae family. LT8 shares a few common features with its closest relatives, for which tartrate degradation has not been described. LT8 is limited to a few environments but is more common in rice paddy soils, where it might contribute to methane emissions from root exudates.IMPORTANCEThis is the first report of the metabolic characterization of a new anaerobic bacterium able to degrade tartrate, a compound frequently associated with plants, but rare as a microbial metabolite. Tartrate fermentation by this bacterium can be coupled to methanogenesis in the rice rhizosphere where tartrate is mainly produced at the reproductive stage of the plant, when the maximum methane rate emission occurs. The interaction between secondary fermentative bacteria, such as LT8, and methanogens could represent a fundamental step in exploring mitigation strategies for methane emissions from rice fields. Possible strategies could include controlling the activity of these secondary fermentative bacteria or selecting plants whose exudates are more difficult to ferment.


Assuntos
Euryarchaeota , Oryza , Solo/química , Oryza/microbiologia , Fermentação , Tartaratos/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Filogenia , Composição de Bases , Análise de Sequência de DNA , Bactérias , Bactérias Anaeróbias/metabolismo , Euryarchaeota/metabolismo , Firmicutes/metabolismo , Bactérias Gram-Negativas/genética , Metano/metabolismo
7.
New Phytol ; 241(5): 1910-1921, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38124274

RESUMO

By modifying the biotic and abiotic properties of the soil, plants create soil legacies that can affect vegetation dynamics through plant-soil feedbacks (PSF). PSF are generally attributed to reciprocal effects of plants and soil biota, but these interactions can also drive changes in the identity, diversity and abundance of soil metabolites, leading to more or less persistent soil chemical legacies whose role in mediating PSF has rarely been considered. These chemical legacies may interact with microbial or nutrient legacies to affect species coexistence. Given the ecological importance of chemical interactions between plants and other organisms, a better understanding of soil chemical legacies is needed in community ecology. In this Viewpoint, we aim to: highlight the importance of belowground chemical interactions for PSF; define and integrate soil chemical legacies into PSF research by clarifying how the soil metabolome can contribute to PSF; discuss how functional traits can help predict these plant-soil interactions; propose an experimental approach to quantify plant responses to the soil solution metabolome; and describe a testable framework relying on root economics and seed dispersal traits to predict how plant species affect the soil metabolome and how they could respond to soil chemical legacies.


Assuntos
Plantas , Solo , Solo/química , Retroalimentação , Plantas/metabolismo , Microbiologia do Solo , Biota
8.
J Exp Bot ; 75(4): 1159-1173, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37623748

RESUMO

The rhizosphere is a complex physical and chemical interface between plants and their underground environment, both biotic and abiotic. Plants exude a large number of chemicals into the rhizosphere in order to manipulate these biotic and abiotic components. Among such chemicals are strigolactones, ancient signalling molecules that in flowering plants act as both internal hormones and external rhizosphere signals. Plants exude strigolactones to communicate with their preferred symbiotic partners and neighbouring plants, but at least some classes of parasitic organisms are able to 'crack' these private messages and eavesdrop on the signals. In this review, we examine the intentional consequences of strigolactone exudation, and also the unintentional consequences caused by eavesdroppers. We examine the molecular mechanisms by which strigolactones act within the rhizosphere, and attempt to understand the enigma of the strigolactone molecular diversity synthesized and exuded into the rhizosphere by plants. We conclude by looking at the prospects of using improved understanding of strigolactones in agricultural contexts.


Assuntos
Compostos Heterocíclicos com 3 Anéis , Raízes de Plantas , Rizosfera , Raízes de Plantas/química , Plantas , Simbiose , Lactonas/química
9.
J Exp Bot ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864852

RESUMO

Arsenic contamination of soils threatens the health of millions globally through accumulation in crops. While plants detoxify arsenic via phytochelatin (PC) complexation and efflux of arsenite from roots, arsenite efflux mechanisms are not fully understood. Here, white lupin (Lupinus albus) was grown in semi-hydroponics and exudation of glutathione (GSH) derivatives and PCs in response to arsenic was scrutinised using LC-MS/MS. Inhibiting synthesis of PC precursor GSH with L-buthionine sulfoximine (BSO) or ABC transporters with vanadate drastically reduced (>22%) GSH-derivative and PC2 exudation, but not PC3 exudation. This was accompanied by arsenic hypersensitivity in plants treated with BSO and moderate sensitivity with vanadate treatment. Investigating arsenic-phytochelatin (As-PC) complexation revealed two distinct As-PC complexes, As bound to GSH and PC2 (GS-As-PC2) and As bound to PC3 (As-PC3), in exudates of As-treated lupin. Vanadate inhibited As-PC exudation, while BSO inhibited both the synthesis and exudation of As-PC complexes. These results demonstrate a role of GSH-derivatives and PC exudation in lupin arsenic tolerance and reveal As-PC exudation as a new potential mechanism contributing to active arsenic efflux in plants. Overall, this study uncovers insight into rhizosphere arsenic detoxification with potential to help mitigate pollution and reduce arsenic accumulation in crops.

10.
Environ Sci Technol ; 58(28): 12542-12553, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38967661

RESUMO

Although exogenous chemicals frequently exhibit a biphasic response in regulating plant growth, characterized by low-dose stimulation and high-dose inhibition, the underlying mechanisms remain elusive. This study demonstrates, for the first time, the compensatory function of rhizosphere microbiota in assisting plants to withstand pesticide stress. It was observed that pak choi plants, in response to foliar-spraying imidacloprid at both low and high doses, could increase the total number of rhizosphere bacteria and enrich numerous beneficial bacteria. These bacteria have capabilities for promoting plant growth and degrading the pesticide, such as Nocardioides, Brevundimonas, and Sphingomonas. The beneficial bacterial communities were recruited by stressed plants through increasing the release of primary metabolites in root exudates, such as amino acids, fatty acids, and lysophosphatidylcholines. At low doses of pesticide application, the microbial compensatory effect overcame pesticide stress, leading to plant growth promotion. However, with high doses of pesticide application, the microbial compensatory effect was insufficient to counteract pesticide stress, resulting in plant growth inhibition. These findings pave the way for designing improved pesticide application strategies and contribute to a better understanding of how rhizosphere microbiota can be used as an eco-friendly approach to mitigate chemical-induced stress in crops.


Assuntos
Praguicidas , Rizosfera , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Microbiologia do Solo , Microbiota/efeitos dos fármacos , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Estresse Fisiológico
11.
Environ Sci Technol ; 58(22): 9875-9886, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38722770

RESUMO

Zinc oxide nanoparticles (ZnO NPs) cause biotoxicity and pose a potential ecological threat; however, their effects on plant metabolism and eco-corona evolution between NPs and organisms remain unclear. This study clarified the molecular mechanisms underlying physiological and metabolic responses induced by three different ZnO NPs with different sizes and hydrophobicity in sprouts (Vigna radiata) and explored the critical regulation of eco-corona formation in root-nano systems. Results indicated that smaller-sized ZnO inhibited root elongation by up to 37.14% and triggered oxidative burst and apoptosis. Metabolomics confirmed that physiological maintenance after n-ZnO exposure was mainly attributed to the effective stabilization of nitrogen fixation and defense systems by biotransformation of the flavonoid pathway. Larger-sized or hydrophobic group-modified ZnO exhibited low toxicity in sprouts, with 0.89-fold upregulation of citrate in central carbon metabolism. This contributed to providing energy for resistance to NP stress through amino acid and carbon/nitrogen metabolism, accompanied by changes in membrane properties. Notably, smaller-sized and hydrophobic NPs intensely stimulated the release of root metabolites, forming corona complexes with exudates. The hydrogen-bonded wrapping mechanism in protein secondary structure and hydrophobic interactions of heterogeneous functional groups drove eco-corona formation, along with the corona evolution intensity of n-ZnO > s-ZnO > b-ZnO based on higher (α-helix + 3-turn helix)/ß-sheet ratios. This study provides crucial insight into metabolic and eco-corona evolution in bionano fates.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Óxido de Zinco , Vigna/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/toxicidade
12.
Environ Sci Technol ; 58(8): 3858-3868, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38356137

RESUMO

Phytate, the principal P storage in plant seeds, is also an important organic P in soils, but it is unavailable for plant uptake. However, the As-hyperaccumulator Pteris vittata can effectively utilize soluble Na-phytate, while its ability to utilize insoluble Ca/Fe-phytate is unclear. Here, we investigated phytate uptake and the underlying mechanisms based on the phytase activity, nutrient uptake, and expression of genes involved in As metabolisms. P. vittata plants were cultivated hydroponically in 0.2-strength Hoagland nutrient solution containing 50 µM As and 0.2 mM Na/Ca/Fe-phytate, with 0.2 mM soluble-P as the control. As the sole P source, all three phytates supported P. vittata growth, with its biomass being 3.2-4.1 g plant-1 and Ca/Fe-phytate being 19-29% more effective than Na-phytate. Phytate supplied soluble P to P. vittata probably via phytase hydrolysis, which was supported by 0.4-0.7 nmol P min-1 g-1 root fresh weight day-1 phytase activity in its root exudates, with 29-545 µM phytate-P being released into the growth media. Besides, compared to Na-phytate, Ca/Fe-phytate enhanced the As contents by 102-140% to 657-781 mg kg-1 in P. vittata roots and by 43-86% to 1109-1447 mg kg-1 in the fronds, which was accompanied by 21-108% increase in Ca and Fe uptake. The increased plant As is probably attributed to 1.3-2.6 fold upregulation of P transporters PvPht1;3/4 for root As uptake, and 1.8-4.3 fold upregulation of arsenite antiporters PvACR3/3;1/3;3 for As translocation to and As sequestration into the fronds. This is the first report to show that, besides soluble Na-phytate, P. vittata can also effectively utilize insoluble Ca/Fe-phytate as the sole P source, which sheds light onto improving its application in phytoremediation of As-contaminated sites.


Assuntos
6-Fitase , Arsênio , Pteris , Poluentes do Solo , 6-Fitase/metabolismo , Pteris/metabolismo , Ácido Fítico/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Biodegradação Ambiental
13.
Ecotoxicol Environ Saf ; 272: 116087, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340602

RESUMO

Understanding the physiological effects of herbicides on crops is crucial for crop production and environmental management. The effects of 4-hydroxyphenylpyruvate dioxygenase inhibitor (HPPDi) herbicides at different concentrations on chlorophyll content in maize leaves, fresh weight of roots, stems and leaves, and fluorescence substances and functional groups in root exudates (REs) were studied by UV-Vis absorption spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR) and two-dimensional correlation analysis (2D-COS). The results showed that 5 mg/L and 10 mg/L HPPDi herbicides inhibited the synthesis of chlorophyll in maize leaves. The weight of roots, stems and leaves of maize after application was lighter than that of the control group. HPPDi herbicides affected the early growth of maize seedlings, and the effect was most obvious at high concentration. Synchronous fluorescence spectrum and three-dimensional (3D) fluorescence spectrum revealed that the fluorescence intensity of protein, fulvic acid and humic acid in maize REs changed prominently. With the increase of HPPDi herbicides concentration, the fluorescence intensity decreased gradually. Through FTIR and 2D-COS, functional groups such as C-H, CO, Cl, NO3-, C-O and O-H were found to participate in the interaction between HPPDi herbicides and maize REs as binding sites. C-O, C-Cl and C-C have the strongest binding ability, while CC and CO of aromatic rings, quinones or ketones first take part in the binding between HPPDi herbicides and maize REs. The results can provide a theoretical basis for evaluating the safety of HPPDi herbicides on maize and a method for discovering the effects of pesticides on environmental media and plant physiological effects.


Assuntos
Herbicidas , Herbicidas/química , Zea mays , Cetonas , Produtos Agrícolas , Clorofila
14.
Ecotoxicol Environ Saf ; 278: 116417, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701655

RESUMO

Cadmium (Cd) pollutes 7.0 % of China's land area. This study examined the potential of Houttuynia cordata for Cd phytoremediation because of its ability to accumulate Cd in its growth matrix. H. cordata were planted in plastic pots filled with paddy field soils having low (LCd), medium (MCd), and high (HCd) Cd levels of 0.19, 0.69, and 2.91 mg/kg, respectively. After six months of growth, harvested plant parts were evaluated for Cd uptake and tolerance mechanisms. Metabolomics and metagenomics approaches were employed to investigate the soil rhizosphere mechanism. Results showed that the average plant biomass increased as soil Cd increased. The biomass Cd contents surpassed the allowable Cd limits for food (≤ 0.2 mg/kg) and medicinal uses (≤ 0.3 mg/kg). Cd contents were higher in H. cordata roots (30.59-86.27 mg/kg) than in other plant parts (0.63-2.90 mg/kg), with significantly increasing values as Cd soil level increased. Phenolic acids, lipids, amino acids and derivatives, organic acids, and alkaloids comprised the majority (69 in MCd vs HCd and 73 % in LCd vs HCd) of the shared upregulated metabolites. In addition, 13 metabolites specific to H. cordata root exudates were significantly increased. The top two principal metabolic pathways were arginine and proline metabolism, and beta-alanine metabolism. H. cordata increased the abundance of Firmicutes and Glomeromycota across all three Cd levels, and also stimulated the growth of Patescibacteria, Rozellomycota, and Claroideoglomus in HCd. Accordingly, H. cordata demonstrated potential for remediation of Cd-contaminated soils, and safety measures for its production and food use must be highly considered.


Assuntos
Biodegradação Ambiental , Cádmio , Houttuynia , Rizosfera , Poluentes do Solo , Cádmio/metabolismo , Cádmio/análise , Poluentes do Solo/metabolismo , China , Raízes de Plantas/metabolismo , Solo/química , Biomassa
15.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063028

RESUMO

The interactions between plants and rhizosphere microbes mediated by plant root exudates are increasingly being investigated. The root-derived metabolites of medicinal plants are relatively diverse and have unique characteristics. However, whether medicinal plants influence their rhizosphere microbial community remains unknown. How medicinal plant species drive rhizosphere microbial community changes should be clarified. In this study involving high-throughput sequencing of rhizosphere microbes and an analysis of root exudates using a gas chromatograph coupled with a time-of-flight mass spectrometer, we revealed that the root exudate metabolites and microorganisms differed among the rhizosphere soils of five medicinal plants. Moreover, the results of a correlation analysis indicated that bacterial and fungal profiles in the rhizosphere soils of the five medicinal plants were extremely significantly or significantly affected by 10 root-associated metabolites. Furthermore, among the 10 root exudate metabolites, two (carvone and zymosterol) had opposite effects on rhizosphere bacteria and fungi. Our study findings suggest that plant-derived exudates modulate changes to rhizosphere microbial communities.


Assuntos
Bactérias , Microbiota , Raízes de Plantas , Plantas Medicinais , Rizosfera , Microbiologia do Solo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Plantas Medicinais/microbiologia , Plantas Medicinais/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Exsudatos de Plantas/metabolismo , Fungos/metabolismo
16.
Ecol Lett ; 26(3): 460-469, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36708055

RESUMO

While mechanisms of plant-plant communication for alerting neighbouring plants of an imminent insect herbivore attack have been described aboveground via the production of volatile organic compounds (VOCs), we are yet to decipher the specific components of plant-plant signalling belowground. Using bioassay-guided fractionation, we isolated and identified the non-protein amino acid l-DOPA, released from roots of Acyrtosiphon pisum aphid-infested Vicia faba plants, as an active compound in triggering the production of VOCs released aboveground in uninfested plants. In behavioural assays, we show that after contact with l-DOPA, healthy plants become highly attractive to the aphid parasitoid (Aphidius ervi), as if they were infested by aphids. We conclude that l-DOPA, originally described as a brain neurotransmitter precursor, can also enhance immunity in plants.


Assuntos
Afídeos , Compostos Orgânicos Voláteis , Animais , Feromônios , Levodopa , Herbivoria , Afídeos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Plantas , Interações Hospedeiro-Parasita
17.
BMC Microbiol ; 23(1): 85, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36991332

RESUMO

BACKGROUND: Burkholderia pyrrocinia strain P10 is a plant growth-promoting rhizobacterium (PGPR) that can substantially increase peanut growth. However, the mechanisms and pathways involved in the interaction between B. pyrrocinia P10 and peanut remain unclear. To clarify complex plant-PGPR interactions and the growth-promoting effects of PGPR strains, the B. pyrrocinia P10 transcriptome changes in response to the peanut root exudate (RE) were elucidated and the effects of RE components on biofilm formation and indole-3-acetic acid (IAA) secretion were analyzed. RESULTS: During the early interaction phase, the peanut RE enhanced the transport and metabolism of nutrients, including carbohydrates, amino acids, nitrogen, and sulfur. Although the expression of flagellar assembly-related genes was down-regulated, the expression levels of other genes involved in biofilm formation, quorum sensing, and Type II, III, and VI secretion systems were up-regulated, thereby enabling strain P10 to outcompete other microbes to colonize the peanut rhizosphere. The peanut RE also improved the plant growth-promoting effects of strain P10 by activating the expression of genes associated with siderophore biosynthesis, IAA production, and phosphorus solubilization. Additionally, organic acids and amino acids were identified as the dominant components in the peanut RE. Furthermore, strain P10 biofilm formation was induced by malic acid, oxalic acid, and citric acid, whereas IAA secretion was promoted by the alanine, glycine, and proline in the peanut RE. CONCLUSION: The peanut RE positively affects B. pyrrocinia P10 growth, while also enhancing colonization and growth-promoting effects during the early interaction period. These findings may help to elucidate the mechanisms underlying complex plant-PGPR interactions, with potential implications for improving the applicability of PGPR strains.


Assuntos
Arachis , Exsudatos e Transudatos , Arachis/microbiologia , Aminoácidos/metabolismo , Nutrientes , Raízes de Plantas/microbiologia
18.
New Phytol ; 239(4): 1212-1224, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37421208

RESUMO

Root traits including root exudates are key factors affecting plant interactions with soil and thus play an important role in determining ecosystem processes. The drivers of their variation, however, remain poorly understood. We determined the relative importance of phylogeny and species ecology in determining root traits and analyzed the extent to which root exudate composition can be predicted by other root traits. We measured different root morphological and biochemical traits (including exudate profiles) of 65 plant species grown in a controlled system. We tested phylogenetic conservatism in traits and disentangled the individual and overlapping effects of phylogeny and species ecology on traits. We also predicted root exudate composition using other root traits. Phylogenetic signal differed greatly among root traits, with the strongest signal in phenol content in plant tissues. Interspecific variation in root traits was partly explained by species ecology, but phylogeny was more important in most cases. Species exudate composition could be partly predicted by specific root length, root dry matter content, root biomass, and root diameter, but a large part of variation remained unexplained. In conclusion, root exudation cannot be easily predicted based on other root traits and more comparative data on root exudation are needed to understand their diversity.


Assuntos
Ecossistema , Raízes de Plantas , Filogenia , Ecologia , Plantas , Exsudatos e Transudatos , Solo/química
19.
New Phytol ; 239(6): 2307-2319, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37357338

RESUMO

Rhizomicrobiome plays important roles in plant growth and health, contributing to the sustainable development of agriculture. Plants recruit and assemble the rhizomicrobiome to satisfy their functional requirements, which is widely recognized as the 'cry for help' theory, but the intrinsic mechanisms are still limited. In this study, we revealed a novel mechanism by which plants reprogram the functional expression of inhabited rhizobacteria, in addition to the de novo recruitment of soil microbes, to satisfy different functional requirements as plants grow. This might be an efficient and low-cost strategy and a substantial extension to the rhizomicrobiome recruitment theory. We found that the plant regulated the sequential expression of genes related to biocontrol and plant growth promotion in two well-studied rhizobacteria Bacillus velezensis SQR9 and Pseudomonas protegens CHA0 through root exudate succession across the plant developmental stages. Sixteen key chemicals in root exudates were identified to significantly regulate the rhizobacterial functional gene expression by high-throughput qPCR. This study not only deepens our understanding of the interaction between the plant-rhizosphere microbiome, but also provides a novel strategy to regulate and balance the different functional expression of the rhizomicrobiome to improve plant health and growth.


Assuntos
Desenvolvimento Vegetal , Raízes de Plantas , Raízes de Plantas/metabolismo , Exsudatos e Transudatos , Plantas/microbiologia , Solo , Rizosfera , Microbiologia do Solo , Exsudatos de Plantas/metabolismo
20.
New Phytol ; 240(4): 1519-1533, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37615210

RESUMO

Little is known about how sex differences in root zone characteristics, such as contents of allelochemicals and soil microbial composition, mediate intra- and intersexual interactions in dioecious plants. We examined the processes and mechanisms of sex-specific belowground interactions mediated by allelochemicals and soil microorganisms in Populus cathayana females and males in replicated 30-yr-old experimental stands in situ and in a series of controlled experiments. Female roots released a greater amount and more diverse phenolic allelochemicals into the soil environment, resulting in growth inhibition of the same sex neighbors and deterioration of the community of soil microorganisms. When grown with males, the growth of females was consistently enhanced, especially the root growth. Compared with female monocultures, the presence of males reduced the total phenolic accumulation in the soil, resulting in a shift from allelopathic inhibition to chemical facilitation. This association was enhanced by a favorable soil bacterial community and increased bacterial diversity, and it induced changes in the orientation of female roots. Our study highlighted a novel mechanism that enhances female performance by males through alterations in the allelochemical content and soil microbial composition. The possibility to improve productivity by chemical mediation provides novel opportunities for managing plantations of dioecious plants.


Assuntos
Populus , Animais , Populus/fisiologia , Solo/química , Feromônios , Plantas , Raízes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA