Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(28): 37275-37287, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38959130

RESUMO

Titanium dioxide (TiO2) shows significant potential as a self-cleaning material to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent virus transmission. This study provides insights into the impact of UV-A light on the photocatalytic inactivation of adsorbed SARS-CoV-2 virus-like particles (VLPs) on a TiO2 surface at the molecular and atomic levels. X-ray photoelectron spectroscopy, combined with density functional theory calculations, reveals that spike proteins can adsorb on TiO2 predominantly via their amine and amide functional groups in their amino acids blocks. We employ atomic force microscopy and grazing-incidence small-angle X-ray scattering (GISAXS) to investigate the molecular-scale morphological changes during the inactivation of VLPs on TiO2 under light irradiation. Notably, in situ measurements reveal photoinduced morphological changes of VLPs, resulting in increased particle diameters. These results suggest that the denaturation of structural proteins induced by UV irradiation and oxidation of the virus structure through photocatalytic reactions can take place on the TiO2 surface. The in situ GISAXS measurements under an N2 atmosphere reveal that the virus morphology remains intact under UV light. This provides evidence that the presence of both oxygen and UV light is necessary to initiate photocatalytic reactions on the surface and subsequently inactivate the adsorbed viruses. The chemical insights into the virus inactivation process obtained in this study contribute significantly to the development of solid materials for the inactivation of enveloped viruses.


Assuntos
SARS-CoV-2 , Titânio , Raios Ultravioleta , Titânio/química , Titânio/efeitos da radiação , SARS-CoV-2/efeitos da radiação , SARS-CoV-2/química , Inativação de Vírus/efeitos da radiação , Inativação de Vírus/efeitos dos fármacos , Humanos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/virologia , COVID-19/prevenção & controle , Adsorção , Propriedades de Superfície
2.
Rev Recent Clin Trials ; 18(3): 181-205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37069722

RESUMO

The battle against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) associated coronavirus disease 2019 (COVID-19) is continued worldwide by administering firsttime emergency authorized novel mRNA-based and conventional vector-antigen-based anti- COVID-19 vaccines to prevent further transmission of the virus as well as to reduce the severe respiratory complications of the infection in infected individuals. However; the emergence of numerous SARS-CoV-2 variants is of concern, and the identification of certain breakthrough and reinfection cases in vaccinated individuals as well as new cases soaring in some low-to-middle income countries (LMICs) and even in some resource-replete nations have raised concerns that only vaccine jabs would not be sufficient to control and vanquishing the pandemic. Lack of screening for asymptomatic COVID-19-infected subjects and inefficient management of diagnosed COVID-19 infections also pose some concerns and the need to fill the gaps among policies and strategies to reduce the pandemic in hospitals, healthcare services, and the general community. For this purpose, the development and deployment of rapid screening and diagnostic procedures are prerequisites in premises with high infection rates as well as to screen mass unaffected COVID-19 populations. Novel methods of variant identification and genome surveillance studies would be an asset to minimize virus transmission and infection severity. The proposition of this pragmatic review explores current paradigms for the screening of SARS-CoV-2 variants, identification, and diagnosis of COVID-19 infection, and insights into the late-stage development of new methods to better understand virus super spread variants and genome surveillance studies to predict pandemic trajectories.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2 , Vacinas contra COVID-19 , Pandemias/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA