Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38542156

RESUMO

mRNAs containing premature stop codons are responsible for various genetic diseases as well as cancers. The truncated proteins synthesized from these aberrant mRNAs are seldom detected due to the nonsense-mediated mRNA decay (NMD) pathway. Such a surveillance mechanism detects most of these aberrant mRNAs and rapidly destroys them from the pool of mRNAs. Here, we implemented chemical cross-linking mass spectrometry (CLMS) techniques to trace novel biology consisting of protein-protein interactions (PPIs) within the NMD machinery. A set of novel complex networks between UPF2 (Regulator of nonsense transcripts 2), SMG1 (Serine/threonine-protein kinase SMG1), and SMG7 from the NMD pathway were identified, among which UPF2 was found as a connection bridge between SMG1 and SMG7. The UPF2 N-terminal formed most interactions with SMG7, and a set of residues emerged from the MIF4G-I, II, and III domains docked with SMG1 or SMG7. SMG1 mediated interactions with initial residues of UPF2, whereas SMG7 formed very few interactions in this region. Modelled structures highlighted that PPIs for UPF2 and SMG1 emerged from the well-defined secondary structures, whereas SMG7 appeared from the connecting loops. Comparing the influence of cancer-derived mutations over different CLMS sites revealed that variants in the PPIs for UPF2 or SMG1 have significant structural stability effects. Our data highlights the protein-protein interface of the SMG1, UPF2, and SMG7 genes that can be used for potential therapeutic approaches. Blocking the NMD pathway could enhance the production of neoantigens or internal cancer vaccines, which could provide a platform to design potential peptide-based vaccines.


Assuntos
Códon sem Sentido , Degradação do RNAm Mediada por Códon sem Sentido , Mutação , RNA Mensageiro/genética , Estrutura Secundária de Proteína , RNA Helicases/metabolismo
2.
Am J Hum Genet ; 107(6): 1178-1185, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33242396

RESUMO

We have previously described a heart-, eye-, and brain-malformation syndrome caused by homozygous loss-of-function variants in SMG9, which encodes a critical component of the nonsense-mediated decay (NMD) machinery. Here, we describe four consanguineous families with four different likely deleterious homozygous variants in SMG8, encoding a binding partner of SMG9. The observed phenotype greatly resembles that linked to SMG9 and comprises severe global developmental delay, microcephaly, facial dysmorphism, and variable congenital heart and eye malformations. RNA-seq analysis revealed a general increase in mRNA expression levels with significant overrepresentation of core NMD substrates. We also identified increased phosphorylation of UPF1, a key SMG1-dependent step in NMD, which most likely represents the loss of SMG8--mediated inhibition of SMG1 kinase activity. Our data show that SMG8 and SMG9 deficiency results in overlapping developmental disorders that most likely converge mechanistically on impaired NMD.


Assuntos
Deficiências do Desenvolvimento/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Degradação do RNAm Mediada por Códon sem Sentido , Adolescente , Encéfalo/anormalidades , Criança , Pré-Escolar , Consanguinidade , Deficiências do Desenvolvimento/metabolismo , Saúde da Família , Feminino , Deleção de Genes , Ligação Genética , Cardiopatias Congênitas/genética , Homozigoto , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Fosforilação , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , RNA-Seq , Transativadores/metabolismo , Adulto Jovem
3.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175973

RESUMO

The heterotrimeric Tel2-Tti1-Tti2 or TTT complex is essential for cell viability and highly observed in eukaryotes. As the co-chaperone of ATR, ATM, DNA-PKcs, mTOR, SMG1, and TRRAP, the phosphatidylinositol 3-kinase-related kinases (PIKKs) and a group of large proteins of 300-500 kDa, the TTT plays crucial roles in genome stability, cell proliferation, telomere maintenance, and aging. Most of the protein kinases in the kinome are targeted by co-chaperone Cdc37 for proper folding and stability. Like Cdc37, accumulating evidence has established the mechanism by which the TTT interacts with chaperone Hsp90 via R2TP (Rvb1-Rvb2-Tah1-Pih1) complex or other proteins for co-translational maturation of the PIKKs. Recent structural studies have revealed the α-solenoid structure of the TTT and its interactions with the R2TP complex, which shed new light on the co-chaperone mechanism and provide new research opportunities. A series of mutations of the TTT have been identified that cause disease syndrome with neurodevelopmental defects, and misregulation of the TTT has been shown to contribute to myeloma, colorectal, and non-small-cell lung cancers. Surprisingly, Tel2 in the TTT complex has recently been found to be a target of ivermectin, an antiparasitic drug that has been used by millions of patients. This discovery provides mechanistic insight into the anti-cancer effect of ivermectin and thus promotes the repurposing of this Nobel-prize-winning medicine for cancer chemotherapy. Here, we briefly review the discovery of the TTT complex, discuss the recent studies, and describe the perspectives for future investigation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Proteínas de Choque Térmico HSP90/metabolismo , Ivermectina , Chaperonas Moleculares/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
4.
Semin Cell Dev Biol ; 75: 78-87, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28866327

RESUMO

Nonsense-mediated mRNA decay (NMD) has traditionally been described as a quality control system that rids cells of aberrant mRNAs with crippled protein coding potential. However, transcriptome-wide profiling of NMD deficient cells identified a plethora of seemingly intact mRNAs coding for functional proteins as NMD targets. This led to the view that NMD constitutes an additional post-transcriptional layer of gene expression control involved in the regulation of many different biological pathways. Here, we review our current knowledge about the role of NMD in embryonic development and tissue-specific cell differentiation. We further summarize how NMD contributes to balancing of the integrated stress response and to cellular homeostasis of splicing regulators and NMD factors through auto-regulatory feedback loops. In addition, we discuss recent evidence that suggests a role for NMD as an innate immune response against several viruses. Altogether, NMD appears to play an important role in a broad spectrum of biological pathways, many of which still remain to be discovered.


Assuntos
Regulação da Expressão Gênica , Homeostase/genética , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/genética , Animais , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Humanos , Imunidade Inata/genética , Controle de Qualidade , RNA Mensageiro/metabolismo
5.
J Cell Mol Med ; 24(19): 11397-11408, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32827242

RESUMO

Accumulating evidence suggests that circular RNAs have the abilities to regulate gene expression during the progression of sepsis-associated acute kidney injury. Circular RNA VMA21 (circVMA21), a recent identified circular RNA, could reduce apoptosis to alleviate intervertebral disc degeneration in rats and protect WI-38 cells from lipopolysaccharide-induced injury. However, the role of circVMA21 in sepsis-associated acute kidney injury (sepsis-associated AKI) is unknown. In this study, we first demonstrated that circVMA21 alleviated sepsis-associated AKI by reducing apoptosis and inflammation in rats and HK-2 cells. Additionally, to explore the molecule mechanism underlying the amelioration, after the bioinformatics analysis, we confirmed that miR-9-3p directly bound to circVMA21 by luciferase and RNA immunoprecipitation assay, and the effector protein of miR-9-3p was SMG1. Furthermore, the oxidative stress caused by sepsis-associated AKI was down-regulated by circVMA21. In conclusion, circVMA21 plays an important role in the regulating sepsis-associated AKI via adjusting miR-9-39/SMG1/inflammation axis and oxidative stress.


Assuntos
Injúria Renal Aguda/complicações , Inflamação/genética , MicroRNAs/genética , Estresse Oxidativo/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Circular/metabolismo , Sepse/complicações , Transdução de Sinais , Injúria Renal Aguda/genética , Animais , Apoptose , Sequência de Bases , Ceco/patologia , Linhagem Celular , Modelos Animais de Doenças , Humanos , Ligadura , Lipopolissacarídeos , MicroRNAs/metabolismo , Punções , RNA Circular/genética , Ratos Wistar , Sepse/genética
6.
IUBMB Life ; 72(11): 2420-2431, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32856394

RESUMO

This study aims to investigate the role of lncRNA growth arrest-specific transcript 5 (GAS5)/miR-362-5p/suppressor of morphogenesis in the genitalia 1 (SMG1) axis in 131 I-resistance in thyroid cancer (TC). GAS5, miR-362-5p, and SMG1 expression in TC tissues was assessed and the 131 I-resistant TC cells were established, which were treated with altered GAS5, miR-362-5p, and SMG1. The proliferation and apoptosis of 131 I-resistant TC cells were detected, and the expression of Akt/mTOR signaling pathway-related proteins was assessed. Binding relations between GAS5 and miR-362-5p, and miR-362-5p and SMG1 were confirmed. The role of GAS5 in 131 I-resistant TC cell growth in vivo was observed. GAS5 was downregulated and miR-362-5p was upregulated in TC tissues and 131 I-resistant cells. The 131 I-resistant TC cells had enhanced proliferation and repressed apoptosis, and the Akt/mTOR signaling pathway was activated. Overexpressed GAS5 strengthened 131 I sensitivity and suppressed TC cell growth, while upregulated miR-362-5p had an opposite effect. MiR-362-5p upregulation reversed the effect of GAS5, and SMG1 overexpression eliminated the impact of miR-362-5p upregulation on 131 I-resistant TC cells. GAS5 competitively binds to miR-362-5p and SMG1 is targeted by miR-362-5p. GAS5 sponges miR-362-5p to promote sensitivity of TC cells to 131 I by upregulating SMG1 and inactivating Akt/mTOR signaling pathway.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Radioisótopos do Iodo/farmacologia , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Longo não Codificante/genética , Neoplasias da Glândula Tireoide/radioterapia , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Humanos , Camundongos , Camundongos Nus , Proteínas Serina-Treonina Quinases/genética , Tolerância a Radiação , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Rep Pract Oncol Radiother ; 25(5): 808-819, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32884453

RESUMO

miR-18a is a member of primary transcript called miR-17-92a (C13orf25 or MIR17HG) which also contains five other miRNAs: miR-17, miR-19a, miR-20a, miR-19b and miR-92a. This cluster as a whole shows specific characteristics, where miR-18a seems to be unique. In contrast to the other members, the expression of miR-18a is additionally controlled and probably functions as its own internal controller of the cluster. miR-18a regulates many genes involved in proliferation, cell cycle, apoptosis, response to different kinds of stress, autophagy and differentiation. The disturbances of miR-18a expression are observed in cancer as well as in different diseases or pathological states. The miR-17-92a cluster is commonly described as oncogenic and it is known as 'oncomiR-1', but this statement is a simplification because miR-18a can act both as an oncogene and a suppressor. In this review we summarize the current knowledge about miR-18a focusing on its regulation, role in cancer biology and utility as a potential biomarker.

8.
J Cell Physiol ; 234(10): 18825-18836, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30924168

RESUMO

Long noncoding RNAs (lncRNAs) have been proven to play critical roles in cancer progression. Recently, lncRNA MAGI2-AS3 has been revealed to be a tumor suppressor and inhibit cell growth by targeting the Fas/FasL signalling pathway in breast cancer. However, the role and underlying mechanism of MAGI2-AS3 in hepatocellular carcinoma (HCC) remain largely unknown. In the current study, we found that MAGI2-AS3 expression is downregulated in HCC tissues and closely associated with some clinical characteristics (tumor size, lymph node metastasis, and TNM stage) and poor overall survival. Overexpression of MAGI2-AS3 inhibits HCC cell proliferation and migration in vitro, while impedes tumor growth in vivo accordantly. In addition, our data suggest that MAGI2-AS3 could function as an endogenous sponge of miR-374b-5p by directly binding to it and suppressing its expression. Furthermore, miR-374b-5p upregulation could restore the inhibitory effect of MAGI2-AS3 on HCC cells processes. Moreover, suppressor with morphogenetic effect on genitalia family member 1 (SMG1) is positively regulated by MAGI2-AS3 via absorbing miR-374b-5p in HCC cells. More important, SMG1 knockdown reverses the suppressive function of MAGI2-AS3 in HCC cell processes. Taken together, we reveal a functional MAGI2-AS3/miR-374b-5p/SMG1 axis that suppresses HCC progression, potently suggesting a new road for HCC treatment.


Assuntos
Carcinoma Hepatocelular/patologia , Movimento Celular/genética , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Animais , Sequência de Bases , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Análise Multivariada , Modelos de Riscos Proporcionais , RNA Longo não Codificante/genética , Resultado do Tratamento , Regulação para Cima
9.
Am J Hum Genet ; 98(4): 643-52, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27018474

RESUMO

Nonsense-mediated decay (NMD) is an important process that is best known for degrading transcripts that contain premature stop codons (PTCs) to mitigate their potentially harmful consequences, although its regulatory role encompasses other classes of transcripts as well. Despite the critical role of NMD at the cellular level, our knowledge about the consequences of deficiency of its components at the organismal level is largely limited to model organisms. In this study, we report two consanguineous families in which a similar pattern of congenital anomalies was found to be most likely caused by homozygous loss-of-function mutations in SMG9, encoding an essential component of the SURF complex that generates phospho-UPF1, the single most important step in NMD. By knocking out Smg9 in mice via CRISPR/Cas9, we were able to recapitulate the major features of the SMG9-related multiple congenital anomaly syndrome we observed in humans. Surprisingly, human cells devoid of SMG9 do not appear to have reduction of PTC-containing transcripts but do display global transcriptional dysregulation. We conclude that SMG9 is required for normal human and murine development, most likely through a transcriptional regulatory role, the precise nature of which remains to be determined.


Assuntos
Anormalidades Múltiplas/genética , Mutação , Degradação do RNAm Mediada por Códon sem Sentido/genética , Fosfoproteínas/genética , Adulto , Alelos , Sequência de Aminoácidos , Animais , Estudos de Casos e Controles , Criança , Pré-Escolar , Códon sem Sentido , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Dados de Sequência Molecular , Linhagem , Fosforilação , Polimorfismo de Nucleotídeo Único , RNA Mensageiro , Arábia Saudita
10.
Exp Lung Res ; 43(6-7): 229-239, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28749708

RESUMO

PURPOSE: Supplemental oxygen (hyperoxia) used to treat individuals in respiratory distress causes cell injury by enhancing the production of toxic reactive oxygen species (ROS) and inhibiting mitochondrial respiration. The suppressor of morphogenesis of genitalia (SMG-1) kinase is activated during hyperoxia and promotes cell survival by phosphorylating the tumor suppressor p53 on serine 15. Here, we investigate whether SMG-1 and p53 blunt this vicious cycle of progressive ROS production and decline in mitochondrial respiration seen during hyperoxia. MATERIALS AND METHODS: Human lung adenocarcinoma A549 and H1299 or colon carcinoma HCT116 cells were depleted of SMG-1, UPF-1, or p53 using RNA interference, and then exposed to room air (21% oxygen) or hyperoxia (95% oxygen). Immunoblotting was used to evaluate protein expression; a Seahorse Bioanalyzer was used to assess cellular respiration; and flow cytometry was used to evaluate fluorescence intensity of cells stained with mitochondrial or redox sensitive dyes. RESULTS: Hyperoxia increased mitochondrial and cytoplasmic ROS and suppressed mitochondrial respiration without changing mitochondrial mass or membrane potential. Depletion of SMG-1 or its cofactor, UPF1, significantly enhanced hyperoxia-induced mitochondrial but not cytosolic ROS abundance. They did not affect mitochondrial mass, membrane potential, or hyperoxia-induced deficits in mitochondrial respiration. Genetic depletion of p53 in A549 cells and ablation of the p53 gene in H1299 or HCT116 cells revealed that SMG-1 influences mitochondrial ROS through activation of p53. CONCLUSIONS: Our findings show that hyperoxia does not promote a vicious cycle of progressive mitochondrial ROS and dysfunction because SMG-1-p53 signaling attenuates production of mitochondrial ROS without preserving respiration. This suggests antioxidant therapies that blunt ROS production during hyperoxia may not suffice to restore cellular respiration.


Assuntos
Respiração Celular/fisiologia , Hiperóxia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Células HCT116 , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Oxirredução , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases , RNA Helicases/metabolismo , Interferência de RNA/fisiologia , Transativadores/metabolismo , Proteína Supressora de Tumor p53/metabolismo
11.
RNA ; 20(8): 1248-56, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24947499

RESUMO

Selenoproteins contain the unique amino acid selenocysteine (Sec), which is encoded by the triplet UGA. Since UGA also serves as a stop codon, it has been postulated that selenoprotein mRNAs are targeted for degradation by the nonsense-mediated mRNA decay pathway (NMD). Several reports have observed a hierarchy of selenoprotein mRNA expression when selenium (Se) is limiting, whereby the abundance of certain transcripts decline while others do not. We sought to investigate the role of NMD in this hierarchical response that selenoprotein mRNAs exhibit to environmental Se status. Selenoprotein mRNAs were categorized as being predicted sensitive or resistant to NMD based on the requirements held by the current model. About half of the selenoprotein transcriptome was predicted to be sensitive to NMD and showed significant changes in mRNA abundance in response to cellular Se status. The other half that was predicted to be resistant to NMD did not respond to Se status. RNA immunoprecipitation with essential NMD factor UPF1 revealed that the mRNAs that were the most sensitive to Se status were also the most enriched on UPF1 during Se deficiency. Furthermore, depletion of SMG1, the kinase responsible for UPF1 phosphorylation and NMD activation, abrogated the decline in transcript abundance of Se-responsive transcripts. Lastly, mRNA decay rates of Se-responsive transcripts were altered upon the addition of Se to resemble the slower decay rates of nonresponsive transcripts. Taken together, these results present novel evidence in support of a crucial role for the NMD pathway in regulating selenoprotein mRNA levels when Se is limiting.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/metabolismo , Selênio/deficiência , Selenoproteínas/genética , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Fosfatidilinositol 3-Quinases/genética , Proteínas Serina-Treonina Quinases , RNA Helicases , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Selênio/metabolismo , Transativadores/metabolismo
12.
Plant J ; 77(4): 547-57, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24320692

RESUMO

Although grain size is one of the most important components of grain yield, little information is known about the mechanisms that determine final grain size in crops. Here we characterize rice small grain1 (smg1) mutants, which exhibit small and light grains, dense and erect panicles and comparatively slightly shorter plants. The short grain and panicle phenotypes of smg1 mutants are caused by a defect in cell proliferation. The smg1 mutations were identified, using a map-based cloning approach, in mitogen-activated protein kinase kinase 4 (OsMKK4). Relatively higher expression of OsMKK4/SMG1 was detected in younger organs than in older ones, consistent with its role in cell proliferation. Green fluorescent protein (GFP)-OsMKK4/SMG1 fusion proteins appear to be distributed ubiquitously in plant cells. Further results revealed that OsMKK4 influenced brassinosteroid (BR) responses and the expression of BR-related genes. Thus, our findings have identified OsMKK4 as a factor for grain size, and suggest a possible link between the MAPK pathways and BRs in grain growth.


Assuntos
Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , MAP Quinase Quinase 4/genética , Oryza/enzimologia , Transdução de Sinais , Brassinosteroides/metabolismo , Proliferação de Células , Mapeamento Cromossômico , Grão Comestível/citologia , Grão Comestível/enzimologia , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Flores/citologia , Flores/enzimologia , Flores/genética , Flores/crescimento & desenvolvimento , Genes Reporter , MAP Quinase Quinase 4/metabolismo , Meristema/citologia , Meristema/enzimologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Mutação , Oryza/citologia , Oryza/genética , Oryza/crescimento & desenvolvimento , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/citologia , Brotos de Planta/enzimologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Plântula/citologia , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento
13.
RNA ; 19(10): 1432-48, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23962664

RESUMO

Nonsense-mediated mRNA decay (NMD) is a eukaryotic post-transcriptional gene regulation mechanism that eliminates mRNAs with the termination codon (TC) located in an unfavorable environment for efficient translation termination. The best-studied NMD-targeted mRNAs contain premature termination codons (PTCs); however, NMD regulates even many physiological mRNAs. An exon-junction complex (EJC) located downstream from a TC acts as an NMD-enhancing signal, but is not generally required for NMD. Here, we compared these "EJC-enhanced" and "EJC-independent" modes of NMD with regard to their requirement for seven known NMD factors in human cells using two well-characterized NMD reporter genes (immunoglobulin µ and ß-Globin) with or without an intron downstream from the PTC. We show that both NMD modes depend on UPF1 and SMG1, but detected transcript-specific differences with respect to the requirement for UPF2 and UPF3b, consistent with previously reported UPF2- and UPF3-independent branches of NMD. In addition and contrary to expectation, a higher sensitivity of EJC-independent NMD to reduced UPF2 and UPF3b concentrations was observed. Our data further revealed a redundancy of the endo- and exonucleolytic mRNA degradation pathways in both modes of NMD. Moreover, the relative contributions of both decay pathways differed between the reporters, with PTC-containing immunoglobulin µ transcripts being preferentially subjected to SMG6-mediated endonucleolytic cleavage, whereas ß-Globin transcripts were predominantly degraded by the SMG5/SMG7-dependent pathway. Overall, the surprising heterogeneity observed with only two NMD reporter pairs suggests the existence of several mechanistically distinct branches of NMD in human cells.


Assuntos
Códon sem Sentido/genética , Éxons/genética , Regulação da Expressão Gênica , Degradação do RNAm Mediada por Códon sem Sentido/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Western Blotting , Células HeLa , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases , RNA Helicases , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
14.
Bioorg Med Chem Lett ; 25(17): 3464-7, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26199121

RESUMO

Compelling evidence have demonstrated the role of lipase activity in the pathogenicity of Malassezia globosa toward dandruff and seborrheic dermatitis (D/SD). As a representative secreted lipase from M. globosa CBS 7966, Malassezia globosa LIP1 (SMG1) is considered a potential anti-dandruff target. In this study, homology modeling, docking-based virtual screening and in vitro lipase-based assay were integrated to identify the first hit compound against SMG1, with an IC50 of 20 µM against synthetic lipase substrate, and of 0.19 µM when using natural lipase substrate. Evaluation of similar compounds, along with docking, offered information on the binding patterns of the hit compound. This work is expected to serve as a starting point for the rational design of more potent inhibitors against SMG1.


Assuntos
Caspa/prevenção & controle , Dermatite Seborreica/prevenção & controle , Lipase/antagonistas & inibidores , Malassezia/química , Lipase/metabolismo
15.
Biochim Biophys Acta ; 1829(10): 1047-55, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23831331

RESUMO

Nonsense-mediated mRNA decay (NMD) is the best-characterized mRNA surveillance mechanism that degrades a premature-termination codon (PTC)-containing mRNA. During mammalian NMD, SMG1 and UPF1, key proteins in NMD, join at a PTC and form an SMG1-UPF1-eRF1-eRF3 (SURF) complex by binding UPF1 to eRF3 after PTC-recognition by the translating ribosome. Subsequently, UPF1 is phosphorylated after UPF1-SMG1 moves onto the downstream exon junction complex (EJC). However, the cellular events that induce UPF1 and SMG1 complex formation and increase NMD efficiency before PTC recognition remain unclear. Here, we show that telomere-maintenance 2 (TEL2) phosphorylation by casein-kinase 2 (CK2) increases SMG1 stability, which increases UPF1 phosphorylation and, ultimately, augments NMD. Inhibition of CK2 activity or downregulation of TEL2 impairs NMD. Intriguingly, loss of TEL2 phosphorylation reduces UPF1-bound PTC-containing mRNA and the formation of the SMG1-UPF1 complex. Thus, our results identify a new function of CK2-mediated TEL2 phosphorylation in a mammalian NMD.


Assuntos
Caseína Quinase II/metabolismo , Códon sem Sentido/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Fosfatidilinositol 3-Quinases/química , Proteínas Proto-Oncogênicas c-ets/metabolismo , Transativadores/metabolismo , Western Blotting , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/genética , Células HeLa , Humanos , Imunoprecipitação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-ets/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ets/genética , RNA Helicases , Estabilidade de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/antagonistas & inibidores , Transativadores/genética
16.
Biochim Biophys Acta ; 1829(12): 1276-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24185201

RESUMO

Suppressor of morphogenesis in genitalia 1 (SMG1), a member of the phosphatidylinositol 3-kinase-related kinase family, is involved in nonsense-mediated mRNA decay (NMD). SMG1 phosphorylates Upf1, a key NMD factor. Subsequently, hyperphosphorylated Upf1 associates with SMG5-7 or proline-rich nuclear receptor coregulatory protein (PNRC2) to elicit rapid mRNA degradation. Upf1 is also known to be involved in staufen 1 (Stau1)-mediated mRNA decay (SMD), which is closely related to NMD. However, the biological and molecular roles of SMG1 in SMD remain unknown. Here, we provide evidence that SMG1 is involved in SMD. The immunoprecipitation results show that SMG1 is complexed with Stau1, Upf1, and Dcp1a. Downregulation of SMG1 or overexpression of a kinase-inactive mutant of SMG1 inhibits SMD efficiency. In addition, downregulation of SMG1 inhibits rapid degradation elicited by artificially tethered Stau1 or Upf1 downstream of the normal termination codon. Furthermore, Stau1 and Upf1 colocalize in processing bodies in an SMG1-dependent manner. We also find that the level of SMG1 increases during adipogenesis. Accordingly, downregulation of SMG1 causes the reduction in the level of Upf1 phosphorylation and delays adipogenesis, suggesting the functional involvement of SMG1 in adipogenesis via SMD.


Assuntos
Adipogenia/fisiologia , Proteínas do Citoesqueleto/metabolismo , Endorribonucleases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Células 3T3-L1 , Animais , Western Blotting , Proteínas do Citoesqueleto/genética , Regulação para Baixo , Endorribonucleases/genética , Células HEK293 , Células HeLa , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Proteínas Serina-Treonina Quinases , RNA Helicases , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/genética
17.
Plant J ; 76(5): 800-10, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24103012

RESUMO

Nonsense-mediated mRNA decay (NMD) is a eukaryotic process that targets selected mRNAs for destruction, for both quality control and gene regulatory purposes. SMG1, the core kinase of the NMD machinery in animals, phosphorylates the highly conserved UPF1 effector protein to activate NMD. However, SMG1 is missing from the genomes of fungi and the model flowering plant Arabidopsis thaliana, leading to the conclusion that SMG1 is animal-specific and questioning the mechanistic conservation of the pathway. Here we show that SMG1 is not animal-specific, by identifying SMG1 in a range of eukaryotes, including all examined green plants with the exception of A. thaliana. Knockout of SMG1 by homologous recombination in the basal land plant Physcomitrella patens reveals that SMG1 has a conserved role in the NMD pathway across kingdoms. SMG1 has been lost at various points during the evolution of eukaryotes from multiple lineages, including an early loss in the fungal lineage and a very recent observable gene loss in A. thaliana. These findings suggest that the SMG1 kinase functioned in the NMD pathway of the last common eukaryotic ancestor.


Assuntos
Bryopsida/genética , Genes de Plantas , Degradação do RNAm Mediada por Códon sem Sentido , Fosfatidilinositol 3-Quinases/genética , Arabidopsis/genética , Sequência Conservada , Evolução Molecular , Técnicas de Inativação de Genes , Fosforilação , Filogenia , Isoformas de Proteínas/genética
18.
Mol Oncol ; 17(2): 284-297, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36400430

RESUMO

Early data suggested that CC-115, a clinical molecule, already known to inhibit the mammalian target of rapamycin kinase (TORK) and DNA-dependent protein kinase (DNA-PK) may have additional targets beyond TORK and DNA-PK. Therefore, we aimed to identify such target(s) and investigate a potential therapeutic applicability. Functional profiling of 141 cancer cell lines revealed inhibition of kinase suppressor of morphogenesis in genitalia 1 (SMG1), a key regulator of the RNA degradation mechanism nonsense-mediated mRNA decay (NMD), as an additional target of CC-115. CC-115 treatment showed a dose-dependent increase of SMG1-mediated NMD transcripts. A subset of cell lines, including multiple myeloma (MM) cell lines sensitive to the endoplasmic reticulum stress-inducing compound thapsigargin, were highly susceptible to SMG1 inhibition. CC-115 caused the induction of UPR transcripts and cell death by mitochondrial apoptosis, requiring the presence of BAX/BAK and caspase activity. Superior antitumor activity of CC-115 over TORK inhibitors in primary human MM cells and three xenograft mouse models appeared to be via inhibition of SMG1. Our data support further development of SMG1 inhibitors as possible therapeutics in MM.


Assuntos
Mieloma Múltiplo , Degradação do RNAm Mediada por Códon sem Sentido , Animais , Humanos , Camundongos , Linhagem Celular , DNA/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
19.
Cell J ; 24(12): 757-763, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527348

RESUMO

OObjective: Chronic myeloid leukemia (CML) is a myeloproliferative malignancy with different stages. Aberrant epigenetic modifications, such as DNA methylation, have been introduced as a signature for diverse cancers which also plays a crucial role in CML pathogenesis and development. Suppressor with morphogenetic effect on genitalia (SMG1) gene recently has been brought to the spotlight as a potent tumor suppressor gene that can be suppressed by tumors for further progress. The present study aims to investigate SMG1 status in CML patients. MATERIALS AND METHODS: In this case-control study, peripheral blood from 30 patients with different phases of CML [new case (N)=10, complete molecular remission (CMR)=10, blastic phase (BP)=10] and 10 healthy subjects were collected. Methylation status and expression level of SMG1 gene promoter was assessed by methylation-specific polymerase chain reaction (MSP) and quantitative reverse-transcription PCR, respectively. RESULTS: MSP results of SMG1 gene promotor in the new case group were methylated (60% methylated, 30% hemimethylated and 10% unmethylated). All CMR and control group patients were unmethylated in the SMG1 gene promoter. In the BP group, methylated SMG1 promoter was seen (50% of patients had a methylated status and 50% had hemimethylated status). In comparison with the healthy subjects, expression level of SMG1 in the new case group was decreased (P<0.01); in the CMR group and BP-CML groups, it was increased (P<0.05). No significant correlation between patients' hematological features and SMG1 methylation was seen. CONCLUSION: Our results demonstrated that aberrant methylation of SMG1 occurred in CML patients and it had a significant association with SMG1 expression. SMG1 gene promoter showed diverse methylated status and subsequent expression levels in different phases of CML. These findings suggested possible participation of SMG1 suppression in the CML pathogenesis.

20.
Foods ; 11(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36553811

RESUMO

Diacylglycerols (DAGs) display huge application prospectives in food industries. Therefore, new strategies to produce diacylglycerides are needed. Malassezia globose lipase (SMG1) could be used to synthesize DAGs. However, the poor thermostability of SMG1 seriously hampers its application. Herein, a rational design was used to generate a more thermostable SMG1. Compared with the wild type (WT), the M5D mutant (Q34P/A37P/M176V/G177A/M294R/ G28C-P206C), which contains five single-point mutations and one additional disulfide bond, displayed a 14.0 °C increase in the melting temperature (Tm), 5 °C in the optimal temperature, and 1154.3-fold in the half-life (t1/2) at 55 °C. Meanwhile, the specific activity towards DAGs of the M5D variant was improved by 3.0-fold compared to the WT. Molecular dynamics (MD) simulations revealed that the M5D mutant showed an improved rigid structure. Additionally, the WT and the M5D variants were immobilized and used for the production of DAGs. Compared with the WT, the immobilized M5D-catalyzed esterification showed a 9.1% higher DAG content and a 22.9% increase in residual activity after nine consecutive cycles. This study will pave the way for the industrial application of SMG1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA