Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Med ; 30(1): 124, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138413

RESUMO

BACKGROUND: Obesity is well-established as a significant contributor to the development of insulin resistance (IR) and diabetes, partially due to elevated plasma saturated free fatty acids like palmitic acid (PA). Grb10-interacting GYF Protein 2 (GIGYF2), an RNA-binding protein, is widely expressed in various tissues including the liver, and has been implicated in diabetes-induced cognitive impairment. Whereas, its role in obesity-related IR remains uninvestigated. METHODS: In this study, we employed palmitic acid (PA) exposure to establish an in vitro IR model in the human liver cancer cell line HepG2 with high-dose chronic PA treatment. The cells were stained with fluorescent dye 2-NBDG to evaluate cell glucose uptake. The mRNA expression levels of genes were determined by real-time qRT-PCR (RT-qPCR). Western blotting was employed to examine the protein expression levels. The RNA immunoprecipitation (RIP) was used to investigate the binding between protein and mRNA. Lentivirus-mediated gene knockdown and overexpression were employed for gene manipulation. In mice, an IR model induced by a high-fat diet (HFD) was established to validate the role and action mechanisms of GIGYF2 in the modulation of HFD-induced IR in vivo. RESULTS: In hepatocytes, high levels of PA exposure strongly trigger the occurrence of hepatic IR evidenced by reduced glucose uptake and elevated extracellular glucose content, which is remarkably accompanied by up-regulation of GIGYF2. Silencing GIGYF2 ameliorated PA-induced IR and enhanced glucose uptake. Conversely, GIGYF2 overexpression promoted IR, PTEN upregulation, and AKT inactivation. Additionally, PA-induced hepatic IR caused a notable increase in STAU1, which was prevented by depleting GIGYF2. Notably, silencing STAU1 prevented GIGYF2-induced PTEN upregulation, PI3K/AKT pathway inactivation, and IR. STAU1 was found to stabilize PTEN mRNA by binding to its 3'UTR. In liver cells, tocopherol treatment inhibits GIGYF2 expression and mitigates PA-induced IR. In the in vivo mice model, GIGYF2 knockdown and tocopherol administration alleviate high-fat diet (HFD)-induced glucose intolerance and IR, along with the suppression of STAU1/PTEN and restoration of PI3K/AKT signaling. CONCLUSIONS: Our study discloses that GIGYF2 mediates obesity-related IR by disrupting the PI3K/AKT signaling axis through the up-regulation of STAU1/PTEN. Targeting GIGYF2 may offer a potential strategy for treating obesity-related metabolic diseases, including type 2 diabetes.


Assuntos
Proteínas de Transporte , Resistência à Insulina , Fígado , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas de Ligação a RNA , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Fígado/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Células Hep G2 , Ácido Palmítico , Masculino , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos
2.
Cell Mol Life Sci ; 80(11): 328, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847286

RESUMO

Elevated mitochondrial metabolism promotes tumorigenesis of Embryonal Rhabdomyosarcomas (ERMS). Accordingly, targeting oxidative phosphorylation (OXPHOS) could represent a therapeutic strategy for ERMS. We previously demonstrated that genetic reduction of Staufen1 (STAU1) levels results in the inhibition of ERMS tumorigenicity. Here, we examined STAU1-mediated mechanisms in ERMS and focused on its potential involvement in regulating OXPHOS. We report the novel and differential role of STAU1 in mitochondrial metabolism in cancerous versus non-malignant skeletal muscle cells (NMSkMCs). Specifically, our data show that STAU1 depletion reduces OXPHOS and inhibits proliferation of ERMS cells. Our findings further reveal the binding of STAU1 to several OXPHOS mRNAs which affects their stability. Indeed, STAU1 depletion reduced the stability of OXPHOS mRNAs, causing inhibition of mitochondrial metabolism. In parallel, STAU1 depletion impacted negatively the HIF2α pathway which further modulates mitochondrial metabolism. Exogenous expression of HIF2α in STAU1-depleted cells reversed the mitochondrial inhibition and induced cell proliferation. However, opposite effects were observed in NMSkMCs. Altogether, these findings revealed the impact of STAU1 in the regulation of mitochondrial OXPHOS in cancer cells as well as its differential role in NMSkMCs. Overall, our results highlight the therapeutic potential of targeting STAU1 as a novel approach for inhibiting mitochondrial metabolism in ERMS.


Assuntos
Rabdomiossarcoma Embrionário , Humanos , Rabdomiossarcoma Embrionário/genética , Rabdomiossarcoma Embrionário/tratamento farmacológico , Rabdomiossarcoma Embrionário/metabolismo , Proteínas do Citoesqueleto/metabolismo , Transformação Celular Neoplásica , Carcinogênese/genética , Proliferação de Células/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo
3.
J Biol Chem ; 297(4): 101191, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34520759

RESUMO

Accumulation of α-synuclein is a main underlying pathological feature of Parkinson's disease and α-synucleinopathies, for which lowering expression of the α-synuclein gene (SNCA) is a potential therapeutic avenue. Using a cell-based luciferase reporter of SNCA expression we performed a quantitative high-throughput screen of 155,885 compounds and identified A-443654, an inhibitor of the multiple functional kinase AKT, as a potent inhibitor of SNCA. HEK-293 cells with CAG repeat expanded ATXN2 (ATXN2-Q58 cells) have increased levels of α-synuclein. We found that A-443654 normalized levels of both SNCA mRNA and α-synuclein monomers and oligomers in ATXN2-Q58 cells. A-443654 also normalized levels of α-synuclein in fibroblasts and iPSC-derived dopaminergic neurons from a patient carrying a triplication of the SNCA gene. Analysis of autophagy and endoplasmic reticulum stress markers showed that A-443654 successfully prevented α-synuclein toxicity and restored cell function in ATXN2-Q58 cells, normalizing the levels of mTOR, LC3-II, p62, STAU1, BiP, and CHOP. A-443654 also decreased the expression of DCLK1, an inhibitor of α-synuclein lysosomal degradation. Our study identifies A-443654 and AKT inhibition as a potential strategy for reducing SNCA expression and treating Parkinson's disease pathology.


Assuntos
Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Indazóis/farmacologia , Indóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , alfa-Sinucleína/biossíntese , Células HEK293 , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , alfa-Sinucleína/genética
4.
Genes Dev ; 27(13): 1495-510, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23824540

RESUMO

For a number of human genes that encode transcripts containing inverted repeat Alu elements (IRAlus) within their 3' untranslated region (UTR), product mRNA is efficiently exported to the cytoplasm when the IRAlus, which mediate nuclear retention, are removed by alternative polyadenylation. Here we report a new mechanism that promotes gene expression by targeting mRNAs that maintain their 3' UTR IRAlus: Binding of the dsRNA-binding protein Staufen1 (STAU1) to 3' UTR IRAlus inhibits nuclear retention so as to augment the nuclear export of 3' UTR IRAlus-containing mRNAs (IRAlus mRNAs). Moreover, we found that 3' UTR IRAlus-bound STAU1 enhances 3' UTR IRAlus mRNA translation by precluding protein kinase R (PKR) binding, which obviates PKR activation, eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, and repression of global cell translation. Thus, STAU1 binding to 3' UTR IRAlus functions along with 3' UTR IRAlus-mediated nuclear retention to suppress the shutdown of cellular translation triggered by PKR binding to endogenous cytoplasmic dsRNAs. We also show that a changing STAU1/PKR ratio contributes to myogenesis via effects on the 3' UTR IRAlus of mRNA encoding the microRNA-binding protein LIN28.


Assuntos
Elementos Alu/genética , Núcleo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Transporte de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Células Cultivadas , Proteínas do Citoesqueleto/genética , Células HEK293 , Humanos , Ligação Proteica , Proteínas de Ligação a RNA/genética
5.
RNA Biol ; 17(12): 1777-1788, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32713259

RESUMO

Blood-tumour barrier (BTB) has been known to significantly attenuate the efficacy of chemotherapy for glioma. In this report, we identified that insulin-like grown factor 2 mRNA-binding protein 2 (IGF2BP2) was over-expressed in glioma microvessel and glioma endothelial cells (GECs). Knockdown of IGF2BP2 decreased the expression of lncRNA FBXL19-AS1 and tight junction-related proteins, thereby promoting BTB permeability. FBXL19-AS1 was over-expressed and more enriched in the cytoplasm of GECs. In addition, FBXL19-AS1 could bind to 3'-UTR of ZNF765 mRNA and down-regulate ZNF765 mRNA expression through STAU1-mediated mRNA decay (SMD). The low expression of ZNF765 was discovered in GECs and verified to increase BTB permeability by inhibiting the promoter activities of tight junction-related proteins. Meanwhile, ZNF765 also inhibited the transcriptional activity of IGF2BP2, thereby forming a feedback loop in regulating the BTB permeability. Single or combined application of silenced IGF2BP2 and FBXL19-AS1 improved the delivery and antitumor efficiency of doxorubicin (DOX). In general, our study revealed the regulation mechanism of IGF2BP2/FBXL19-AS1/ZNF765 axis on BTB permeability, which may provide valuable insight into treatment strategy for glioma.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas F-Box/genética , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , Permeabilidade , Ligação Proteica , Estabilidade de RNA , Transcriptoma , Microambiente Tumoral/genética
6.
Biochem Biophys Res Commun ; 479(2): 365-371, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27644878

RESUMO

Under physiological stress conditions the cell protects itself through a global blockade on cap-dependent translation of mRNA. This allows cap-independent mechanisms such as internal ribosome entry site (IRES)-mediated translation to take over and initiate the translation of a specific pool of mRNAs that encode proteins involved in protecting the cell from stress. Staufen 1 (Stau1) is an RNA-binding protein that has been previously implicated in the regulation of stress granule formation and therefore could play a key role in protecting the cell against stress stimuli such as oxidative and endoplasmic reticulum (ER) stress. We hypothesized that Stau1 mRNA could, like many stress response genes, contain an IRES in its 5'UTR. Here we describe that a bona fide IRES element is present in the 5'UTR of Stau1 mRNA, which is activated under hypoxic and ER stress conditions. Further, we show that the activity of PERK kinase, a major effector of the ER stress response, is required for Stau1 IRES-mediated translation during ER stress. These results suggest that Stau1 is a stress response gene that remains efficiently translated during hypoxia and ER stress despite the substantial global inhibition of cap-dependent protein translation, promoting cell recovery following stress.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Estresse do Retículo Endoplasmático , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Regiões 5' não Traduzidas , Hipóxia Celular , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Sítios Internos de Entrada Ribossomal , Conformação de Ácido Nucleico , Oxigênio/química , Plasmídeos/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
7.
Biochim Biophys Acta ; 1829(12): 1276-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24185201

RESUMO

Suppressor of morphogenesis in genitalia 1 (SMG1), a member of the phosphatidylinositol 3-kinase-related kinase family, is involved in nonsense-mediated mRNA decay (NMD). SMG1 phosphorylates Upf1, a key NMD factor. Subsequently, hyperphosphorylated Upf1 associates with SMG5-7 or proline-rich nuclear receptor coregulatory protein (PNRC2) to elicit rapid mRNA degradation. Upf1 is also known to be involved in staufen 1 (Stau1)-mediated mRNA decay (SMD), which is closely related to NMD. However, the biological and molecular roles of SMG1 in SMD remain unknown. Here, we provide evidence that SMG1 is involved in SMD. The immunoprecipitation results show that SMG1 is complexed with Stau1, Upf1, and Dcp1a. Downregulation of SMG1 or overexpression of a kinase-inactive mutant of SMG1 inhibits SMD efficiency. In addition, downregulation of SMG1 inhibits rapid degradation elicited by artificially tethered Stau1 or Upf1 downstream of the normal termination codon. Furthermore, Stau1 and Upf1 colocalize in processing bodies in an SMG1-dependent manner. We also find that the level of SMG1 increases during adipogenesis. Accordingly, downregulation of SMG1 causes the reduction in the level of Upf1 phosphorylation and delays adipogenesis, suggesting the functional involvement of SMG1 in adipogenesis via SMD.


Assuntos
Adipogenia/fisiologia , Proteínas do Citoesqueleto/metabolismo , Endorribonucleases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Células 3T3-L1 , Animais , Western Blotting , Proteínas do Citoesqueleto/genética , Regulação para Baixo , Endorribonucleases/genética , Células HEK293 , Células HeLa , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Proteínas Serina-Treonina Quinases , RNA Helicases , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/genética
8.
J Cancer ; 15(9): 2518-2537, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577609

RESUMO

Background: The nuclear cap-binding complex (CBC)-dependent translation (CT) is an important initial translation pathway for 5'-cap-dependent translation in normal mammal cells. Eukaryotic translation initiation factor 4A-III (eIF4A3), as an RNA helicase, is recruited to CT complex and enhances CT efficiency through participating in unwinding of secondary structure in the 5' UTR. However, the detailed mechanism for eIF4A3 implicated in unwinding of secondary structure in the 5' UTR in normal mammal cells is still unclear. Specially, we need to investigate whether the kind of mechanism in normal mammal cells extrapolates to cancer cells, e.g. ESCC, and further interrogate whether and how the mechanism triggers malignant phenotype of ESCC, which are important for identifying a potential therapeutic target for patients with ESCC. Methods: Bioinformatics analysis, RNA immunoprecipitation and RNA pulldown assays were performed to detect the interaction of circular RNA circ-231 with eIF4A3. In vitro and in vivo assays were performed to detect biological roles of circ-231 in ESCC. RNA immunoprecipitation, RNA pulldown, mass spectrometry analysis and co-immunoprecipitation assays were used to measure the interaction of circ-231, eIF4A3 and STAU1 in HEK293T and ESCC. In vitro EGFP reporter and 5' UTR of mRNA pulldown assays were performed to probe for the binding of circ-231, eIF4A3 and STAU1 to secondary structure of 5' UTR. Results: RNA immunoprecipitation assays showed that circ-231 interacted with eIF4A3 in HEK293T and ESCC. Further study confirmed that circ-231 orchestrated with eIF4A3 to control protein expression of TPI1 and PRDX6, but not for mRNA transcripts. The in-depth mechanism study uncovered that both circ-231 and eIF4A3 were involved in unwinding of secondary structure in 5' UTR of TPI1 and PRDX6. More importantly, circ-231 promoted the interaction between eIF4A3 and STAU1. Intriguingly, both circ-231 and eIF4A3 were dependent on STAU1 binding to secondary structure in 5' UTR. Biological function assays revealed that circ-231 promoted the migration and proliferation of ESCC via TPI1 and PRDX6. In ESCC, the up-regulated expression of circ-231 was observed and patients with ESCC characterized by higher expression of circ-231 have concurrent lymph node metastasis, compared with control. Conclusions: Our data unravels the detailed mechanism by which STAU1 binds to secondary structure in 5' UTR of mRNAs and recruits eIF4A3 through interacting with circ-231 and thereby eIF4A3 is implicated in unwinding of secondary structure, which is common to HEK293T and ESCC. However, importantly, our data reveals that circ-231 promotes migration and proliferation of ESCC and the up-regulated circ-231 greatly correlates with tumor lymph node metastasis, insinuating that circ-231 could be a therapeutic target and an indicator of risk of lymph node metastasis for patients with ESCC.

9.
Exp Neurol ; 377: 114805, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729552

RESUMO

Staufen-1 (STAU1) is a double-stranded RNA-binding protein (RBP) involved in a variety of pathological conditions. In this study, we investigated the potential role of STAU1 in Alzheimer's disease (AD), in which two hallmarks are well-established as cerebral ß-amyloid protein (Aß) deposition and Tau-centered neurofibrillary tangles. We found that STAU1 protein level was significantly increased in cells that stably express full-length APP and the brain of APP/PS1 mice, an animal model of AD. STAU1 knockdown, as opposed to overexpression, significantly decreased the protein levels of ß-amyloid converting enzyme 1 (BACE1) and Aß. We further found that STAU1 extended the half-life of the BACE1 mRNA through binding to the 3' untranslated region (3'UTR). Transcriptome analysis revealed that STAU1 enhanced the expression of growth arrest and DNA damage 45 ß (GADD45B) upstream of P38 MAPK signaling, which contributed to STAU1-induced regulation of Tau phosphorylation at Ser396 and Thr181. Together, STAU1 promoted amyloidogenesis by inhibiting BACE1 mRNA decay, and augmented Tau phosphorylation through activating GADD45B in relation to P38 MAPK. Targeting STAU1 that acts on both amyloidogenesis and tauopathy may serve as an optimistic approach for AD treatment.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Proteínas de Ligação a RNA , Proteínas tau , Animais , Proteínas tau/metabolismo , Proteínas tau/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos , Fosforilação , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Humanos , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Células Cultivadas , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética
10.
Mol Cell Biol ; 44(2): 43-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347726

RESUMO

Transcription factors play key roles in development and disease by controlling gene expression. Forkhead box A1 (FOXA1), is a pioneer transcription factor essential for mouse development and functions as an oncogene in prostate and breast cancer. In colorectal cancer (CRC), FOXA1 is significantly downregulated and high FOXA1 expression is associated with better prognosis, suggesting potential tumor suppressive functions. We therefore investigated the regulation of FOXA1 expression in CRC, focusing on well-differentiated CRC cells, where FOXA1 is robustly expressed. Genome-wide RNA stability assays identified FOXA1 as an unstable mRNA in CRC cells. We validated FOXA1 mRNA instability in multiple CRC cell lines and in patient-derived CRC organoids, and found that the FOXA1 3'UTR confers instability to the FOXA1 transcript. RNA pulldowns and mass spectrometry identified Staufen1 (STAU1) as a potential regulator of FOXA1 mRNA. Indeed, STAU1 knockdown resulted in increased FOXA1 mRNA and protein expression due to increased FOXA1 mRNA stability. Consistent with these data, RNA-seq following STAU1 knockdown in CRC cells revealed that FOXA1 targets were upregulated upon STAU1 knockdown. Collectively, this study uncovers a molecular mechanism by which FOXA1 is regulated in CRC cells and provides insights into our understanding of the complex mechanisms of gene regulation in cancer.


Assuntos
Neoplasias Colorretais , Transcriptoma , Masculino , Humanos , Animais , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Neoplasias Colorretais/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
11.
RNA Biol ; 10(10): 1597-601, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24019000

RESUMO

The human genome encodes several thousand long non-protein coding transcripts>200 nucleotides in length, a subset of which were shown to play important roles in regulation of gene expression. We recently identified TINCR, a lncRNA required for induction of key differentiation genes in epidermal tissue, including genes mutated in human skin diseases characterized by disrupted epidermal barrier formation. High-throughput analyses of TINCR RNA- and protein-interactomes revealed TINCR interaction with differentiation mRNAs as well as the Staufen1 protein. TINCR, together with Staufen1, seems to stabilize a subset of mRNAs required for epidermal differentiation. Here, we discuss the emerging roles of Staufen1 and TINCR in the regulation of mammalian cell differentiation mediated by interaction with target mRNAs. We consider a role for TINCR as an epithelial-specific guide for targeting the Staufen1 protein to specific mRNAs, reflecting the increasing complexity of gene regulatory processes in mammalian cells and tissue.


Assuntos
Diferenciação Celular , Proteínas do Citoesqueleto/metabolismo , Células Epidérmicas , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , RNA Mensageiro/metabolismo
12.
Autophagy ; 19(9): 2607-2608, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36652469

RESUMO

The double-stranded RNA-binding protein, STAU1 (staufen double-stranded RNA binding protein 1) is a multifunctional protein that localizes to stress granules (SGs). We had previously found that STAU1 is overabundant in fibroblast cell lines from patients with spinocerebellar ataxia type 2 (SCA2) or amyotrophic lateral sclerosis (ALS)-frontotemporal dementia (FTD) as well as in animal models of these diseases. STAU1 overabundance is post-transcriptional and associated with MTOR hyperactivation and links SG formation with macroautophagy/autophagy. Reducing STAU1 levels in mice with ALS mutations normalizes MTOR activity and autophagy-related marker proteins. We also see increased STAU1 levels in HEK293 cells expressing C9orf72-relevant dipeptide repeats (DPRs), and DPRs are not observed in cells where STAU1 is targeted by RNAi. Overexpression of STAU1 in HEK293 cells increases MTOR translation by directly interacting with the MTOR mRNA 5'UTR, activating downstream targets and impairing autophagic flux. STAU1 may constitute a novel target to modulate MTOR activity and autophagy and for the treatment of neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Ataxias Espinocerebelares , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Células HEK293 , Autofagia/genética , Proteínas de Ligação a RNA/metabolismo , Demência Frontotemporal/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas do Citoesqueleto/metabolismo
13.
Vet Microbiol ; 272: 109515, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35908442

RESUMO

Innate immune system composed of pathogen pattern recognition receptors (PRRs) is the first barrier to recognize and defend viral invasion. Previously,the double-stranded RNA binding protein staufen1 (STAU1) was identified as an important candidate in regulating RIG-I/MDA5 signaling axis, which is the major cytosolic PRRs for initiating immune response to antagonize RNA viruses. However, the mechanism of STAU1 on RNA virus infection is still unclear. In the present study, we demonstrated that STAU1 is a highly conservative dsRNA-binding protein in human and mammals. The porcine STAU1 (pSTAU1) could bind to the PEDV original dsRNA in cytoplasm. Furthermore, pSTAU1 is a binding partner that can positively increase the combination of MDA5 and dsRNA in cells, but slightly on RIG-I-dsRNA binding. Moreover, knockdown pSTAU1 led to inhibition of poly(I:C)-stimulated, VSV and RIG-I/MDA5-induced activation of porcine INF-ß promotor activation. Overexpression pSTAU1 could positively suppress the VSV proliferation in 3D4/21 cells. In sum, our data identify pSTAU1 as a key component of RIG-I/MDA5 binding viral dsRNA required for innate antiviral immunity in swine. The novel findings provide a new insight into host sensing the RNA-viruses infection.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Infecções por Vírus de RNA , Proteínas de Ligação a RNA/metabolismo , Doenças dos Suínos , Animais , Humanos , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/genética , Mamíferos , Ligação Proteica , Infecções por Vírus de RNA/veterinária , RNA de Cadeia Dupla , Suínos , Doenças dos Suínos/imunologia
14.
Front Immunol ; 13: 740513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350787

RESUMO

Objective: This study aims to identify clinically relevant diagnostic biomarkers in chronic obstructive pulmonary disease (COPD) while exploring how immune cell infiltration contributes towards COPD pathogenesis. Methods: The GEO database provided two human COPD gene expression datasets (GSE38974 and GSE76925; n=134) along with the relevant controls (n=49) for differentially expressed gene (DEG) analyses. Candidate biomarkers were identified using the support vector machine recursive feature elimination (SVM-RFE) analysis and the LASSO regression model. The discriminatory ability was determined using the area under the receiver operating characteristic curve (AUC) values. These candidate biomarkers were characterized in the GSE106986 dataset (14 COPD patients and 5 controls) in terms of their respective diagnostic values and expression levels. The CIBERSORT program was used to estimate patterns of tissue infiltration of 22 types of immune cells. Furthermore, the in vivo and in vitro model of COPD was established using cigarette smoke extract (CSE) to validated the bioinformatics results. Results: 80 genes were identified via DEG analysis that were primarily involved in cellular amino acid and metabolic processes, regulation of telomerase activity and phagocytosis, antigen processing and MHC class I-mediated peptide antigen presentation, and other biological processes. LASSO and SVM-RFE were used to further characterize the candidate diagnostic markers for COPD, SLC27A3, and STAU1. SLC27A3 and STAU1 were found to be diagnostic markers of COPD in the metadata cohort (AUC=0.734, AUC=0.745). Their relevance in COPD were validated in the GSE106986 dataset (AUC=0.900 AUC=0.971). Subsequent analysis of immune cell infiltration discovered an association between SLC27A3 and STAU1 with resting NK cells, plasma cells, eosinophils, activated mast cells, memory B cells, CD8+, CD4+, and helper follicular T-cells. The expressions of SLC27A3 and STAU1 were upregulated in COPD models both in vivo and in vitro. Immune infiltration activation was observed in COPD models, accompanied by the enhanced expression of SLC27A3 and STAU1. Whereas, the knockdown of SLC27A3 or STAU1 attenuated the effect of CSE on BEAS-2B cells. Conclusion: STUA1 and SLC27A3 are valuable diagnostic biomarkers of COPD. COPD pathogenesis is heavily influenced by patterns of immune cell infiltration. This study provides a molecular biology insight into COPD occurrence and in exploring new therapeutic means useful in COPD.


Assuntos
Genes MHC Classe I , Doença Pulmonar Obstrutiva Crônica , Algoritmos , Biomarcadores , Proteínas do Citoesqueleto/genética , Humanos , Aprendizado de Máquina , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Proteínas de Ligação a RNA/genética
15.
Neural Regen Res ; 17(1): 170-177, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34100453

RESUMO

Ghrelin is a neuropeptide that has various physiological functions and has been demonstrated to be neuroprotective in a number of neurological disease models. However, the underlying mechanisms of ghrelin in Parkinson's disease remain largely unexplored. The current study aimed to study the effects of ghrelin in a 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease model and evaluate the potential underlying mechanisms. In the present study, we treated an SH-SY5Y cell model with 6-OHDA, and observed that pretreatment with different concentrations of ghrelin (1, 10, and 100 nM) for 30 minutes relieved the neurotoxic effects of 6-OHDA, as revealed by Cell Counting Kit-8 and Annexin V/propidium iodide (PI) apoptosis assays. Reverse transcription quantitative polymerase chain reaction and western blot assay results demonstrated that 6-OHDA treatment upregulated α-synuclein and lincRNA-p21 and downregulated TG-interacting factor 1 (TGIF1), which was predicted as a potential transcription regulator of the gene encoding α-synuclein (SNCA). Ghrelin pretreatment was able to reverse the trends caused by 6-OHDA. The Annexin V/PI apoptosis assay results revealed that inhibiting either α-synuclein or lincRNA-p21 expression with small interfering RNA (siRNA) relieved 6-OHDA-induced cell apoptosis. Furthermore, inhibiting lincRNA-p21 also partially upregulated TGIF1. By retrieving information from a bioinformatics database and performing both double luciferase and RNA immunoprecipitation assays, we found that lincRNA-p21 and TGIF1 were able to form a double-stranded RNA-binding protein Staufen homolog 1 (STAU1) binding site and further activate the STAU1-mediated mRNA decay pathway. In addition, TGIF1 was able to transcriptionally regulate α-synuclein expression by binding to the promoter of SNCA. The Annexin V/PI apoptosis assay results showed that either knockdown of TGIF1 or overexpression of lincRNA-p21 notably abolished the neuroprotective effects of ghrelin against 6-OHDA-induced neurotoxicity. Collectively, these findings suggest that ghrelin exerts neuroprotective effects against 6-OHDA-induced neurotoxicity via the lincRNA-p21/TGIF1/α-synuclein pathway.

16.
Viruses ; 13(8)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34452292

RESUMO

Rabies virus is a highly neurophilic negative-strand RNA virus with high lethality and remains a huge public health problem in developing countries to date. The double-stranded RNA-binding protein Staufen1 (STAU1) has multiple functions in RNA virus replication, transcription, and translation. However, its function in RABV infection and its mechanism of action are not clear. In this study, we investigated the role of host factor STAU1 in RABV infection of SH-SY-5Y cells. Immunofluorescence, TCID50 titers, confocal microscopy, quantitative real-time PCR and Western blotting were carried out to determine the molecular function and subcellular distribution of STAU1 in these cell lines. Expression of STAU1 in SH-SY-5Y cells was down-regulated by RNA interference or up-regulated by transfection of eukaryotic expression vectors. The results showed that N proficiently colocalized with STAU1 in SH-SY-5Y at 36 h post-infection, and the expression level of STAU1 was also proportional to the time of infection. Down-regulation of STAU1 expression increased the number of Negri body-like structures, enhanced viral replication, and a caused 10-fold increase in viral titers. Meanwhile, N protein and G protein mRNA levels also accumulated gradually with increasing infection time, which implied that STAU1 inhibited rabies virus infection of SH-SY-5Y cells in vitro. In conclusion, our results provide important clues for the detailed replication mechanism of rabies virus and the discovery of therapeutic targets.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a RNA/metabolismo , Vírus da Raiva/fisiologia , Replicação Viral , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Interações Hospedeiro-Patógeno , Humanos , Corpos de Inclusão Viral/metabolismo , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
17.
Front Mol Biosci ; 8: 672988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150849

RESUMO

Reactive oxygen species (ROS) generated under oxidative stress (OS) cause oxidative damage to RNA. Recent studies have suggested a role for oxidized RNA in several human disorders. Under the conditions of oxidative stress, mRNAs released from polysome dissociation accumulate and initiate stress granule (SG) assembly. SGs are highly enriched in mRNAs, containing inverted repeat (IR) Alus in 3' UTRs, AU-rich elements, and RNA-binding proteins. SGs and processing bodies (P-bodies) transiently interact through a docking mechanism to allow the exchange of RNA species. However, the types of RNA species exchanged, and the mechanisms and outcomes of exchange are still unknown. Specialized RNA-binding proteins, including adenosine deaminase acting on RNA (ADAR1-p150), with an affinity toward inverted repeat Alus, and Tudor staphylococcal nuclease (Tudor-SN) are specifically recruited to SGs under OS along with an RNA transport protein, Staufen1 (STAU1), but their precise biochemical roles in SGs and SG/P-body docking are uncertain. Here, we critically review relevant literature and propose a hypothetical mechanism for the processing and decay of oxidized-RNA in SGs/P-bodies, as well as the role of ADAR1-p150, Tudor-SN, and STAU1.

18.
Cancer Lett ; 518: 169-179, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34273467

RESUMO

Cervical cancer (CC) patients with lymph node (LN) metastasis often have an extremely poor prognosis. However, the precise molecular mechanisms involved in LN metastasis of CC remain largely unknown. Herein, through RNA screening, we identified a novel long noncoding RNA (lncRNA), LncCCLM, that was downregulated in cervical cancer tissues and closely associated with lymphatic metastasis in cervical cancer patients. Gain-of-function and loss-of-function studies in CC cells demonstrated that LncCCLM inhibited cervical cancer-associated lymphangiogenesis, and CC cell migration and invasion in vitro and suppressed LN metastasis in vivo, but did not affect the growth of CC cells. Mechanistically, LncCCLM localized in the cytoplasm and interacted with staufen double-stranded RNA binding protein 1 (STAU1), promoting the binding of the STAU1 protein to the 3' untranslated region (3'UTR) of insulin-like growth factor 1 (IGF-1) mRNA, which accelerated the degradation of IGF-1 mRNA and decreased the IGF-1 protein level, ultimately reducing lymphangiogenesis and lymphatic metastasis in cervical cancer. Collectively, our findings suggest that LncCCLM acts as a tumor suppressor and may be used as a prognostic biomarker and therapeutic target for clinical intervention in LN-metastatic cervical cancer.


Assuntos
Proteínas do Citoesqueleto/genética , Fator de Crescimento Insulin-Like I/genética , Metástase Linfática/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Neoplasias do Colo do Útero/genética , Animais , Biomarcadores Tumorais/genética , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Células HeLa , Humanos , Linfangiogênese/genética , Metástase Linfática/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Estabilidade de RNA/genética , Neoplasias do Colo do Útero/patologia
19.
Mol Ther Oncolytics ; 17: 138-152, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32322670

RESUMO

The blood-tumor barrier limits the delivery of therapeutic drugs to brain tumor tissues. Selectively opening the blood-tumor barrier is considered crucial for effective chemotherapy of glioma. RNA-binding proteins have emerged as crucial regulators in various biologic processes. This study found that RNA-binding Fox-1 homolog 1 (RBFOX1) was downregulated in glioma vascular endothelial cells derived from glioma tissues, and in glioma endothelial cells obtained by co-culturing endothelial cells with glioma cells. Overexpression of RBFOX1 impaired the integrity of the blood-tumor barrier and increased its permeability. Additionally, RBFOX1 overexpression decreased the expression of tight junction proteins ZO-1, occludin, and claudin-5. Subsequent analysis of the mechanism indicated that the overexpression of RBFOX1 increased musculoaponeurotic fibrosarcoma protein basic leucine zipper [bZIP] transcription factor F (MAFF) expression by downregulating LINC00673, which stabilized MAFF messenger RNA (mRNA) through Staufen1-mediated mRNA decay. Moreover, MAFF could bind to the promoter region and inhibit the promoter activities of ZO-1, occludin, and claudin-5, which reduced its expression. The combination of RBFOX1 upregulation and LINC00673 downregulation promoted doxorubicin delivery across the blood-tumor barrier, resulting in apoptosis of glioma cells. In conclusion, this study indicated that overexpression of RBFOX1 increased blood-tumor barrier permeability through the LINC00673/MAFF pathway, which might provide a new useful target for future enhancement of blood-tumor barrier permeability.

20.
Mol Ther Nucleic Acids ; 20: 823-840, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32464546

RESUMO

Glioma is a brain cancer characterized by strong invasiveness with limited treatment options and poor prognosis. Recently, dysregulation of long non-coding RNAs (lncRNAs) has emerged as an important component in cellular processes and tumorigenesis. In this study, we demonstrated that TATA-box binding protein associated factor 15 (TAF15) and long intergenic non-protein coding RNA 665 (LINC00665) were both downregulated in glioma tissues and cells. TAF15 overexpression enhanced the stability of LINC00665, inhibiting malignant biological behaviors of glioma cells. Both metal regulatory transcription factor 1 (MTF1) and YY2 transcription factor (YY2) showed high expression levels in glioma tissues and cells, and their knockdown inhibited malignant progression. Mechanistically, overexpression of LINC00665 was confirmed to destabilize MTF1 and YY2 mRNA by interacting with STAU1, and knockdown of STAU1 could rescue the MTF1 and YY2 mRNA degradation caused by LINC00665 overexpression. G2 and S-phase expressed 1 (GTSE1) was identified as an oncogene in glioma, and knockdown of MTF1 or YY2 decreased the mRNA and protein expression levels of GTSE1 through direct binding to the GTSE1 promoter region. Our study highlights a key role of the TAF15/LINC00665/MTF1(YY2)/GTSE1 axis in modulating the malignant biological behaviors of glioma cells, suggesting novel mechanisms by which lncRNAs affect STAU1-mediated mRNA stability, which can inform new molecular therapies for glioma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA