Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 77(6): 1294-1306.e5, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32023483

RESUMO

von Hippel-Lindau (VHL) is a critical tumor suppressor in clear cell renal cell carcinomas (ccRCCs). It is important to identify additional therapeutic targets in ccRCC downstream of VHL loss besides hypoxia-inducible factor 2α (HIF2α). By performing a genome-wide screen, we identified Scm-like with four malignant brain tumor domains 1 (SFMBT1) as a candidate pVHL target. SFMBT1 was considered to be a transcriptional repressor but its role in cancer remains unclear. ccRCC patients with VHL loss-of-function mutations displayed elevated SFMBT1 protein levels. SFMBT1 hydroxylation on Proline residue 651 by EglN1 mediated its ubiquitination and degradation governed by pVHL. Depletion of SFMBT1 abolished ccRCC cell proliferation in vitro and inhibited orthotopic tumor growth in vivo. Integrated analyses of ChIP-seq, RNA-seq, and patient prognosis identified sphingosine kinase 1 (SPHK1) as a key SFMBT1 target gene contributing to its oncogenic phenotype. Therefore, the pVHL-SFMBT1-SPHK1 axis serves as a potential therapeutic avenue for ccRCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Prognóstico , Prolil Hidroxilases/genética , Prolil Hidroxilases/metabolismo , Proteínas Repressoras/genética , Células Tumorais Cultivadas , Ubiquitinação , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Biol Chem ; 299(9): 105126, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543362

RESUMO

Oxidative stress triggered by aging, radiation, or inflammation impairs ovarian function by inducing granulosa cell (GC) apoptosis. However, the mechanism inducing GC apoptosis has not been characterized. Here, we found that ovarian GCs from aging patients showed increased oxidative stress, enhanced reactive oxygen species activity, and significantly decreased expression of the known antiapoptotic factor sphingosine-1-phosphate/sphingosine kinase 1 (SPHK1) in GCs. Interestingly, the expression of Krüppel-like factor 12 (KLF12) was significantly increased in the ovarian GCs of aging patients. Furthermore, we determined that KLF12 was significantly upregulated in hydrogen peroxide-treated GCs and a 3-nitropropionic acid-induced in vivo model of ovarian oxidative stress. This phenotype was further confirmed to result from inhibition of SPHK1 by KLF12. Interestingly, when endogenous KLF12 was knocked down, it rescued oxidative stress-induced apoptosis. Meanwhile, supplementation with SPHK1 partially reversed oxidative stress-induced apoptosis. However, this function was lost in SPHK1 with deletion of the binding region to the KLF12 promoter. SPHK1 reversed apoptosis caused by hydrogen peroxide-KLF12 overexpression, a result further confirmed in an in vitro ovarian culture model and an in vivo 3-nitropropionic acid-induced ovarian oxidative stress model. Overall, our study reveals that KLF12 is involved in regulating apoptosis induced by oxidative stress in aging ovarian GCs and that sphingosine-1-phosphate/SPHK1 can rescue GC apoptosis by interacting with KLF12 in negative feedback.


Assuntos
Envelhecimento , Apoptose , Células da Granulosa , Peróxido de Hidrogênio , Fatores de Transcrição Kruppel-Like , Lisofosfolipídeos , Fosfotransferases (Aceptor do Grupo Álcool) , Esfingosina , Feminino , Humanos , Envelhecimento/metabolismo , Retroalimentação Fisiológica , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Peróxido de Hidrogênio/farmacologia , Técnicas In Vitro , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Lisofosfolipídeos/biossíntese , Lisofosfolipídeos/metabolismo , Técnicas de Cultura de Órgãos , Estresse Oxidativo/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Regiões Promotoras Genéticas , Esfingosina/biossíntese , Esfingosina/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Gastroenterology ; 165(6): 1488-1504.e20, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37634735

RESUMO

BACKGROUND & AIMS: Studies have demonstrated that activated pancreatic stellate cells (PSCs) play a crucial role in pancreatic fibrogenesis in chronic pancreatitis (CP); however, the precise mechanism for PSCs activation has not been fully elucidated. We analyzed the role of injured pancreatic acinar cells (iPACs) in the activation of PSCs of CP. METHODS: Sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) signaling was evaluated in experimental CP induced by cerulein injection or pancreatic duct ligation, as well as in PACs injured by cholecystokinin. The activation of PSCs and pancreatic fibrosis in CP samples was evaluated by immunohistochemical and immunofluorescence analyses. In vitro coculture assay of iPACs and PSCs was created to evaluate the effect of the SPHK1/S1P pathway and S1P receptor 2 (SIPR2) on autophagy and activation of PSCs. The pathogenesis of CP was assessed in SPHK1-/- mice or PACs-specific SPHK1-knockdown mice with recombinant adeno-associated virus serotypes 9-SPHK1-knockdown, as well as in mice treated with inhibitor of SPHK1 and S1P receptor 2 (S1PR2). RESULTS: SPHK1/S1P was remarkably increased in iPACs and acinar cells in pancreatic tissues of CP mice. Meanwhile, the pathogenesis, fibrosis, and PSCs activation of CP was significantly prevented in SPHK1-/- mice and recombinant adeno-associated virus serotypes 9-SPHK1-knockdown mice. Meanwhile, iPACs obviously activated PSCs, which was prevented by SPHK1 knockdown in iPACs. Moreover, iPACs-derived S1P specifically combined to S1PR2 of PSCs, by which modulated 5' adenosine monophosphate-activated protein kinase/mechanistic target of rapamycin pathway and consequently induced autophagy and activation of PSCs. Furthermore, hypoxia-inducible factor 1-α and -2α promoted SPHK1 transcription of PACs under hypoxia conditions, which is a distinct characteristic of the CP microenvironment. Coincidently, inhibition of SPHK1 and S1PR2 activity with inhibitor PF-543 and JTE-013 obviously impeded pancreatic fibrogenesis of CP mice. CONCLUSIONS: The activated SPHK1/S1P pathway in iPACs induces autophagy and activation of PSCs by regulating the S1PR2/5' adenosine monophosphate-activated protein kinase/mammalian target of rapamycin pathway, which promotes fibrogenesis of CP. The hypoxia microenvironment might contribute to the cross talk between PACs and PSCs in pathogenesis of CP.


Assuntos
Células Acinares , Pancreatite Crônica , Animais , Camundongos , Receptores de Esfingosina-1-Fosfato , Células Estreladas do Pâncreas , Pancreatite Crônica/induzido quimicamente , Autofagia , Proteínas Quinases Ativadas por AMP , Fibrose , Monofosfato de Adenosina , Hipóxia , Mamíferos
4.
Cancer Cell Int ; 24(1): 89, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419070

RESUMO

Cancer chemoresistance is a problematic dilemma that significantly restrains numerous cancer management protocols. It can promote cancer recurrence, spreading of cancer, and finally, mortality. Accordingly, enhancing the responsiveness of cancer cells towards chemotherapies could be a vital approach to overcoming cancer chemoresistance. Tumour cells express a high level of sphingosine kinase-1 (SphK1), which acts as a protooncogenic factor and is responsible for the synthesis of sphingosine-1 phosphate (S1P). S1P is released through a Human ATP-binding cassette (ABC) transporter to interact with other phosphosphingolipids components in the interstitial fluid in the tumor microenvironment (TME), provoking communication, progression, invasion, and tumor metastasis. Also, S1P is associated with several impacts, including anti-apoptotic behavior, metastasis, mesenchymal transition (EMT), angiogenesis, and chemotherapy resistance. Recent reports addressed high levels of S1P in several carcinomas, including ovarian, prostate, colorectal, breast, and HCC. Therefore, targeting the S1P/SphK signaling pathway is an emerging therapeutic approach to efficiently attenuate chemoresistance. In this review, we comprehensively discussed S1P functions, metabolism, transport, and signaling. Also, through a bioinformatic framework, we pointed out the alterations of SphK1 gene expression within different cancers with their impact on patient survival, and we demonstrated the protein-protein network of SphK1, elaborating its sparse roles. Furthermore, we made emphasis on different machineries of cancer resistance and the tight link with S1P. We evaluated all publicly available SphK1 inhibitors and their inhibition activity using molecular docking and how SphK1 inhibitors reduce the production of S1P and might reduce chemoresistance, an approach that might be vital in the course of cancer treatment and prognosis.

5.
Mol Cell Proteomics ; 21(2): 100195, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35007762

RESUMO

Mammalian phospholipase D (PLD) enzyme family consists of six members. Among them, PLD1/2/6 catalyzes phosphatidic acid (PA) production, while PLD3/4/5 has no catalytic activities. Deregulation of the PLD-PA lipid signaling has been associated with various human diseases including cancer. However, a comprehensive analysis of the regulators and effectors for this crucial lipid metabolic pathway has not been fully achieved. Using a proteomic approach, we defined the protein interaction network for the human PLD family of enzymes and PA and revealed diverse cellular signaling events involving them. Through it, we identified PJA2 as a novel E3 ubiquitin ligase for PLD1 involved in control of the PLD1-mediated mammalian target of rapamycin signaling. Additionally, we showed that PA interacted with and positively regulated sphingosine kinase 1. Taken together, our study not only generates a rich interactome resource for further characterizing the human PLD-PA lipid signaling but also connects this important metabolic pathway with numerous biological processes.


Assuntos
Fosfolipase D , Humanos , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/metabolismo , Mapas de Interação de Proteínas , Proteômica , Transdução de Sinais/fisiologia
6.
FASEB J ; 36(8): e22398, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35792869

RESUMO

Conjugated bile acids (CBAs) play major roles in hepatic gene regulation via nuclear S1P-inhibited histone deacetylase (HDACs). Gut microbiota modifies bile acid pool to generate CBAs and then CBAs returned to liver to regulate hepatic genes, fatty liver, and non-alcoholic fatty liver disease (NAFLD). However, it is not yet known how the gut microbiota was modified under the environment of inflammatory bowel disease (IBD). Here, we revealed that aberrant intestinal sphingosine kinases (SphKs), a major risk factor of IBD, modified gut microbiota by increasing the proportions of Firmicutes and Verrucomicrobia, which were associated with the increase in CBAs. When exposed to a high-fat diet (HFD), sphingosine kinases 2 knockout (SphK2KO) mice developed more severity of intestinal inflammation and hepatic steatosis than their wild-type (WT) littermates. Due to knockdown of nuclear SphK2, Sphk2KO mice exhibited an increase in sphingosine kinases 1 (SphK1) and sphingosine-1-phosphate (S1P) in intestinal epithelial cells. Therefore, the microbiota was modified in the environment of the SphK1/S1P-induced IBD. 16S rDNA amplicon sequencing of cecal contents indicated an increase of Firmicutes and Verrucomicrobia. Ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) measured an increase in CBAs, including taurocholic acid (TCA), taurodeoxycholic acid (TDCA), and glycocholic acid (GCA), in cecal contents and liver tissues of Sphk2KO mice. These CBAs accumulated in the liver promoted hepatic steatosis through downregulating the acetylation of H3K9, H3K14, H3K18 and H3K27 due to the CBAs-S1PR2-nuclear SphK2-S1P signaling pathway was blocked in HFD-SphK2KO mice. In summary, intestinal aberrant sphingolipid metabolism developed hepatic steatosis through the increase in CBAs associated with an increase in Firmicutes and Verrucomicrobia.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Hepatopatia Gordurosa não Alcoólica , Animais , Ácidos e Sais Biliares , Cromatografia Líquida , Firmicutes , Metaboloma , Camundongos , Esfingolipídeos , Esfingosina , Espectrometria de Massas em Tandem , Verrucomicrobia
7.
Mol Cell ; 60(4): 626-36, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26590717

RESUMO

Although thousands of long noncoding RNAs (lncRNAs) have been discovered, very little is known about their mode of action. Here we functionally characterize an E2F1-regulated lncRNA named Khps1, which is transcribed in antisense orientation to the proto-oncogene SPHK1. Khps1 activates SPHK1 expression by recruiting the histone acetyltransferase p300/CBP to the SPHK1 promoter, which leads to local changes of the chromatin structure that ensures E2F1 binding and enhances transcription. Mechanistically, this is achieved by direct association of Khps1 with a homopurine stretch upstream of the transcription start site of SPHK1, which forms a DNA-RNA triplex that anchors the lncRNA and associated effector proteins to the gene promoter. The results reveal an lncRNA- and E2F1-driven regulatory loop in which E2F1-dependent induction of antisense RNA leads to changes in chromatin structure, facilitating E2F1-dependent expression of SPHK1 and restriction of E2F1-induced apoptosis.


Assuntos
Montagem e Desmontagem da Cromatina , Fator de Transcrição E2F1/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Longo não Codificante/metabolismo , Apoptose , Proliferação de Células , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Proto-Oncogene Mas , Fatores de Transcrição de p300-CBP/metabolismo
8.
J Stroke Cerebrovasc Dis ; 32(1): 106896, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36395661

RESUMO

AIM: To investigate the influence of dexmedetomidine (Dex) on cerebral ischemia/reperfusion (I/R)-injured rat neuronal cells by regulating the Sphk1/S1P pathway. METHODS: The rats were divided into the following groups, with 18 rats in each group categorized on the basis of random number tables: sham (Sham), I/R (I/R), Dex, Sphk1 inhibitor (PF-543), and Dex together with the Sphk1 agonist phorbol-12-myristate-13-acetate (Dex+PMA). The neurological functions of the rats were assessed by the Longa scoring system at 24 h post reperfusion. The area of brain infarction was inspected using 2,3,5-triphenyltetrazolium chloride staining, and the water content of brain tissue was determined by the dry-wet weight method. The morphology of neurons in the CA1 region of the rat hippocampus was inspected using Nissl staining, while the apoptosis of neurons in this region was detected by terminal-deoxynucleotidyl transferase mediated nick end labeling staining. The Sphk1 and S1P protein levels were determined by immunofluorescence and western blotting, respectively. RESULTS: Compared to the I/R group, rats in the Dex, PF-543, and Dex+PMA groups had a significantly lower neurological function score, as well as lower brain water content and a decreased infarction area. Moreover, the apoptotic index of the neurons and the Sphk1 and S1P levels in the hippocampal CA1 region were significantly lower in these groups (p<0.05). PMA, an agonist of Sphk1, was able to reverse the protective effects of Dex on I/R-induced neuronal cell injury. CONCLUSION: Dex could protect cerebral I/R-induced neuronal cell injury by suppressing the Sphk1/S1P signaling pathway.


Assuntos
Isquemia Encefálica , Dexmedetomidina , Traumatismo por Reperfusão , Animais , Ratos , Apoptose , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Região CA1 Hipocampal/metabolismo , Infarto Cerebral , Dexmedetomidina/farmacologia , Neurônios/metabolismo , Ratos Sprague-Dawley , Reperfusão , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
9.
Int J Mol Sci ; 24(2)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674922

RESUMO

A mass spectrometry-based lipidomic investigation of 30 patients with chronic hepatitis C virus (HCV) infection and 30 age- and sex-matched healthy blood donor controls was undertaken. The clustering and complete separation of these two groups was found by both unsupervised and supervised multivariate data analyses. Three patients who had spontaneously cleared the virus and three who were successfully treated with direct-acting antiviral drugs remained within the HCV-positive metabotype, suggesting that the metabolic effects of HCV may be longer-lived. We identified 21 metabolites that were upregulated in plasma and 34 that were downregulated (p < 1 × 10-16 to 0.0002). Eleven members of the endocannabinoidome were elevated, including anandamide and eight fatty acid amides (FAAs). These likely activated the cannabinoid receptor GPR55, which is a pivotal host factor for HCV replication. FAAH1, which catabolizes FAAs, reduced mRNA expression. Four phosphosphingolipids, d16:1, d18:1, d19:1 sphingosine 1-phosphate, and d18:0 sphinganine 1-phosphate, were increased, together with the mRNA expression for their synthetic enzyme SPHK1. Among the most profoundly downregulated plasma lipids were several lysophosphatidylinositols (LPIs) from 3- to 3000-fold. LPIs are required for the synthesis of phosphatidylinositol 4-phosphate (PI4P) pools that are required for HCV replication, and LPIs can also activate the GPR55 receptor. Our plasma lipidomic findings shed new light on the pathobiology of HCV infection and show that a subset of bioactive lipids that may contribute to liver pathology is altered by HCV infection.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Hepacivirus/fisiologia , Endocanabinoides , Replicação Viral , Antivirais , RNA Mensageiro
10.
Molecules ; 28(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985809

RESUMO

Hordenine, a phenethylamine alkaloid, is found in a variety of plants and exhibits a broad array of biological activities and pharmacological properties, including anti-inflammatory and anti-fibrotic effects. However, the efficacy and underlying mechanisms of hordenine in treating ulcerative colitis (UC) remain unclear. To address this, we examined the therapeutic effects of hordenine on dextran sodium sulphate (DSS)-induced UC by comparing disease activity index (DAI), colon length, secretion of inflammatory factors, and degree of colonic histological lesions across diseased mice that were and were not treated with hordenine. We found that hordenine significantly reduced DAI and levels of pro-inflammatory factors, including interleukin (IL)-6, IL-1ß, and tumor necrosis factor alpha (TNF-α), and also alleviated colon tissue oedema, colonic lesions, inflammatory cells infiltration and decreased the number of goblet cells. Moreover, in vitro experiments showed that hordenine protected intestinal epithelial barrier function by increasing the expression of tight junction proteins including ZO-1 and occludin, while also promoting the healing of intestinal mucosa. Using immunohistochemistry and western blotting, we demonstrated that hordenine reduced the expression of sphingosine kinase 1 (SPHK1), sphingosine-1-phosphate receptor 1 (S1PR1), and ras-related C3 botulinum toxin substrate 1 (Rac1), and it inhibited the expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in colon tissues. Thus, hordenine appears to be effective in UC treatment owing to pharmacological mechanisms that favor mucosal healing and the inhibition of SPHK-1/S1PR1/STAT3 signaling.


Assuntos
Colite Ulcerativa , Colite , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo/metabolismo , Tiramina/farmacologia , Anti-Inflamatórios/farmacologia , Interleucina-6/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colite/tratamento farmacológico
11.
Fish Physiol Biochem ; 49(4): 737-750, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37464180

RESUMO

The sphk1 gene plays a crucial role in cell growth and signal transduction. However, the developmental functions of the sphk1 gene during early vertebrate zebrafish embryo remain not completely understood. In this study, we constructed zebrafish sphk1 mutants through CRISPR/Cas9 to investigate its role in zebrafish embryonic development. Knockout of the sphk1 gene was found to cause abnormal development in zebrafish embryos, such as darkening and atrophy of the head, trunk deformities, pericardial edema, retarded yolk sac development, reduced heart rate, and premature death. The acetylcholinesterase activity was significantly increased after the knockout of sphk1, and some of the neurodevelopmental genes and neurotransmission system-related genes were expressed abnormally. The deletion of sphk1 led to abnormal expression of immune genes, as well as a significant decrease in the number of hematopoietic stem cells and neutrophils. The mRNA levels of cardiac development-related genes were significantly decreased. In addition, cell apoptosis increases in the sphk1 mutants, and the proliferation of head cells decreases. Therefore, our study has shown that the sphk1 is a key gene for zebrafish embryonic survival and regulation of organ development. It deepened our understanding of its physiological function. Our study lays the foundation for investigating the mechanism of the sphk1 gene in early zebrafish embryonic development.


Assuntos
Mortalidade Prematura , Peixe-Zebra , Animais , Peixe-Zebra/genética , Acetilcolinesterase , Embrião não Mamífero/anormalidades , Desenvolvimento Embrionário , Apoptose/genética , Regulação da Expressão Gênica no Desenvolvimento
12.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4046-4059, 2023 Aug.
Artigo em Zh | MEDLINE | ID: mdl-37802772

RESUMO

The present study aimed to investigate the protective effect and underlying mechanism of Platycladi Semen oil(SP) on Aß_(25-35)-induced brain injury in mice to provide a theoretical basis for the clinical treatment of Alzheimer's disease(AD). Male Kunming(KM) mice were randomly divided into a control group, a model group(brain injection of Aß_(25-35), 200 µmol·L~(-1), 0.15 µL·g~(-1)), a positive drug group(donepezil, 10 mg·kg~(-1)), and low-and high-dose SP groups(0.5 and 1 mL·kg~(-1)). Learning and memory ability, neuronal damage, levels of Aß_(1-42)/Aß_(1-40), p-Tau, related indicators of apoptosis and oxidative stress, and immune cells, and protein and mRNA expression related to the sphingosine kinase 1(SPHK1)/sphingosine-1-phosphate(S1P)/sphingosine-1-phosphate receptor 5(S1PR5) signaling pathway of mice in each group were determined. In addition, compounds in SP were analyzed by gas chromatography-mass spectrometry(GC-MS). The mechanism of SP against AD was investigated by network pharmacology, 16S rDNA gene sequencing for gut microbiota(GM), and molecular docking techniques. The results showed that SP could improve the learning and memory function of Aß_(25-35)-induced mice, reduce hippocampal neuronal damage, decrease the levels of Aß_(1-42)/Aß_(1-40), p-Tau, and indicators related to apoptosis and oxidative stress in the brain, and maintain the homeostasis of immune cells and GM. Network pharmacology and sequencing analysis for GM showed that the therapeutic effect of SP on AD was associated with the sphingolipid signaling pathway. Meanwhile,(Z,Z,Z)-9,12,15-octadecatrienoic acid and(Z,Z)-9,12-octadecadienoic acid, the components with the highest content in SP, showed good binding activity to SPHK1 and S1PR5. Therefore, it is inferred that SP exerts anti-apoptosis and antioxidant effects by regulating GM and inhibiting SPHK1/S1P/S1PR5 pathway, thereby improving brain injury induced by Aß_(25-35) in mice. Moreover,(Z,Z,Z)-9,12,15-octadecatrienoic acid and(Z,Z)-9,12-octadecadienoic acid may be the material basis for the anti-AD effect of SP.


Assuntos
Doença de Alzheimer , Lesões Encefálicas , Microbioma Gastrointestinal , Camundongos , Animais , Masculino , Sêmen/metabolismo , Farmacologia em Rede , Ácido Linoleico , Simulação de Acoplamento Molecular , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética
13.
J Neurochem ; 161(5): 387-404, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35152434

RESUMO

The rostral ventrolateral medulla (RVLM) is known as the vasomotor center that plays a crucial role in mediating the development of stress-induced hypertension (SIH). MicroRNAs (miRNAs) are involved in many different biological processes and diseases. However, studies that evaluated the roles of miRNAs in the RVLM during SIH do not exist. Here, we performed RNA sequencing to explore the genome-wide miRNA profiles in RVLM in an SIH rat model established by administering electric foot-shocks and noises. The function of miRNAs in blood pressure regulation was determined in vivo via the intra-RVLM microinjection of the agomir or antagomir. Furthermore, the underlying mechanisms of miRNAs on SIH were investigated through in vitro and in vivo experiments, like gain-of-function. We discovered 786 miRNA transcripts among which 4 were differentially expressed. The over-expression of miR-335 and miR-674-3p in RVLM dramatically increased the heart rate (HR), arterial blood pressure (ABP), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) levels of normotensive rats, whereas the knockdown of miR-335 and miR-674-3p in RVLM markedly reduced the HR, ABP, SBP, DBP, and MAP levels of SIH rats. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation revealed that miR-335 and miR-674-3p participated in regulating the development of SIH from different aspects, like apoptosis-multiple species pathway. Sphk1, whose expression was markedly decreased in SIH, was identified as a novel target of miR-335. MiR-335 over-expression substantially reduced the expression of Sphk1 and promoted neural apoptosis, and its inhibition had opposite effects. Re-introduction of Sphk1 dramatically abrogated the apoptosis induced by miR-335. This study provides the first systematic dissection of the RVLM miRNA landscape in SIH. MiR-335 and miR-674-3p act as SIH promoters, and the identified miR-335/Sphk1/apoptosis axis represents one of the possible mechanisms. These miRNAs can be exploited as potential targets for the molecular-based therapy of SIH.


Assuntos
Hipertensão , MicroRNAs , Animais , Pressão Sanguínea , Hipertensão/genética , Hipertensão/metabolismo , Bulbo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima
14.
BMC Cancer ; 22(1): 792, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854233

RESUMO

BACKGROUND: Pathophysiology of transformation of inflammatory lesions in chronic pancreatitis (CP) to pancreatic ductal adenocarcinoma (PDAC) is not clear. METHODS: We conducted a systematic review, meta-analysis of circulating metabolites, integrated this data with transcriptome analysis of human pancreatic tissues and validated using immunohistochemistry. Our aim was to establish biomarker signatures for early malignant transformation in patients with underlying CP and identify therapeutic targets. RESULTS: Analysis of 19 studies revealed AUC of 0.86 (95% CI 0.81-0.91, P < 0.0001) for all the altered metabolites (n = 88). Among them, lipids showed higher differentiating efficacy between PDAC and CP; P-value (< 0.0001). Pathway enrichment analysis identified sphingomyelin metabolism (impact value-0.29, FDR of 0.45) and TCA cycle (impact value-0.18, FDR of 0.06) to be prominent pathways in differentiating PDAC from CP. Mapping circulating metabolites to corresponding genes revealed 517 altered genes. Integration of these genes with transcriptome data of CP and PDAC with a background of CP (PDAC-CP) identified three upregulated genes; PIGC, PPIB, PKM and three downregulated genes; AZGP1, EGLN1, GNMT. Comparison of CP to PDAC-CP and PDAC-CP to PDAC identified upregulation of SPHK1, a known oncogene. CONCLUSIONS: Our analysis suggests plausible role for SPHK1 in development of pancreatic adenocarcinoma in long standing CP patients. SPHK1 could be further explored as diagnostic and potential therapeutic target.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatite Crônica , Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/patologia , Humanos , Neoplasias Pancreáticas/patologia , Pancreatite Crônica/genética , Transcriptoma , Neoplasias Pancreáticas
15.
J Bone Miner Metab ; 40(2): 240-250, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35066669

RESUMO

INTRODUCTION: The diagnosis and treatment of osteoporosis, a frequent age-related metabolic bone disorder, remain incomprehensive and challenging. The potential regulatory role of lncRNA XIST and sphingosine kinase 1 (SPHK1) pathway need experimental investigations. MATERIALS AND METHODS: RAW264.7 cells and BMMs were obtained for in vitro studies and 30 ng/mL RANKL was implemented for induction of osteoclast differentiation. The suppressing of lncRNA XIST, SPHK1 and fused in sarcoma (FUS) was achieved using small hairpin RNA, while overexpression of XIST and FUS was constructed by pcDNA3.1 vector system. Tartrate-resistant acid phosphatase (TRAP) staining was used for observation of formation of osteoclasts. RNA-pulldown analysis and RNA binding protein immunoprecipitation (RIP) was implemented for measuring mRNA and protein interactions. RT-qPCR was conducted to determining mRNA expression, whereas ELISA and Western blotting assay was performed for monitoring protein expression. RESULTS: RANKL induced osteoclast differentiation and upregulated expression of osteoclastogenesis-related genes that included NFATc1, CTSK, TRAP and SPHK1 and the level of lncRNA XIST in both RAW264.7 cells and BMMs. However, knockdown of lncRNA XIST or suppressing SPHK1 significantly reserved the effects of RANKL. LncRNA XIST was further demonstrated to be interacted with FUS and increased the stability of SPHK1, indicating its ability in promoting osteoclast differentiation through SPHK1/S1P/ERK signaling pathway. CONCLUSION: LncRNA XIST promoted osteoclast differentiation via interacting with FUS and upregulating SPHK1/S1P/ERK pathway.


Assuntos
Reabsorção Óssea , Osteoclastos , Pró-Proteína Convertases/metabolismo , RNA Longo não Codificante , Proteína FUS de Ligação a RNA/metabolismo , Serina Endopeptidases/metabolismo , Animais , Reabsorção Óssea/metabolismo , Catepsina K/metabolismo , Diferenciação Celular , Hematopoese , Camundongos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Osteogênese , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligante RANK/metabolismo , Células RAW 264.7 , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fosfatase Ácida Resistente a Tartarato/metabolismo
16.
Bioorg Chem ; 121: 105668, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219046

RESUMO

Sphingosine kinase (SphK), which catalyzes the transfer of phosphate from ATP to sphingosine (Sph) generating sphingosine-1-phosphate (S1P) has emerged as therapeutic target since the discovery of connections of S1P with cancer progress. So far, most effort has focused on the development of inhibitors of SphK1, and selective inhibitors of SphK2 have been much less explored. Here, we describe the syntheses of new sphingosine derivatives bearing a tetrasubstituted carbon atom at C-2, dimethylhydrazino or azo moieties in the polar head, and alkane, alkene or alkyne moieties as linkers between the polar ahead and the fatty tail. In vitro inhibitory assays based on a time resolved fluorescence energy transfer (TR-FRET) have revealed the hydrazino and alkynyl moieties as the best combination for the design of selective SphK2 inhibitors (19a and 19b). Docking studies showed that compounds 19a-b have the optimal binding to SphK2 through the exploitation of polar but also hydrophobic interactions of their head group with the head of the enzyme binding pocket, while also producing full contact of the fatty tail with the hydrophobic pocket of the enzyme. By contrast, this elongation causes loss of contact surface with the shorter hydrophobic toe of the SphK1 isoform, thus accounting for the SphK2-biased selectivity of these compounds. Cell viability assays of the most promising candidates 19a-b have shown that 19a is not cytotoxic to human endothelial cells at 30 µM.


Assuntos
Antineoplásicos , Esfingosina , Antineoplásicos/farmacologia , Células Endoteliais/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)
17.
Biol Pharm Bull ; 45(5): 649-658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35491169

RESUMO

Growing evidence suggests that cancer originates from cancer stem cells (CSCs), which can be identified by aldehyde dehydrogenase (ALDH) activity-based flow cytometry. However, the regulation of CSC growth is not fully understood. In the present study, we investigated the effects of Transforming Growth Factor-ß (TGFß) in breast CSC expansion. Stimulation with TGFß increased the ALDH-positive breast CSC population via the phosphorylation of sphingosine kinase 1 (SphK1), a sphingosine-1-phosphate (S1P)-producing enzyme, and subsequent S1P-mediated S1P receptor 3 (S1PR3) activation. These data suggest that TGFß promotes breast CSC expansion via the ALK5/SphK1/S1P/S1PR3 signaling pathway. Our findings provide new insights into the role of TGFß in the regulation of CSCs.


Assuntos
Neoplasias , Fator de Crescimento Transformador beta , Ligantes , Células-Tronco Neoplásicas , Fosforilação , Transdução de Sinais , Fator de Crescimento Transformador beta/farmacologia
18.
Ecotoxicol Environ Saf ; 237: 113511, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489137

RESUMO

Sphingosine kinase 1 (SphK1) is an important signaling molecule for cell proliferation and survival. However, the role of SphK1 in acrylamide (ACR)-induced nerve injury remains unclear. The purpose of this study was to investigate the role and potential mechanism of SphK1 in ACR-induced nerve injury. Liquid chromatography triple quadrupole tandem mass spectrometry (LC-MS/MS) and reverse transcription-quantitative PCR (RT-qPCR) were used to detect sphingosine 1-phosphate (S1P) content in serum and SphK1 content in whole blood from an occupational work group exposed to ACR compared to a non-exposed group. For in vitro experiments, SphK1 in human SH-SY5Y neuroblastoma cells was activated using SphK1-specific activator phorbol 12-myristate 13-acetate (PMA). Our research also utilized cell viability assays, flow cytometry, western blots, RT-qPCR and related protein detection to assess activity of the mitogen activated protein kinase (MAPK) signaling pathway. The results of the population study showed that the contents of SphK1 and S1P in the ACR-exposed occupational contact group were lower than in the non-exposed group. The results of in vitro experiments showed that expression of SphK1 decreased with the increase in ACR concentration. Activating SphK1 improved the survival rate of SH-SY5Y cells and decreased the apoptosis rate. Activating SphK1 in SH-SY5Y cells also regulated MAPK signaling, including enhancing the phosphorylation of extracellular signal-regulated protein kinases (ERK) and inhibiting the phosphorylation of c-Jun N-terminal kinase (JNK) and p38. These results suggest that activating SphK1 can protect against nerve cell damage caused by ACR.


Assuntos
Acrilamida , Espectrometria de Massas em Tandem , Acrilamida/toxicidade , Cromatografia Líquida , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Neurônios/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)
19.
Int J Mol Sci ; 23(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35682566

RESUMO

Erythropoietin (Epo) is a crucial hormone regulating red blood cell number and consequently the hematocrit. Epo is mainly produced in the kidney by interstitial fibroblast-like cells. Previously, we have shown that in cultures of the immortalized mouse renal fibroblast-like cell line FAIK F3-5, sphingosine 1-phosphate (S1P), by activating S1P1 and S1P3 receptors, can stabilize hypoxia-inducible factor (HIF)-2α and upregulate Epo mRNA and protein synthesis. In this study, we have addressed the role of intracellular iS1P derived from sphingosine kinases (Sphk) 1 and 2 on Epo synthesis in F3-5 cells and in mouse primary cultures of renal fibroblasts. We show that stable knockdown of Sphk2 in F3-5 cells increases HIF-2α protein and Epo mRNA and protein levels, while Sphk1 knockdown leads to a reduction of hypoxia-stimulated HIF-2α and Epo protein. A similar effect was obtained using primary cultures of renal fibroblasts isolated from wildtype mice, Sphk1-/-, or Sphk2-/- mice. Furthermore, selective Sphk2 inhibitors mimicked the effect of genetic Sphk2 depletion and also upregulated HIF-2α and Epo protein levels. The combined blockade of Sphk1 and Sphk2, using Sphk2-/- renal fibroblasts treated with the Sphk1 inhibitor PF543, resulted in reduced HIF-2α and Epo compared to the untreated Sphk2-/- cells. Exogenous sphingosine (Sph) enhanced HIF-2α and Epo, and this was abolished by the combined treatment with the selective S1P1 and S1P3 antagonists NIBR-0213 and TY52156, suggesting that Sph was taken up by cells and converted to iS1P and exported to then act in an autocrine manner through S1P1 and S1P3. The upregulation of HIF-2α and Epo synthesis by Sphk2 knockdown was confirmed in the human hepatoma cell line Hep3B, which is well-established to upregulate Epo production under hypoxia. In summary, these data show that sphingolipids have diverse effects on Epo synthesis. While accumulation of intracellular Sph reduces Epo synthesis, iS1P will be exported to act through S1P1+3 to enhance Epo synthesis. Furthermore, these data suggest that selective inhibition of Sphk2 is an attractive new option to enhance Epo synthesis and thereby to reduce anemia development in chronic kidney disease.


Assuntos
Eritropoetina , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Epoetina alfa , Eritropoetina/genética , Eritropoetina/metabolismo , Fibroblastos/metabolismo , Hipóxia , Rim/metabolismo , Camundongos , RNA Mensageiro/genética , Esfingosina/metabolismo
20.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361531

RESUMO

Non-small cell lung cancer (NSCLC) accounts for 85~90% of lung cancer cases, with a poor prognosis and a low 5-year survival rate. Sphingosine kinase-1 (SPHK1), a key enzyme in regulating sphingolipid metabolism, has been reported to be involved in the development of NSCLC, although the underlying mechanism remains unclear. In the present study, we demonstrated the abnormal signature of SPHK1 in NSCLC lesions and cell lines of lung cancers with a potential tumorigenic role in cell cycle regulation. Functionally, ectopic Pre-B cell leukemia homeobox-1 (PBX1) was capable of restoring the arrested G1 phase induced by SPHK1 knockdown. However, exogenous sphingosine-1-phosphate (S1P) supply had little impact on the cell cycle arrest by PBX1 silence. Furthermore, S1P receptor S1PR3 was revealed as a specific switch to transport the extracellular S1P signal into cells, and subsequently activated PBX1 to regulate cell cycle progression. In addition, Akt signaling partially participated in the SPHK1/S1PR3/PBX1 axis to regulate the cell cycle, and the Akt inhibitor significantly decreased PBX1 expression and induced G1 arrest. Targeting SPHK1 with PF-543 significantly inhibited the cell cycle and tumor growth in preclinical xenograft tumor models of NSCLC. Taken together, our findings exhibit the vital role of the SPHK1/S1PR3/PBX1 axis in regulating the cell cycle of NSCLC, and targeting SPHK1 may develop a therapeutic effect in tumor treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Lisofosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool) , Fator de Transcrição 1 de Leucemia de Células Pré-B , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esfingosina/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA