Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(24): e2216612120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276407

RESUMO

Nanobodies bind a target antigen with a kinetic profile similar to a conventional antibody, but exist as a single heavy chain domain that can be readily multimerized to engage antigen via multiple interactions. Presently, most nanobodies are produced by immunizing camelids; however, platforms for animal-free production are growing in popularity. Here, we describe the development of a fully synthetic nanobody library based on an engineered human VH3-23 variable gene and a multispecific antibody-like format designed for biparatopic target engagement. To validate our library, we selected nanobodies against the SARS-CoV-2 receptor-binding domain and employed an on-yeast epitope binning strategy to rapidly map the specificities of the selected nanobodies. We then generated antibody-like molecules by replacing the VH and VL domains of a conventional antibody with two different nanobodies, designed as a molecular clamp to engage the receptor-binding domain biparatopically. The resulting bispecific tetra-nanobody immunoglobulins neutralized diverse SARS-CoV-2 variants with potencies similar to antibodies isolated from convalescent donors. Subsequent biochemical analyses confirmed the accuracy of the on-yeast epitope binning and structures of both individual nanobodies, and a tetra-nanobody immunoglobulin revealed that the intended mode of interaction had been achieved. This overall workflow is applicable to nearly any protein target and provides a blueprint for a modular workflow for the development of multispecific molecules.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/química , Saccharomyces cerevisiae/metabolismo , SARS-CoV-2 , Anticorpos , Epitopos
2.
Clin Infect Dis ; 75(1): e630-e644, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35179197

RESUMO

BACKGROUND: We studied humoral responses after coronavirus disease 2019 (COVID-19) vaccination across varying causes of immunodeficiency. METHODS: Prospective study of fully vaccinated immunocompromised adults (solid organ transplant [SOT], hematologic malignancy, solid cancers, autoimmune conditions, human immunodeficiency virus [HIV]) versus nonimmunocompromised healthcare workers (HCWs). The primary outcome was the proportion with a reactive test (seropositive) for immunoglobulin G to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor-binding domain. Secondary outcomes were comparisons of antibody levels and their correlation with pseudovirus neutralization titers. Stepwise logistic regression was used to identify factors associated with seropositivity. RESULTS: A total of 1271 participants enrolled: 1099 immunocompromised and 172 HCW. Compared with HCW (92.4% seropositive), seropositivity was lower among participants with SOT (30.7%), hematological malignancies (50.0%), autoimmune conditions (79.1%), solid tumors (78.7%), and HIV (79.8%) (P < .01). Factors associated with poor seropositivity included age, greater immunosuppression, time since vaccination, anti-CD20 monoclonal antibodies, and vaccination with BNT162b2 (Pfizer) or adenovirus vector vaccines versus messenger RNA (mRNA)-1273 (Moderna). mRNA-1273 was associated with higher antibody levels than BNT162b2 or adenovirus vector vaccines after adjusting for time since vaccination, age, and underlying condition. Antibody levels were strongly correlated with pseudovirus neutralization titers (Spearman r = 0.89, P < .0001), but in seropositive participants with intermediate antibody levels, neutralization titers were significantly lower in immunocompromised individuals versus HCW. CONCLUSIONS: Antibody responses to COVID-19 vaccines were lowest among SOT and anti-CD20 monoclonal recipients, and recipients of vaccines other than mRNA-1273. Among those with intermediate antibody levels, pseudovirus neutralization titers were lower in immunocompromised patients than HCWs. Additional SARS-CoV-2 preventive approaches are needed for immunocompromised persons, which may need to be tailored to the cause of immunodeficiency.


Assuntos
COVID-19 , Infecções por HIV , Adulto , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Infecções por HIV/complicações , Humanos , Hospedeiro Imunocomprometido , Estudos Prospectivos , SARS-CoV-2 , Vacinação
3.
Liver Cancer ; 12(4): 339-355, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37901199

RESUMO

Introduction: Data on immune response rates following vaccination for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in patients with hepatobiliary carcinoma (HBC) are rare. However, impaired immunogenicity must be expected due to the combination of chronic liver diseases (CLDs) with malignancy and anticancer treatment. Methods: In this prospective, longitudinal study, 101 patients were included, of whom 59 were patients with HBC under anticancer treatment. A cohort of patients with a past medical history of gastrointestinal cancer, of whom 28.6% had HBC without detectable active tumor disease having been off therapy for at least 12 months, served as control. Levels of SARS-CoV-2 anti-spike IgG, surrogate neutralization antibodies (sNABs), and cellular immune responses were compared. In uni- and multivariable subgroup analyses, risk factors for impaired immunogenicity were regarded. Data on rates and clinical courses of SARS-CoV-2 infections were documented. Results: In patients with HBC under active treatment, levels of SARS-CoV-2 anti-spike IgG were significantly lower (2.55 log10 BAU/mL; 95% CI: 2.33-2.76; p < 0.01) than in patients in follow-up care (3.02 log10 BAU/mL; 95% CI: 2.80-3.25) 4 weeks after two vaccinations. Antibody levels decreased over time, and differences between the groups diminished. However, titers of SARS-CoV-2 sNAB were for a longer time significantly lower in patients with HBC under treatment (64.19%; 95% CI: 55.90-72.48; p < 0.01) than in patients in follow-up care (84.13%; 95% CI: 76.95-91.31). Underlying CLD and/or liver cirrhosis Child-Pugh A or B (less than 8 points) did not seem to further impair immunogenicity. Conversely, chemotherapy and additional immunosuppression were found to significantly reduce antibody levels. After a third booster vaccination for SARS-CoV-2, levels of total and neutralization antibodies were equalized between the groups. Moreover, cellular response rates were balanced. Clinically, infection rates with SARS-CoV-2 were low, and no severe courses were observed. Conclusion: Patients with active HBC showed significantly impaired immune response rates to basic vaccinations for SARS-CoV-2, especially under chemotherapy, independent of underlying cirrhotic or non-cirrhotic CLD. Although booster vaccinations balanced differences, waning immunity was observed over time and should be monitored for further recommendations. Our data help clinicians decide on individual additional booster vaccinations and/or passive immunization or antiviral treatment in patients with HBC getting infected with SARS-CoV-2.

4.
Hum Vaccin Immunother ; 19(3): 2270310, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37905722

RESUMO

During the SARS-CoV-2 pandemic, the lack of standardized measurements of the immune response after vaccination or recovery from COVID-19 resulted in incomparable results and hindered correlation establishment. Prioritizing reliable and standardized methods to monitor pathogen-specific immunity is crucial, not only during the COVID-19 pandemic but also for future outbreaks. During our study of the humoral immune response, we used a SARS-CoV-2 wild-type neutralization assay, ensuring the measurement of the immune response directed to all SARS-CoV-2 antigens in their proper conformation. A head-to-head comparison of the neutralizing antibody (NAb) responses elicited by four vaccines used in Europe during 2021 (BNT162b2, mRNA-1273, ChAdOx nCoV-19, and Ad26.COV2.S) and their comparison to NAb responses in convalescents showed that while the amount was comparable, NAbs induced by natural infection were of higher quality. Namely, NAbs produced by disease were better activators of the complement system than NAbs induced by vaccination. Furthermore, the contribution of spike protein-specific IgGs to the SARS-CoV-2 neutralization was lower in convalescents compared to vaccinees, indicating that those who recovered from COVID-19 were armed with antibodies of additional specificities and/or classes that contributed to virus neutralization. These findings suggest that a higher stringency of public policy measures targeting individuals who have recovered from COVID-19, in comparison to those who have been vaccinated, may not have been fully justified.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Anticorpos Neutralizantes , SARS-CoV-2 , Ad26COVS1 , Vacina BNT162 , Pandemias , Imunidade Humoral , Vacinação , Anticorpos Antivirais
5.
Vaccines (Basel) ; 11(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36992182

RESUMO

(1) Background: The high incidence of SARS-CoV-2 infection in vaccinated persons underscores the importance of individualized re-vaccination. PanIg antibodies that act against the S1/-receptor binding domain quantified in serum by a routine diagnostic test (ECLIA, Roche) can be used to gauge the individual ex vivo capacity of SARS-CoV-2 neutralization. However, that test is not adapted to mutations in the S1/-receptor binding domain, having accumulated in SARS-CoV-2 variants. Therefore, it might be unsuited to determine immune-reactivity against SARS-CoV-2 BA.5.1. (2) Method: To address this concern, we re-investigated sera obtained six months after second vaccinations with un-adapted mRNA vaccine Spikevax (Moderna). We related serum levels of panIg against the S1/-receptor binding domain quantified by the un-adapted ECLIA with full virus neutralization capacity against SARS-CoV-2 B.1 or SARS-CoV-2 BA5.1. (3) Results: 92% of the sera exhibited sufficient neutralization capacity against the B.1 strain. Only 20% of the sera sufficiently inhibited the BA5.1 strain. Sera inhibiting BA5.1 could not be distinguished from non-inhibiting sera by serum levels of panIg against the S1/-receptor binding domain quantified by the un-adapted ECLIA. (4) Conclusion: Quantitative serological tests for an antibody against the S1/-receptor binding domain are unsuited as vaccination companion diagnostics, unless they are regularly adapted to mutations that have accumulated in that domain.

6.
ACS Nano ; 16(9): 15310-15317, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36073793

RESUMO

Natural ligand-receptor interactions that play pivotal roles in biological events are ideal models for design and assembly of artificial recognition molecules. Herein, aiming at the structural characteristics of the spike trimer and infection mechanism of SARS-CoV-2, we have designed a DNA framework-guided spatial-patterned neutralizing aptamer trimer for SARS-CoV-2 neutralization. The ∼5.8 nm tetrahedral DNA framework affords precise spatial organization and matched valence as four neutralizing aptamers (MATCH-4), which matches with nanometer precision the topmost surface of SARS-CoV-2 spike trimer, enhancing the interaction between MATCH-4 and spike trimer. Moreover, the DNA framework provides a dimensionally complementary nanoscale barrier to prevent the spike trimer-ACE2 interaction and the conformational transition, thereby inhibiting SARS-CoV-2-host cell fusion and infection. As a result, the spatial- and valence-matched MATCH-4 ensures improved binding affinity and neutralizing activity against SARS-CoV-2 and its varied mutant strains, particularly the current Omicron variant, that are evasive of the majority of existing neutralizing antibodies. In addition, because neutralizing aptamers specific to other targets can be evolved and assembled, the present design has the potential to inhibit other wide-range and emerging pathogens.


Assuntos
COVID-19 , Nanoestruturas , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Anticorpos Antivirais , DNA , Humanos , Ligantes , Glicoproteínas de Membrana , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/química
7.
Vaccines (Basel) ; 10(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35891208

RESUMO

Purpose: We describe a diagnostic procedure suitable for scheduling (re-)vaccination against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) according to individual state of humoral immunization. Methods: To clarify the relation between quantitative antibody measurements and humoral ex vivo immune responsiveness, we monitored 124 individuals before, during and six months after vaccination with Spikevax (Moderna, Cambridge, MA, USA). Antibodies against SARS-CoV-2 spike (S1) protein receptor-binding domain (S1-AB) and against nucleocapsid antigens were measured by chemiluminescent immunoassay (Roche). Virus-neutralizing activities were determined by surrogate assays (NeutraLISA, Euroimmune; cPass, GenScript). Neutralization of SARS-CoV-2 in cell culture (full virus NT) served as an ex vivo correlate for humoral immune responsiveness. Results: Vaccination responses varied considerably. Six months after the second vaccination, participants still positive for the full virus NT were safely determined by S1-AB levels ≥1000 U/mL. The full virus NT-positive fraction of participants with S1-AB levels <1000 U/mL was identified by virus-neutralizing activities >70% as determined by surrogate assays (NeutraLISA or cPas). Participants that were full virus NT-negative and presumably insufficiently protected could thus be identified by a sensitivity of >83% and a specificity of >95%. Conclusion: The described diagnostic strategy possibly supports individualized (re-)vaccination schedules based on simple and rapid measurement of serum-based SARS-CoV-2 antibody levels. Our data apply only to WUHAN-type SARS-CoV-2 virus and the current version of the mRNA vaccine from Moderna (Cambridge, MA, USA). Adaptation to other vaccines and more recent SARS-CoV-2 strains will require modification of cut-offs and re-evaluation of sensitivity/specificity.

8.
Front Immunol ; 13: 946318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928813

RESUMO

Background and Methods: The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Omicron (B.1.1.529) variant is the antigenically most distinct variant to date. As the heavily mutated spike protein enables neutralization escape, we studied serum-neutralizing activities of naïve and vaccinated individuals after Omicron BA.1 or BA.2 sub-lineage infections in live virus neutralization tests with Omicron BA.1, Omicron BA.2, wildtype (WT, B1.1), and Delta (B.1.617.2) strains. Serum samples obtained after WT infections and three-dose mRNA vaccinations with and without prior infection were included as controls. Results: Primary BA.1 infections yielded reduced neutralizing antibody levels against WT, Delta, and Omicron BA.2, while samples from BA.2-infected individuals showed almost no cross-neutralization against the other variants. Serum neutralization of Omicron BA.1 and BA.2 variants was detectable after three-dose mRNA vaccinations, but with reduced titers. Vaccination-breakthrough infections with either Omicron BA.1 or BA.2, however, generated equal cross-neutralizing antibody levels against all SARS-CoV-2 variants tested. Conclusions: Our study demonstrates that although Omicron variants are able to enhance cross-neutralizing antibody levels in pre-immune individuals, primary infections with BA.1 or BA.2 induced mostly variant-specific neutralizing antibodies, emphasizing the differently shaped humoral immunity induced by the two Omicron variants. These data thus contribute substantially to the understanding of antibody responses induced by primary Omicron infections or multiple exposures to different SARS-CoV-2 variants and are of particular importance for developing vaccination strategies in the light of future emerging variants.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Humanos , Glicoproteínas de Membrana , Testes de Neutralização , RNA Mensageiro , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral
9.
Front Immunol ; 13: 889736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655779

RESUMO

During the pre-vaccine era of the COVID-19 pandemic convalescent plasma has once again emerged as a major potential therapeutic form of passive immunization that in specific cases still represents irreplaceable treatment option. There is a growing concern that variable concentration of neutralizing antibodies, present in convalescent plasma which originates from different donors, apparently affects its effectiveness. The drawback can be overcome through the downstream process of immunoglobulin fraction purification into a standardized product of improved safety and efficacy. All modern procedures are quite lengthy processes. They are also based on fractionation of large plasma quantities whose collection is not attainable during an epidemic. When outbreaks of infectious diseases are occurring more frequently, there is a great need for a more sustainable production approach that would be goal-oriented towards assuring easily and readily available immunoglobulin of therapeutic relevance. We propose a refinement strategy for the IgG preparation achieved through simplification and reduction of the processing steps. It was designed as a small but scalable process to offer an immediately available treatment option that would simultaneously be harmonized with an increased availability of convalescent plasma over the viral outbreak time-course. Concerning the ongoing pandemic status of the COVID-19, the proof of concept was demonstrated on anti-SARS-CoV-2 convalescent plasma but is likely applicable to any other type depending on the current needs. It was guided by the idea of persistent keeping of IgG molecules in the solution, so that protection of their native structure could be assured. Our manufacturing procedure provided a high-quality IgG product of above the average recovery whose composition profile was analyzed by mass spectrometry as quality control check. It was proved free from IgA and IgM as mediators of adverse transfusion reactions, as well as of any other residual impurities, since only IgG fragments were identified. The proportion of S protein-specific IgGs remained unchanged relative to the convalescent plasma. Undisturbed IgG subclass composition was accomplished as well. However, the fractionation principle affected the final product's capacity to neutralize wild-type SARS-CoV-2 infectivity, reducing it by half. Decrease in neutralization potency significantly correlated with the amount of IgM in the starting material.


Assuntos
COVID-19 , Imunoglobulina G , COVID-19/epidemiologia , COVID-19/terapia , Vírus de DNA , Humanos , Imunização Passiva , Imunoglobulina M , Pandemias , SARS-CoV-2 , Soroterapia para COVID-19
10.
Cell Rep ; 38(6): 110345, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35090598

RESUMO

Understanding the long-term maintenance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity is critical for predicting protection against reinfection. In an age- and gender-matched cohort of 24 participants, the association of disease severity and early immune responses on the maintenance of humoral immunity 12 months post-infection is examined. All severely affected participants maintain a stable subset of SARS-CoV-2 receptor-binding domain (RBD)-specific memory B cells (MBCs) and good neutralizing antibody breadth against the majority of the variants of concern, including the Delta variant. Modeling these immune responses against vaccine efficacy data indicate a 45%-76% protection against symptomatic infection (variant dependent). Overall, these findings indicate durable humoral responses in most participants after infection, reasonable protection against reinfection, and implicate baseline antigen-specific CD4+ T cell responses as a predictor of maintenance of antibody neutralization breadth and RBD-specific MBC levels at 12 months post-infection.


Assuntos
Anticorpos Amplamente Neutralizantes/metabolismo , Células B de Memória/metabolismo , SARS-CoV-2/imunologia , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Austrália , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , COVID-19/imunologia , Estudos de Coortes , Feminino , Humanos , Imunidade/imunologia , Imunidade Humoral/imunologia , Masculino , Células B de Memória/imunologia , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA