Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Cell Int ; 24(1): 137, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627767

RESUMO

BACKGROUND: Exosomes derived from tumor cells contribute to the pathogenesis of cancers. Metformin, the most usually used drug for type 2 diabetes, has been frequently investigated for anticancer effects. Here, we examined whether metformin affects exosomes signaling in human ovary cancer cells in vitro. METHODS: Human ovary cancer cells, including A2780 and Skov3 cells, were treated with metformin for either 24-48 h. Cell viability and caspase-3 activity were determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) and colorimetric assays respectively. Oil-Red-O staining and in vitro, scratch assays were used to examine cellular toxicity and wound healing rate. After treatment with metformin, exosomes were isolated from cells and quantified by acetylcholinesterase (AChE) assay, Dynamic Light Scattering (DLS), and their markers. Genes related to exosomes signaling were analyzed by real-time PCR or western blotting. RESULTS: Our results showed that metformin decreased the viability of both cells dose/time-dependently (P < 0.05). Metformin increased the activity of caspase-3 (P < 0.05) as well as the number of Oil-Red-O positive cells in both cell lines. In vitro scratch assay showed that the cell migration rate of metformin-treated cells was decreased (P < 0.05), whereas AChE activity of exosomes from metformin-treated cells was increased (P < 0.05). Concurrent with an increase in CD63 protein levels, expression of Alix, CD63, CD81, Lamp-2, and Rab27b up-regulated in treated cells (P < 0.05). CONCLUSION: Results indicated that metformin had a cytotoxic effect on ovary cancer cells and enhanced exosome biogenesis and secretion.

2.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125961

RESUMO

Garlic is a vegetable with numerous pro-health properties, showing high antioxidant capacity, and cytotoxicity for various malignant cells. The inhibition of cell proliferation by garlic is mainly attributed to the organosulfur compounds (OSCs), but it is far from obvious which constituents of garlic indeed participate in the antioxidant and cytotoxic action of garlic extracts. This study aimed to obtain insight into this question by examining the antioxidant activity and cytotoxicity of six OSCs and five phenolics present in garlic. Three common assays of antioxidant activity were employed (ABTS● decolorization, DPPH● decolorization, and FRAP). Cytotoxicity of both classes of compounds to PEO1 and SKOV-3 ovarian cancer cells, and MRC-5 fibroblasts was compared. Negligible antioxidant activities of the studied OSCs (alliin, allicin, S-allyl-D-cysteine, allyl sulfide, diallyl disulfide, and diallyl trisulfide) were observed, excluding the possibility of any significant contribution of these compounds to the total antioxidant capacity (TAC) of garlic extracts estimated by the commonly used reductive assays. Comparable cytotoxic activities of OSCs and phenolics (caffeic, p-coumaric, ferulic, gallic acids, and quercetin) indicate that both classes of compounds may contribute to the cytotoxic action of garlic.


Assuntos
Compostos Alílicos , Antioxidantes , Dissulfetos , Alho , Fenóis , Extratos Vegetais , Sulfetos , Ácidos Sulfínicos , Alho/química , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Fenóis/farmacologia , Fenóis/química , Dissulfetos/farmacologia , Dissulfetos/química , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ácidos Sulfínicos/farmacologia , Ácidos Sulfínicos/química , Sulfetos/farmacologia , Sulfetos/química , Compostos Alílicos/farmacologia , Compostos Alílicos/química , Compostos de Enxofre/farmacologia , Compostos de Enxofre/química , Cisteína/análogos & derivados , Cisteína/química , Cisteína/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo
3.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673831

RESUMO

Designed ankyrin repeat protein (DARPin) G3 is an engineered scaffold protein. This small (14.5 kDa) targeting protein binds with high affinity to human epidermal growth factor receptor 2 (HER2). HER2 is overexpressed in several cancers. The use of the DARPin G3 for radionuclide therapy is complicated by its high renal reabsorption after clearance via the glomeruli. We tested the hypothesis that a fusion of the DARPin G3 with an albumin-binding domain (ABD) would prevent rapid renal excretion and high renal reabsorption resulting in better tumour targeting. Two fusion proteins were produced, one with the ABD at the C-terminus (G3-ABD) and another at the N-terminus (ABD-G3). Both variants were labelled with 177Lu. The binding properties of the novel constructs were evaluated in vitro and their biodistribution was compared in mice with implanted human HER2-expressing tumours. Fusion with the ABD increased the retention time of both constructs in blood compared with the non-ABD-fused control. The effect of fusion with the ABD depended strongly on the order of the domains in the constructs, resulting in appreciably better targeting properties of [177Lu]Lu-G3-ABD. Our data suggest that the order of domains is critical for the design of targeting constructs based on scaffold proteins.


Assuntos
Receptor ErbB-2 , Animais , Feminino , Humanos , Camundongos , Albuminas/metabolismo , Repetição de Anquirina , Linhagem Celular Tumoral , Lutécio , Ligação Proteica , Domínios Proteicos , Radioisótopos , Compostos Radiofarmacêuticos/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Distribuição Tecidual , Terapia de Alvo Molecular
4.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673959

RESUMO

Ovarian cancer poses a significant threat to patients in its advanced stages, often with limited treatment options available. In such cases, palliative management becomes the primary approach to maintaining a reasonable quality of life. Therefore, the administration of any medication that can benefit patients without a curative option holds potential. Resveratrol, a natural compound known for its in vitro anticancer activities, has generated contrasting results in vivo and human studies. In this study, we aimed to assess the anticancer effects of resveratrol on ovarian cancer cells grown on the chorioallantoic membrane (CAM) of chicken embryos. Two ovarian cancer cell lines, OVCAR-8 and SKOV-3, were cultured in collagen scaffolds for four days before being implanted on the CAM of chicken embryos on day 7. Different doses of resveratrol were applied to the CAM every two days for six days. Subsequently, CAM tissues were excised, fixed, and subjected to histological analysis. Some CAM tumours were extracted to analyse proteins through Western blotting. Our findings indicate that specific doses of resveratrol significantly reduce angiogenic activities, pNF-κB levels, and SLUG protein levels by using immunohistochemistry. These results suggest that resveratrol may have the potential to impact the behaviour of ovarian cancer CAM tumours, thereby warranting further consideration as a complementary treatment option for women with incurable ovarian cancer.


Assuntos
Membrana Corioalantoide , Neoplasias Ovarianas , Resveratrol , Resveratrol/farmacologia , Membrana Corioalantoide/efeitos dos fármacos , Animais , Feminino , Embrião de Galinha , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Humanos , Linhagem Celular Tumoral , Fatores de Transcrição da Família Snail/metabolismo , Neovascularização Patológica/tratamento farmacológico , NF-kappa B/metabolismo , Antineoplásicos Fitogênicos/farmacologia
5.
Phytother Res ; 37(9): 4018-4041, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37165686

RESUMO

Polycystic ovary syndrome (PCOS) is most common in women of reproductive age, giving rise to androgen excess and anovulation, leading to infertility and non-reproductive complications. We explored the ameliorating effect of naringenin in PCOS using the Sprague Dawley (SD) rat model and human granulosa cells. Letrozole-induced PCOS rats were given either naringenin (50 mg/kg/day) alone or in combination with metformin (300 mg/kg/day), followed by the estrous cycle, hormonal analysis, and glucose sensitivity test. To evaluate the effect of naringenin on granulosa cell (hGC) steroidogenesis, we treated cells with naringenin (2.5 µM) alone or in combination with metformin (1 mM) in the presence of forskolin (10 µM). To determine the steroidogenesis of CYP-17A1, -19A1, and 3ßHSD2, the protein expression levels were examined. Treatment with naringenin in the PCOS animal groups increased ovulation potential and decreased cystic follicles and levels of androgens. The expression levels of CYP-17A1, -19A1, and 3ßHSD2, were seen restored in the ovary of PCOS SD rats' model and in the human ovarian cells in response to the naringenin. We found an increased expression level of phosphorylated-AKT in the ovary and hGCs by naringenin. Naringenin improves ovulation and suppress androgens and cystic follicles, involving AKT activation.


Assuntos
Cisto Folicular , Metformina , Síndrome do Ovário Policístico , Humanos , Feminino , Ratos , Animais , Androgênios/efeitos adversos , Ratos Sprague-Dawley , Letrozol/efeitos adversos , Proteínas Proto-Oncogênicas c-akt , Cisto Folicular/complicações , Modelos Animais de Doenças
6.
Molecules ; 28(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37764288

RESUMO

Garlic is known to be rich in antioxidants, inhibit the proliferation of various cancer cells, and hamper cancer formation and growth, but various forms of garlic can differ greatly in these respects. This study aimed to compare the antioxidant properties of acetone, ethanol, and aqueous extracts of fresh Polish and Spanish garlic, black and granulated garlic, as well as fresh and dried ramsons. Extracts of black and granulated garlic showed the lowest total antioxidant capacity (TAC). The content of phenolic compounds correlated with TAC measured by ABTS• decolorization and FRAP methods, and with the results of FRAP and DPPH• decolorization assays. Garlic extracts inhibited the proliferation of PEO1 and SKOV3 ovarian cancer cells and, usually to a smaller extent, MRC-5 fibroblasts. PBS extracts of fresh Spanish garlic showed the highest potency for inhibition of proliferation of PEO1 cells (IC50 of 0.71 µg extract dry mass/100 µL medium). No significant correlation was found between the potency for inhibition of proliferation and the content of phenolics or flavonoids, confirming that phenolics are the main determinants of TAC but do not contribute significantly to the antiproliferative effects of garlic.

7.
Saudi Pharm J ; 31(1): 110-118, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685297

RESUMO

Berberine, a well-known isoquinoline alkaloid derivative, has a varied range of pharmacological effects. Herein, we notice the radio-modulatory outcome of berberine in cultured ovarian cancer (SKOV-3) cells exposed to γ-rays as radiotherapy (RT). Cells pre-treated with berberine were irradiated by γ-irradiation and the liberation of reactive oxygen species (ROS) was analyzed by flow cytometry. Apoptotic cell death along with the DNA damage associated with protein expressions was projected by flow cytometry and confocal microscopy. Experimental findings established that berberine might be a capable radiosensitizer for treating SKOV-3, because of oxidative DNA damage. Moreover, the in-silico study of the compound, berberine suggests free energy of binding (ΔG) -7.5 kcal/mol with SKOV-3 and -8.8 kcal/mol of PALB/BRCA2, which proves an effective and compact binding of the complex and is safe for future clinical trials. Thus, our approach is probably to widen the field of study of SKOV-3 and PALB/BRCA2 from the inhibition of these targets as a prospective nutraceutical for the anti-cancer theragnostic candidate.

8.
Turk J Med Sci ; 53(3): 640-646, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37476896

RESUMO

BACKGROUND: The study aims to profile the dual-specificity phosphatases (DUSP) expression in response to Transforming growth factor ß1 (TGFß1)-induced epithelial- mesenchymal transition (EMT) in ovarian adenocarcinoma cells. METHODS: The ovarian adenocarcinoma cell line SKOV3 was used as a TGFß1-induced EMT model. Cells were incubated with 5 ng/mL TGFß1 to induce EMT. EMT was confirmed with real-time qPCR, western blot, and immunofluorescence analyses of various EMT markers. Western blot was used to analyze phospho- and total MAPK protein levels. Typical and atypical DUSPs mRNA expression profile was determined by real-time qPCR. RESULTS: The epithelial marker E-cadherin expressions were decreased and mesenchymal EMT markers Snail and Slug expression levelswere increased after TGFß1 induction. Phosphorylation of ERK1/2 and p38 MAPK were enhanced in response to TGFß1 treatment. The expression of DUSP2, DUSP6, DUSP8, DUSP10, and DUSP13 were decreased while DUSP7, DUSP16, DUSP18, DUSP21, and DUSP27 were increased by TGFß1. DISCUSSION: TGFß1 induced EMT which was accompanied by increased activity of MAPKs, and led to marked changes in expressions of several DUSPs in SKOV3 cells.


Assuntos
Adenocarcinoma , Transição Epitelial-Mesenquimal , Humanos , Transição Epitelial-Mesenquimal/genética , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Linhagem Celular , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Adenocarcinoma/metabolismo , Células Epiteliais/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo
9.
Chem Pharm Bull (Tokyo) ; 70(6): 427-434, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35418544

RESUMO

In the present study, four novel ginsenosides fatty acid and aromatic acid derivatives were designed and synthesized, and their cytotoxic effects on human ovarian carcinoma cells (SKOV3) were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results demonstrated that all derivatives inhibited SKOV3 cell growth, and Compound 3 showed the most outstanding anti-proliferative effect on SKOV3 cells. The IC50 value of Compound 3 was 33.8 ± 2.21 µM, less than half of that of cis-platinum (70.1 ± 7.64 µM). Subsequent analysis revealed that Compound 3 could promote SKOV3 cell apoptosis, and the percentage of apoptotic cell population increased with increasing Compound 3 concentrations. In addition, the expression ratios of Bax/Bcl-2, cleaved-Caspase-3/Caspase-3 and cleaved-Caspase-9/Caspase-9 were gradually elevated in Compound 3-treated SKOV3 cells compared with control cells. Furthermore, translocation of Bax to mitochondria was associated with the release of Cytochrome C. Molecular docking analysis revealed three hydrogen-bonds existed in Compound 3 with poly(ADP-ribose)polymerase (PARP) receptor (PDB code: 5DSY), which may be the target of the anti-ovarian cancer effect of Compound 3. Altogether, our study indicates that Compound 3 induces SKOV3 cell apoptosis via reactive oxygen species (ROS)-dependent mitochondrial pathway, and can serve as an anti-cancer agent for treating ovarian carcinoma.


Assuntos
Mitocôndrias , Neoplasias Ovarianas , Sapogeninas , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Maleatos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Sapogeninas/farmacologia , Proteína X Associada a bcl-2/metabolismo
10.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35562985

RESUMO

The purinergic system is fundamental in the tumor microenvironment, since it regulates tumor cell interactions with the immune system, as well as growth and differentiation in autocrine-paracrine responses. Here, we investigated the role of the adenosine A2B receptor (A2BR) in ovarian carcinoma-derived cells' (OCDC) properties. From public databases, we documented that high A2BR expression is associated with a better prognostic outcome in ovarian cancer patients. In vitro experiments were performed on SKOV-3 cell line to understand how A2BR regulates the carcinoma cell phenotype associated with cell migration. RT-PCR and Western blotting revealed that the ADORA2B transcript (coding for A2BR) and A2BR were expressed in SKOV-3 cells. Stimulation with BAY-606583, an A2BR agonist, induced ERK1/2 phosphorylation, which was abolished by the antagonist PSB-603. Pharmacological activation of A2BR reduced cell migration and actin stress fibers; in agreement, A2BR knockdown increased migration and enhanced actin stress fiber expression. Furthermore, the expression of E-cadherin, an epithelial marker, increased in BAY-606583-treated cells. Finally, cDNA microarrays revealed the pathways mediating the effects of A2BR activation on SKOV-3 cells. Our results showed that A2BR contributed to maintaining an epithelial-like phenotype in OCDC and highlighted this purinergic receptor as a potential biomarker.


Assuntos
Carcinoma Epitelial do Ovário , Movimento Celular , Receptor A2B de Adenosina , Actinas , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Feminino , Humanos , Neoplasias Ovarianas/genética , Receptor A2B de Adenosina/genética , Receptor A2B de Adenosina/metabolismo , Microambiente Tumoral
11.
Molecules ; 27(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35889222

RESUMO

Ovarian cancer (OC) is the most lethal gynecologic malignancy, and melatonin has shown various antitumor properties. Herein, we investigated the influence of melatonin therapy on energy metabolism and mitochondrial integrity in SKOV-3 cells and tested whether its effects depended on MT1 receptor activation. SKOV-3 cells were exposed to different melatonin concentrations, and experimental groups were divided as to the presence of MT1 receptors (melatonin groups) or receptor absence by RNAi silencing (siRNA MT1+melatonin). Intracellular melatonin levels increased after treatment with melatonin independent of the MT1. The mitochondrial membrane potential of SKOV-3 cells decreased in the group treated with the highest melatonin concentration. Melatonin reduced cellular glucose consumption, while MT1 knockdown increased its consumption. Interconversion of lactate to pyruvate increased after treatment with melatonin and was remarkable in siRNA MT1 groups. Moreover, lactate dehydrogenase activity decreased with melatonin and increased after MT1 silencing at all concentrations. The UCSC XenaBrowser tool showed a positive correlation between the human ASMTL gene and the ATP synthase genes, succinate dehydrogenase gene (SDHD), and pyruvate dehydrogenase genes (PDHA and PDHB). We conclude that melatonin changes the glycolytic phenotype and mitochondrial integrity of SKOV-3 cells independent of the MT1 receptor, thus decreasing the survival advantage of OC cells.


Assuntos
Melatonina , Neoplasias Ovarianas , Receptor MT1 de Melatonina , Carcinoma Epitelial do Ovário , Feminino , Humanos , Melatonina/metabolismo , Melatonina/farmacologia , Potencial da Membrana Mitocondrial , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Piruvatos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor MT1 de Melatonina/genética , Receptor MT1 de Melatonina/metabolismo
12.
Molecules ; 27(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500274

RESUMO

Steroidal saponins are a group of compounds with complex structures and biological activities. They have anti-inflammatory, antimicrobial, fungicidal, and antitumor properties. Yamogenin is one of the spirostane saponins and occurs in Trigonella foenum-graecum, Asparagus officinalis, and Dioscorea collettii. It is a stereoisomer of diosgenin-a well-known compound whose activity and mechanisms of action in cancer cells are determined. However, the antitumor effect of yamogenin is still little known, and the mechanism of action has not been determined. In this study, we evaluated the effect of yamogenin on human ovarian cancer SKOV-3 cells in vitro by determining the cellular factors that trigger cell death. The viability of the cells was assessed with a Real-Time xCELLigence system and the cell cycle arrest with flow cytometry. The activity of initiator and executioner caspases (-8, -9, and -3/7) was estimated with luminometry and flow cytometry, respectively. The mitochondrial membrane depolarization, the level of oxidative stress, and DNA damage in the yamogenin-treated cells were also evaluated by flow cytometry. Genes expression analysis at the mRNA level was conducted with Real-Time PCR. Bid activation and chromatin condensation were estimated with fluorescent microscopy. The obtained results indicate that yamogenin has cytotoxic activity in SKOV-3 cells with an IC50 value of 23.90 ± 1.48 µg/mL and strongly inhibits the cell cycle in the sub-G1 phase. The compound also triggers cell death with a significant decrease in mitochondrial membrane potential, an increase in the level of oxidative stress (over two times higher in comparison to the control), and activation of caspase-8, -9, -3/7, as well as Bid. The results of genes expression indicate that the Tumor Necrosis Factor (TNF) Receptor Superfamily Members (TNF, TNFRSF10, TNFRSF10B, TNFRSF1B, and TNFRSF25), Fas Associated via Death Domain (FADD), and Death Effector Domain Containing 2 (DEDD2) were significantly upregulated and their relative expression was at least two times higher than in the control. Our work shows that yamogenin induces apoptosis in ovarian cancer cells, and both the extrinsic and mitochondrial-intrinsic pathways are involved in this process.


Assuntos
Neoplasias Ovarianas , Saponinas , Humanos , Feminino , Linhagem Celular Tumoral , Apoptose , Pontos de Checagem do Ciclo Celular , Neoplasias Ovarianas/patologia , Ciclo Celular , Saponinas/química , Estresse Oxidativo
13.
Saudi Pharm J ; 30(5): 485-493, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35693435

RESUMO

The repurposing strategy of converting nimesulide from an anti-fever drug to an anti-cancer agent by modifying its main structure targeting HSP27 is gaining great attention these days. The goal of this study focuses on synthesizing a new nimesulide derivative with new ligands that have biological anti-cancer activities in different cancer models using the in-vitro assay. Nimesulide derivative L1 was synthesized, characterized by 1H NMR, 13C NMR, FTIR, melting point, mass spectra, and TGA analysis. A single crystal was diffracted and showed colorless block group P-1. The results revealed that L1 demonstrates potent anti-cancer activity with lung (H292), ovarian (SKOV3), and breast (SKBR3) cancer cell lines in-vitro models with IC50 values below 8.8 µM.

14.
Glycoconj J ; 38(6): 669-688, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748163

RESUMO

A N-glycan specific lectin from Rhizoctonia bataticola [RBL] was shown to induce growth inhibitory and apoptotic effect in human ovarian, colon and leukemic cells but mitogenic effect on normal PBMCs as reported earlier, revealing its clinical potential. RBL has unique specificity for high mannose tri and tetra antennary N-glycans, expressed in ovarian cancer and also recognizes glycans which are part of CA 125 antigen, a well known ovarian cancer marker. Hence, in the present study diagnostic and therapeutic potential of RBL was investigated using human ovarian epithelial cancer SKOV3 and OVCAR3 cells known for differentially expressing CA 125. RBL binds differentially to human ovarian normal, cyst and cancer tissues. Flow cytometry, western blot analysis of membrane proteins showed the competitive binding of RBL and CA 125 antibody for the same binding sites on SKOV3 and OVCAR3 cells. RBL has strong binding to both SKOV3 and OVCAR3 cells with MFI of 173 and 155 respectively. RBL shows dose and time dependent growth inhibitory effect with IC50 of 2.5 and 8 µg/mL respectively for SKOV3 and OVCAR3 cells. RBL induces reproductive cell death, morphological changes, nuclear degradation and increased release of ROS in SKOV3 and OVCAR3 cells leading to cell death. This is also supported by increase in hypodiploid population, altered MMP leading to apoptosis possibly involving intrinsic pathway. Adhesion, wound healing, invasion and migration assays demonstrated anti-metastasis effect of RBL apart from its growth inhibitory effect. These results show the promising potential of RBL both as a diagnostic and therapeutic agent.


Assuntos
Antígeno Ca-125 , Neoplasias Ovarianas , Apoptose , Ascomicetos , Antígeno Ca-125/farmacologia , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Lectinas/metabolismo , Lectinas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia
15.
Exp Cell Res ; 396(1): 112185, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32828827

RESUMO

BACKGROUND: Apoptin can specifically kill cancer cells but has no toxicity to normal cells. Human telomerase reverse transcriptase (hTERT) acts as a tumor-specific promoter, triggering certain genes to replicate or express only in tumor cells, conferring specific replication and killing abilities. This study aimed at investigating the anticancer potential of the recombinant adenovirus Ad-apoptin-hTERTp-E1a (Ad-VT) in ovarian cancer treatment. METHODS: Crystal Violet staining and WST-1 assays were used to analyze the inhibitory effect of Ad-VT on ovarian cancer SKOV3 and OVCAR-3 cells. Ad-VT-induced apoptosis of ovarian cancer cells, was detected using Hoechst, Annexin V-FITC/PI, JC-1 staining. Cell migration and invasion of ovarian cancer cells were detected using cell-scratch and Transwell assays. The pGL4.51 plasmid was used to transfect and to generate SKOV3-LUC cells, that stably express luciferase. The in vivo tumor inhibition effect of Ad-VT was subsequently confirmed using a tumor-bearing nude mouse model. RESULTS: Ad-VT had a strong apoptosis-inducing effect on SKOV3 and OVCAR-3 cells, that was mainly mediated through the mitochondrial apoptotic pathway. The Ad-VT could significantly increase the inhibition of ovarian cancer cell migration and invasion. The Ad-VT also can inhibit tumor growth and reduce toxicity in vivo. CONCLUSIONS: The recombinant adenovirus, comprising the apoptin protein and the hTERTp promoter, was able to inhibit the growth of ovarian cancer cells and promote their apoptosis.


Assuntos
Adenoviridae/genética , Carcinoma Epitelial do Ovário/genética , Vírus da Anemia da Galinha/genética , Terapia Viral Oncolítica/métodos , Neoplasias Ovarianas/genética , Proteínas Virais/genética , Adenoviridae/metabolismo , Animais , Apoptose/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/mortalidade , Carcinoma Epitelial do Ovário/virologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Vírus da Anemia da Galinha/metabolismo , Feminino , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/virologia , Análise de Sobrevida , Transgenes , Carga Tumoral , Proteínas Virais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Nanobiotechnology ; 19(1): 68, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663548

RESUMO

It was shown that some nanomaterials may have anticancer properties, but lack of selectivity is one of challenges, let alone selective suppression of cancer growth by regulating the cellular microenvironment. Herein, we demonstrated for the first time that carbon quantum dots/Cu2O composite (CQDs/Cu2O) selectively inhibited ovarian cancer SKOV3 cells by targeting cellular microenvironment, such as matrix metalloproteinases, angiogenic cytokines and cytoskeleton. The result was showed CQDs/Cu2O possessed anticancer properties against SKOV3 cells with IC50 = 0.85 µg mL-1, which was approximately threefold lower than other tested cancer cells and approximately 12-fold lower than normal cells. Compared with popular anticancer drugs, the IC50 of CQDs/Cu2O was approximately 114-fold and 75-fold lower than the IC50 of commercial artesunate (ART) and oxaliplatin (OXA). Furthermore, CQDs/Cu2O possessed the ability to decrease the expression of MMP-2/9 and induced alterations in the cytoskeleton of SKOV3 cells by disruption of F-actin. It also exhibited stronger antiangiogenic effects than commercial antiangiogenic inhibitor (SU5416) through down-regulating the expression of VEGFR2. In addition, CQDs/Cu2O has a vital function on transcriptional regulation of multiple genes in SKOV3 cells, where 495 genes were up-regulated and 756 genes were down-regulated. It is worth noting that CQDs/Cu2O also regulated angiogenesis-related genes in SKOV3 cells, such as Maspin and TSP1 gene, to suppress angiogenesis. Therefore, CQDs/Cu2O selectively mediated of ovarian cancer SKOV3 cells death mainly through decreasing the expression of MMP-2, MMP-9, F-actin, and VEGFR2, meanwhile CQDs/Cu2O caused apoptosis of SKOV3 via S phase cell cycle arrest. These findings reveal a new application for the use of CQDs/Cu2O composite as potential therapeutic interventions in ovarian cancer SKOV3 cells.


Assuntos
Carbono/farmacologia , Morte Celular/efeitos dos fármacos , Citocinas/metabolismo , Citoesqueleto/metabolismo , Metaloproteinases da Matriz/metabolismo , Nanocompostos/química , Neoplasias Ovarianas/tratamento farmacológico , Pontos Quânticos/química , Indutores da Angiogênese , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cobre/química , Cobre/farmacologia , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Drug Dev Ind Pharm ; 47(8): 1248-1260, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34606388

RESUMO

The main objective of this study was to prepare cisplatin (CDDP) bound triblock polymeric micelle solution which will have a hydrophilic shell not being phagocytosed by mononuclear phagocyte system, and evaluate in vitro behavior for the treatment of ovarian cancer. For this aim, CDDP was bound to polyglutamic acid (PGA) and the triblock polymer was prepared using polyethylene glycol)-polylactide-co-glycolide (PEG-PLGA). CDDP-bound triblock copolymer conjugation was characterized, in vitro release and permeability studies were performed using USP II method and Caco-2 cell lines, respectively. The release of CDDP from CDDP-bound triblock polymeric micelle solution was found 87.3 ± 3.56% at the end of the 24th hour. CDDP bound triblock polymeric micelle solution was detected as biocompatible, and permeable according to in vitro studies. According to the MTT results, the measured cytotoxicity was found to be maximum in CDDP-bound triblock polymeric micelle solution when compared with CDDP solution and conjugate in SKOV-3 and OVCAR-3 cells, whereas annexin V-FITC apoptosis results were found to be maximum in A2780 cells.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Apoptose , Células CACO-2 , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Humanos , Micelas , Neoplasias Ovarianas/tratamento farmacológico , Polietilenoglicóis , Polímeros
18.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068647

RESUMO

The anticancer activity of terretonin N (1) and butyrolactone I (2), obtained from the thermophilic fungus Aspergillus terreus TM8, was intensively studied against prostate adenocarcinoma (PC-3) and ovary adenocarcinoma (SKOV3) human cell lines. According to this study, both compounds showed potent cytotoxicity towards ovarian adenocarcinoma cells (SKOV3) with IC50 1.2 and 0.6 µg/mL, respectively. With respect to metastatic prostate cells (PC-3), the two compounds 1 and 2 showed a significantly promising cytotoxicity effect with IC50 of 7.4 and 4.5 µg/mL, respectively. The tested fungal metabolites showed higher rates of early and late apoptosis with little or no necrotic apoptotic pathway in all treated prostate adenocarcinoma (PC-3) and ovary adenocarcinoma (SKOV3) human cell lines, respectively. The results reported in this study confirmed the promising biological properties of terretonin N (1) and butyrolactone I (2) as anticancer agents via the induction of cellular apoptosis. However, further studies are needed to elucidate the molecular mechanism by which cellular apoptosis is induced in cancer cells.


Assuntos
4-Butirolactona/análogos & derivados , Apoptose/efeitos dos fármacos , Aspergillus/química , Neoplasias Ovarianas/patologia , Neoplasias da Próstata/patologia , Terpenos/farmacologia , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Forma Celular/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Masculino , Terpenos/química
19.
Molecules ; 26(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921012

RESUMO

Oxidative stress is the major cause of many health conditions, and regular consumption of antioxidants helped to encounter and prevent such oxidative stress-related diseases. Due to safety concerns over long-term uses of synthetic antioxidants, natural antioxidants are more preferred. The purpose of this study is to investigate the antioxidant and anticancer activities of Jussiaea repens L., a wild edible flora found in Manipur, India. The antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), Ferric reducing antioxidant power (FRAP) assay and DNA-nicking assay. The anticancer activity was tested using five cancer lines viz., SKOV3 cells (ovarian), HeLa (cervical), MDA-MB-231 (breast), PANC-1 (pancreatic), and PC3 (prostate). The toxicity, developmental effect, antiproliferative activity was further tested using zebrafish embryos. The methanolic plant extract had higher polyphenol content than flavonoids. The in vitro study demonstrated a promising antioxidant capacity and DNA protection ability of this plant. The extract also showed cytotoxic activity against SKOV3, HeLa, MDA-MB-23, and PANC-1 cancer cell lines. The in vivo studies on zebrafish embryos demonstrated the extract's ability to suppress the developmental process and elicited more cytotoxicity to cancer cells than developing zebrafish embryos. Moreover, the in vivo studies on zebrafish embryos also indicated the antiproliferative activity of J. repens L. extract.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Animais , Antineoplásicos/química , Antioxidantes/química , Bioensaio/métodos , Linhagem Celular Tumoral , Células HeLa , Humanos , Oxirredução/efeitos dos fármacos , Células PC-3 , Peixe-Zebra
20.
Zhongguo Zhong Yao Za Zhi ; 46(1): 183-189, 2021 Jan.
Artigo em Zh | MEDLINE | ID: mdl-33645069

RESUMO

Based on the PI3K/Akt signaling pathway, this study aimed to observe the proliferation and apoptosis of ovarian cancer SKOV3 cells at different concentrations of icaritin, in order to explore the possible molecular mechanisms. The research object was ovarian cancer SKOV3 cells. The cells were divided into the control group and icaritin groups(5, 10, 20 µmol·L~(-1)), and administrated with drugs for 48 hours. The cell counting kit-8(CCK-8)assay was used to detect the inhibitory effect of icaritin on the proliferation of ovarian cancer SKOV3 cells. The proliferation ability of the SKOV3 cells was detected by EdU assay. Hoechst 33342 fluorescence staining was used to observe the apoptotic morphology of SKOV3 cells in each group. The distribution of cell cycle and the apoptosis rate of each group were detected by flow cytometry. Quantitative Real-time PCR was used to detect mRNA expressions of PTEN, PI3K, Akt in each group of cells. Protein expressions of PTEN, PI3K, Akt and p-Akt were measured by Western blot. The results showed that the cell inhibition rates of icaritin groups were significantly increased compared with the control group(P<0.05). The rates of EdU-positive cells of icaritin groups were significantly decreased(P<0.05). SKOV3 cells in icaritin groups showed morphological changes of apoptosis. Apoptosis rates of icaritin groups were significantly increased(P<0.05). The proportions of cells in G_0/G_1 phase of icaritin groups were decreased(P<0.05), while the proportions of S phase cells were increased(P<0.05). The gene and protein expressions of PTEN in icaritin groups were elevated(P<0.05). The gene expressions of PI3K and Akt in icaritin groups were down-regulated(P<0.05). The protein expression of PI3K and p-Akt in icaritin groups were reduced(P<0.05). These results indicated that icarin may inhibit the proliferation of ovarian cancer SKOV3 cells in vitro, induce cell apoptosis and affect the cycle distribution of cells by inhibiting the PI3K/Akt signaling pathway.


Assuntos
Neoplasias Ovarianas , Fosfatidilinositol 3-Quinases , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Flavonoides , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA