Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
New Phytol ; 235(1): 173-187, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35347735

RESUMO

Chloroplasts are hypersensitive to heat stress (HS). SUMOylation, a critical post-translational modification, is conservatively involved in HS responses. However, the functional connection between SUMOylation and chloroplasts under HS remains to be studied. The bioinformatics, biochemistry, and cell biology analyses were used to detect the SUMOylation statuses of Arabidopsis nuclear-encoded chloroplast proteins and the effect of SUMOylation on subcellular localization of these proteins under HS. PSBR, a subunit of photosystem II, was used as an example for a detailed investigation of functional mechanisms. After a global SUMOylation site prediction of nuclear-encoded chloroplast proteins, biochemical data showed that most of the selected candidates are modified by SUMO3 in the cytoplasm. The chloroplast localization of these SUMOylation targets under long-term HS is partially maintained by the SUMO ligase AtSIZ1. The HS-induced SUMOylation on PSBR contributes to the maintenance of its chloroplast localization, which is dependent on its chloroplast importation efficiency correlated to phosphorylation. The complementation analysis provided evidence that SUMOylation is essential for the physiological function of PSBR under HS. Our study illustrated a general regulatory mechanism of SUMOylation in maintaining the chloroplast protein importation during HS and provided hints for further investigation on protein modifications associated with plant organelles under stress conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Resposta ao Choque Térmico , Proteínas Nucleares/metabolismo , Sumoilação
2.
New Phytol ; 232(3): 1382-1398, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34327705

RESUMO

Exportin 1/XPO1 is an important nuclear export receptor that binds directly to cargo proteins and translocates the cargo proteins to the cytoplasm. To understand XPO1 protein functions during potyvirus infections, we investigated the nuclear export of the NIb protein encoding the RNA-dependent RNA polymerase (RdRp) of turnip mosaic virus (TuMV). Previously, we found that NIb is transported to the nucleus after translation and sumoylated by the sumoylation (small ubiquitin-like modifier) pathway to support viral infection. Here, we report that XPO1 interacts with NIb to facilitate translocation from the nucleus to the viral replication complexes (VRCs) that accumulate in the perinuclear regions of TuMV-infected cells. XPO1 contains two NIb-binding domains that recognize and interact with NIb in the nucleus and in the perinuclear regions, respectively, which facilitates TuMV replication. Moreover, XPO1 is involved in nuclear export of the sumoylated NIb and host factors tagged with SUMO3 that is essential for suppression of plant immunity in the nucleus. Deficiencies of XPO1 in Arabidopsis and Nicotiana benthamiana plants inhibit TuMV replication and infection. These data demonstrate that XPO1 functions as a host factor in TuMV infection by regulating NIb nucleocytoplasmic transport and plant immunity.


Assuntos
Potyvirus , Proteínas do Complexo da Replicase Viral , Carioferinas , Doenças das Plantas , Imunidade Vegetal , Receptores Citoplasmáticos e Nucleares , Nicotiana , Proteínas Virais , Proteína Exportina 1
3.
Cell Commun Signal ; 17(1): 153, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752909

RESUMO

BACKGROUND: Abnormal reactivation of androgen receptor (AR) signaling in castration-resistant prostate cancer (CRPC) mainly results from overexpression and down-regulation of AR. Sumoylation of AR can influence its function. However, regulation of AR sumoylation by SUMO E3 ligases PIASs to modify AR distribution and stability are not well understood. METHODS: We assessed the potential effect of SUMO3 modification on AR intracellular localization by immunostaining in AR-negative prostate cancer DU145 cells, and detected the effect of PIAS1/SUMO3 overexpression on AR sumoylation related degradation. Then we characterized AR sumoylation sites involved modified by SUMO3, and the key residue of PIAS1 involved in itself sumoylation and further mediated AR sumoylation (sumo3-conjugated), translocation and degradation. Finally we detected the recognition of PIAS1 (sumoylation ligase) to MDM2, a ubiquin ligase mediated AR degradation. RESULTS: We demonstrate that SUMO E3 ligase PIAS1, along with SUMO3, mediates AR cytosolic translocation and subsequent degradation via a ubiquitin-proteasome pathway. Although AR sumoylation occurs prior to ubiquitination, the SUMO-acceptor lysine 386 on AR, together with ubiquitin-acceptor lysine 845, contribute to PIAS1/SUMO3-induced AR nuclear export, ubiquitination and subsequent degradation. Moreover, PIAS1 itself is modified by SUMO3 overexpression, and mutation of SUMO-acceptor lysine 117 on PIAS1 can impair AR cytoplasmic distribution, demonstrating the essential role of sumoylated PIAS1 in AR translocation. We further determine that sumoylated PIAS1 interacts with AR lysine 386 and 845 to form a binary complex. Consistent with the effect on AR distribution, SUMO3 modification of PIAS1 is also required for AR ubiquitination and degradation by recruiting ubiquitin E3 ligase MDM2. CONCLUSION: Taken together, SUMO3 modification of PIAS1 modulates AR cellular distribution and stability. Our study provided the evidence the crosstalk between AR sumoylation and ubquitination mediated by PIAS1 and SUMO3.


Assuntos
Proteínas Inibidoras de STAT Ativados/metabolismo , Receptores Androgênicos/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Humanos , Estabilidade Proteica , Transdução de Sinais , Sumoilação , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
Fish Shellfish Immunol ; 86: 1088-1095, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30593901

RESUMO

Protein SUMOylation (SUMO is small ubiquitin-related modifier) is a dynamic process that is strictly regulated under physiological and pathological conditions. We previously cloned and characterized two SUMO homologue genes (EcSUMO1 and EcSUMO2) from orange-spotted grouper (Epinephelus coioides). In the present study, the SUMO3 homologue from E. coioides (EcSUMO3) was cloned and its possible roles in fish immunity were analyzed. The open reading frame of EcSUMO3 contains 285 base pairs encoding a 94 amino acid protein with a predicted molecular mass of 10.73 kDa. The protein sequence of EcSUMO3 revealed similar domains with mammals, including the UBQ (ubiquitin-like proteins) domain, the hydrophobic surface, the Ulp1-Smt3 interaction sites, a VKTE motif and the C-terminal Gly residues. EcSUMO3 shares 46.83% and 89.58% identity with EcSUMO1 and EcSUMO2, respectively, and it shares 94%, 98%, and 98% identity with SUMO3 from Oreochromis niloticus, Danio rerio, and Homo sapiens, respectively. Quantitative real-time polymerase chain reaction analysis indicated that EcSUMO3 was constitutively expressed in all of the analyzed tissues in healthy grouper. EcSUMO3 expression levels were remarkably (p < 0.01) up-regulated in grouper spleen (GS) cells in response to stimulation with red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV). EcSUMO3 was distributed in both the cytoplasm and nucleus in GS cells. EcSUMO3 enhanced SGIV and RGNNV replication during viral infection in vitro. These results are important for better understanding of the SUMO pathway in fish and provide insights into the regulatory mechanism of viral infection in E. coioides under farmed conditions.


Assuntos
Bass/genética , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Infecções por Vírus de RNA/veterinária , Proteína SUMO-1/genética , Sequência de Aminoácidos , Animais , Bass/imunologia , Infecções por Vírus de DNA/imunologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata/genética , Iridovirus/fisiologia , Nodaviridae/fisiologia , Proteína SUMO-1/imunologia , Ubiquitinas/metabolismo
5.
EMBO Rep ; 15(8): 878-85, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24891386

RESUMO

Small ubiquitin-like modifier (SUMO1-3) conjugation plays a critical role in embryogenesis. Embryos deficient in the SUMO-conjugating enzyme Ubc9 die at the early postimplantation stage. Sumo1(-/-) mice are viable, as SUMO2/3 can compensate for most SUMO1 functions. To uncover the role of SUMO2/3 in embryogenesis, we generated Sumo2- and Sumo3-null mutant mice. Here, we report that Sumo3(-/-) mice were viable, while Sumo2(-/-) embryos exhibited severe developmental delay and died at approximately embryonic day 10.5 (E10.5). We also provide evidence that SUMO2 is the predominantly expressed SUMO isoform. Furthermore, although Sumo2(+/-) and Sumo2(+/-);Sumo3(+/-) mice lacked any overt phenotype, only 2 Sumo2(+/-);Sumo3(-/-) mice were found at birth in 35 litters after crossing Sumo2(+/-);Sumo3(+/-) with Sumo3(-/-) mice, and these rare mice were considerably smaller than littermates of the other genotypes. Thus, our findings suggest that expression levels and not functional differences between SUMO2 and SUMO3 are critical for normal embryogenesis.


Assuntos
Desenvolvimento Embrionário , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Ubiquitinas/genética , Animais , Feminino , Expressão Gênica , Genes Essenciais , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitinas/metabolismo
6.
Lett Appl Microbiol ; 59(1): 71-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24617894

RESUMO

UNLABELLED: The antimicrobial peptide NZ17074, which is derived from arenicin-3 isolated from Arenicola marina, displayed high activity against a broad range of pathogenic bacteria and fungi. However, NZ17074 has not been produced using fermentation technology. The aim of this work was to study the expression of difficult-to-express NZ17074 in Pichia pastoris by fusing with SUMO3. The DNA fragments of NZ17074 and SUMO3 were fused into SUMO3-NZ17074 using overlap PCR and cloned into the pPICZαA vector to construct the pPICZ-SUMO3-NZ17074 expression vector. The rSUMO3-NZ17074 fusion protein, purified by Ni(2) (+) -chelating affinity chromatography, was cleaved by 50% formic acid at 50°C for 28 h to release recombinant NZ17074 (rNZ17074). After purification with second affinity column, 4·1 mg rNZ17074 peptide with the purity over 90% was obtained from per litre fermentation culture. The rNZ17074 peptide exhibited the significant inhibition activity against Gram-negative bacteria: its minimal inhibitory concentrations (MICs) against Escherichia coli, Salmonella enteritidis and Pseudomonas aeruginosa were 2-4, 2 and 8-16 µg ml(-1) , respectively, which indicated that SUMO3 is a good fusion partner for the expression of the toxic peptide. SIGNIFICANCE AND IMPACT OF THE STUDY: Recombinant active NZ17074 was produced with Pichia pastoris by using high-density fermentation technology for the first time. Our findings demonstrated the usefulness of SUMO-fusion technology as an effective expression strategy for synthesizing peptides in yeast. This SUMO3 expression system with a lower cost would likely be widely used for the production of other cytotoxic proteins including antimicrobial peptides.


Assuntos
Antibacterianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Ubiquitinas/biossíntese , Sequência de Aminoácidos , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Bases , Candida albicans/efeitos dos fármacos , Clonagem Molecular , Escherichia coli/efeitos dos fármacos , Fermentação , Bactérias Gram-Negativas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Pichia , Proteólise , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas Recombinantes de Fusão/isolamento & purificação , Salmonella enteritidis/efeitos dos fármacos , Ubiquitinas/isolamento & purificação
7.
Dev Comp Immunol ; 121: 104082, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33785433

RESUMO

Septicemia is a systemic inflammatory response to bacterial infection in grass carp (Ctenopharyngodon idella). It could lead to lethality. There is increasing evidence that long noncoding RNAs are involved in the regulation of inflammatory response. In the present study, we firstly confirmed that lncRNA-SUMO3 and lncRNA-HDMO13 could involve in the inflammatory response following infection with Aeromonas hydrophila. Dual-luciferase reporter assays and lncRNA expression profiling confirmed that lncRNA-SUMO3 and lncRNA-HDMO13 contains a functional miR-21 and miR-142a-3p binding site. Meanwhile, transfection with lncRNAs mimics and inhibitors affected the expression of miRNAs and its target genes, including jnk, ccr7, glut3 and tnfaip2. Moreover, the downstream proinflammatory factors of miR-21 and miR-142a-3p were also regulated by lncRNA-SUMO3 and lncRNA-HDMO13. Our results provide a theoretical basis for exploring the molecular mechanism of grass carp lncRNAs regulating inflammation.


Assuntos
Carpas/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Sepse/veterinária , Aeromonas hydrophila/imunologia , Animais , Carpas/genética , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Imunidade Inata/genética , Sepse/imunologia , Sepse/microbiologia
8.
Elife ; 92020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33350382

RESUMO

Chloroplast biogenesis describes the transition of non-photosynthetic proplastids to photosynthetically active chloroplasts in the cells of germinating seeds. Chloroplast biogenesis requires the import of thousands of nuclear-encoded preproteins by essential import receptor TOC159. We demonstrate that the small ubiquitin-related modifier (SUMO) pathway crosstalks with the ubiquitin-proteasome pathway to affect TOC159 stability during early plant development. We identified a SUMO3-interacting motif (SIM) in the TOC159 GTPase domain and a SUMO3 covalent SUMOylation site in the membrane domain. A single K to R substitution (K1370R) in the M-domain disables SUMOylation. Compared to wild-type TOC159, TOC159K1370R was destabilized under UPS-inducing stress conditions. However, TOC159K1370R recovered to same protein level as wild-type TOC159 in the presence of a proteasome inhibitor. Thus, SUMOylation partially stabilizes TOC159 against UPS-dependent degradation under stress conditions. Our data contribute to the evolving model of tightly controlled proteostasis of the TOC159 import receptor during proplastid to chloroplast transition.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , GTP Fosfo-Hidrolases/genética , Proteínas de Membrana/genética , Proteostase , Sumoilação , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo
9.
Appl Biochem Biotechnol ; 186(1): 256-270, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29574511

RESUMO

Small ubiquitin-like modifier (SUMO) fusion technology is widely used in the production of heterologous proteins from prokaryotic system to aid in protein solubilization and refolding. Due to an extensive clinical application of human bone morphogenetic protein 2 (hBMP2) in bone augmentation, total RNA was isolated from human gingival tissue and mature gene was amplified through RT-PCR, cloned (pET21a), sequence analyzed, and submitted to GenBank (Accession no. KF250425). To obtain soluble expression, SUMO3 was tagged at the N-terminus of hBMP2 gene (pET21a/SUMO3-hBMP2), transferred in BL21 codon+, and ~ 40% soluble expression was obtained on induction with IPTG. The dimerized hBMP2 was confirmed with Western blot, native PAGE analysis, and purified by fast protein liquid chromatography with 0.5 M NaCl elution. The cleavage of SUMO3 tag from hBMP2 converted it to an insoluble form. Computational 3D structural analysis of the SUMO3-hBMP2 was performed and optimized by molecular dynamic simulation. Protein-protein interaction of SUMO3-hBMP2 with BMP2 receptor was carried out using HADDOCK and inferred stable interaction. The alkaline phosphatase assay of SUMO3-hBMP2 on C2C12 cells showed maximum 200-ng/ml dose-dependent activity. We conclude that SUMO3-tagged hBMP2 is more suited for generation of soluble form of the protein and addition of SUMO3 tag does not affect the functional activity of hBMP2.


Assuntos
Proteína Morfogenética Óssea 2/fisiologia , Escherichia coli/genética , Ubiquitinas/fisiologia , Western Blotting , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Cromatografia Líquida/métodos , Clonagem Molecular , Dimerização , Gengiva/metabolismo , Humanos , Simulação de Dinâmica Molecular , Eletroforese em Gel de Poliacrilamida Nativa , Ligação Proteica , RNA/genética , RNA/isolamento & purificação , Proteínas Recombinantes de Fusão/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Solubilidade , Ubiquitinas/genética , Ubiquitinas/metabolismo
10.
Curr Protoc Protein Sci ; 83: 14.8.1-14.8.8, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26836406

RESUMO

Sumoylation, wherein small ubiquitin-like modifier (SUMO) proteins are covalently attached to specific lysine residues of target proteins, plays an important role in regulating many diverse cellular processes via its control of the functional properties of the modified proteins. Identification of new sumoylated proteins is expected to expand understanding of the role this modification has in cell function. This unit describes two different assays for determining whether a particular protein is sumoylated: the first method employs immunoprecipitation of the protein followed by SUMO immunoblot. The second involves incubating the protein (either an in vitro translation product or a purified recombinant protein) with a reconstituted in vitro sumoylation reaction followed by examination for increased molecular-weight bands in SDS-PAGE as sumoylated forms of the protein. Either of these approaches can also be used to determine the sumoylated lysine residue(s) by comparing modification of the normal protein versus lysine-to-arginine substitutions of potential sumoylation sites, which once determined allows analysis of the effect of sumoylation on the protein's function.


Assuntos
Eletroforese em Gel de Poliacrilamida , Imunoprecipitação/métodos , Proteína SUMO-1/isolamento & purificação , Proteína SUMO-1/metabolismo , Sumoilação/fisiologia , Animais , Humanos , Proteína SUMO-1/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA