Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(7): e2215906120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36763532

RESUMO

Sensory neurons located in dorsal root ganglia (DRG) convey sensory information from peripheral tissue to the brain. After peripheral nerve injury, sensory neurons switch to a regenerative state to enable axon regeneration and functional recovery. This process is not cell autonomous and requires glial and immune cells. Macrophages in the DRG (DRGMacs) accumulate in response to nerve injury, but their origin and function remain unclear. Here, we mapped the fate and response of DRGMacs to nerve injury using macrophage depletion, fate-mapping, and single-cell transcriptomics. We identified three subtypes of DRGMacs after nerve injury in addition to a small population of circulating bone-marrow-derived precursors. Self-renewing macrophages, which proliferate from local resident macrophages, represent the largest population of DRGMacs. The other two subtypes include microglia-like cells and macrophage-like satellite glial cells (SGCs) (Imoonglia). We show that self-renewing DRGMacs contribute to promote axon regeneration. Using single-cell transcriptomics data and CellChat to simulate intercellular communication, we reveal that macrophages express the neuroprotective and glioprotective ligand prosaposin and communicate with SGCs via the prosaposin receptor GPR37L1. These data highlight that DRGMacs have the capacity to self-renew, similarly to microglia in the Central nervous system (CNS) and contribute to promote axon regeneration. These data also reveal the heterogeneity of DRGMacs and their potential neuro- and glioprotective roles, which may inform future therapeutic approaches to treat nerve injury.


Assuntos
Axônios , Traumatismos dos Nervos Periféricos , Humanos , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Gânglios Espinais/fisiologia , Macrófagos/fisiologia , Neuroglia , Receptores Acoplados a Proteínas G/genética
2.
Glia ; 72(6): 1054-1066, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38450799

RESUMO

Neurons in sensory ganglia are wrapped completely by satellite glial cells (SGCs). One putative function of SGCs is to regulate the neuronal microenvironment, but this role has received only little attention. In this study we investigated whether the SGC envelope serves a barrier function and how SGCs may control the neuronal microenvironment. We studied this question on short-term (<24 h) cell cultures of dorsal root ganglia and trigeminal ganglia from adult mice, which contain neurons surrounded with SGCs, and neurons that are not. Using calcium imaging, we measured neuronal responses to molecules with established actions on sensory neurons. We found that neurons surrounded by SGCs had a smaller response to molecules such as adenosine triphosphate (ATP), glutamate, GABA, and bradykinin than neurons without glial cover. When we inhibited the activity of NTPDases, which hydrolyze the ATP, and also when we inhibited the glutamate and GABA transporters on SGCs, this difference in the neuronal response was no longer observed. We conclude that the SGC envelope does not hinder diffusional passage, but acts as a metabolic barrier that regulates the neuronal microenvironment, and can protect the neurons and modulate their activity.


Assuntos
Neuroglia , Neurônios , Animais , Camundongos , Neuroglia/metabolismo , Gânglios Sensitivos , Gânglios Espinais , Glutamatos/metabolismo , Trifosfato de Adenosina/metabolismo , Células Satélites Perineuronais/metabolismo
3.
FASEB J ; 36(4): e22236, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35218596

RESUMO

Lysophosphatidic acid (LPA) exerts various biological activities through six characterized G protein-coupled receptors (LPA1-6 ). While LPA-LPA1  signaling contributes toward the demyelination and retraction of C-fiber and induces neuropathic pain, the effects of LPA-LPA1  signaling on acute nociceptive pain is uncertain. This study investigated the role of LPA-LPA1  signaling in acute nociceptive pain using the formalin test. The pharmacological inhibition of the LPA-LPA1 axis significantly attenuated formalin-induced nociceptive behavior. The LPA1  mRNA was expressed in satellite glial cells (SGCs) in dorsal root ganglion (DRG) and was particularly abundant in SGCs surrounding large DRG neurons, which express neurofilament 200. Treatment with LPA1/3 receptor (LPA1/3 ) antagonist inhibited the upregulation of glial markers and inflammatory cytokines in DRG following formalin injection. The LPA1/3 antagonist also attenuated phosphorylation of extracellular signal-regulated kinase, especially in SGCs and cyclic AMP response element-binding protein in the dorsal horn following formalin injection. LPA amounts after formalin injection to the footpad were quantified by liquid chromatography/tandem mass spectrometry, and LPA levels were found to be increased in the innervated DRGs. Our results indicate that LPA produced in the innervated DRGs promotes the activation of SGCs through LPA1 , increases the sensitivity of primary neurons, and modulates pain behavior. These results facilitate our understanding of the pathology of acute nociceptive pain and demonstrate the possibility of the LPA1 on SGCs as a novel target for acute pain control.


Assuntos
Isoxazóis/farmacologia , Lisofosfolipídeos/metabolismo , Neuroglia/efeitos dos fármacos , Dor Nociceptiva/prevenção & controle , Propionatos/farmacologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Gânglios Espinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Dor Nociceptiva/etiologia , Dor Nociceptiva/metabolismo , Dor Nociceptiva/patologia , Fosforilação , Transdução de Sinais
4.
Brain Behav Immun ; 113: 401-414, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37557960

RESUMO

Satellite glial cells (SGCs) are among the most abundant non-neuronal cells in dorsal root ganglia (DRGs) and closely envelop sensory neurons that detect painful stimuli. However, little is still known about their homeostatic activities and their contribution to pain. Using single-cell RNA sequencing (scRNA-seq), we were able to obtain a unique transcriptional profile for SGCs. We found enriched expression of the tissue inhibitor metalloproteinase 3 (TIMP3) and other metalloproteinases in SGCs. Small interfering RNA and neutralizing antibody experiments revealed that TIMP3 modulates somatosensory stimuli. TIMP3 expression decreased after paclitaxel treatment, and its rescue by delivery of a recombinant TIMP3 protein reversed and prevented paclitaxel-induced pain. We also established that paclitaxel directly impacts metalloproteinase signaling in cultured SGCs, which may be used to identify potential new treatments for pain. Therefore, our results reveal a metalloproteinase signaling pathway in SGCs for proper processing of somatosensory stimuli and potential discovery of novel pain treatments.


Assuntos
Gânglios Espinais , Neuroglia , Humanos , Gânglios Espinais/metabolismo , Neuroglia/metabolismo , Dor/metabolismo , Transdução de Sinais , Células Receptoras Sensoriais , Análise de Célula Única
5.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958541

RESUMO

Satellite glial cells (SGCs), enveloping primary sensory neurons' somas in the dorsal root ganglion (DRG), contribute to neuropathic pain upon nerve injury. Glial fibrillary acidic protein (GFAP) serves as an SGC activation marker, though its DRG satellite cell specificity is debated. We employed the hGFAP-CFP transgenic mouse line, designed for astrocyte studies, to explore its expression within the peripheral nervous system (PNS) after spared nerve injury (SNI). We used diverse immunostaining techniques, Western blot analysis, and electrophysiology to evaluate GFAP+ cell changes. Post-SNI, GFAP+ cell numbers increased without proliferation, and were found near injured ATF3+ neurons. GFAP+ FABP7+ SGCs increased, yet 75.5% of DRG GFAP+ cells lacked FABP7 expression. This suggests a significant subset of GFAP+ cells are non-myelinating Schwann cells (nmSC), indicated by their presence in the dorsal root but not in the ventral root which lacks unmyelinated fibres. Additionally, patch clamp recordings from GFAP+ FABP7-cells lacked SGC-specific Kir4.1 currents, instead displaying outward Kv currents expressing Kv1.1 and Kv1.6 channels specific to nmSCs. In conclusion, this study demonstrates increased GFAP expression in two DRG glial cell subpopulations post-SNI: GFAP+ FABP7+ SGCs and GFAP+ FABP7- nmSCs, shedding light on GFAP's specificity as an SGC marker after SNI.


Assuntos
Neuralgia , Traumatismos do Sistema Nervoso , Animais , Camundongos , Gânglios Espinais/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/metabolismo , Células Satélites Perineuronais/metabolismo , Neuralgia/metabolismo , Traumatismos do Sistema Nervoso/metabolismo
6.
J Appl Biomed ; 21(4): 193-199, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112458

RESUMO

Naringin inhibits inflammation and oxidative stress, the P2 purinoreceptor X4 receptor (P2X4R) is associated with glial cell activation and inflammation, the purpose of this study is to investigate the effects of naringin on P2X4 receptor expression on satellite glial cells (SGCs) and its possible mechanisms. ATP promoted the SGC activation and upregulated P2X4R expression; naringin inhibited SGC activation, decreased expression of P2X4R, P38 MAPK/ERK, and NF-κB, and reduced levels of Ca2+, TNF-α, and IL-1ß in SGCs in an ATP-containing environment. These findings suggest that naringin attenuates the ATP-induced SGC activation and reduces P2X4R expression via the Ca2+-P38 MAPK/ERK-NF-κB pathway.


Assuntos
NF-kappa B , Receptores Purinérgicos P2X4 , Ratos , Animais , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Animais Recém-Nascidos , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Gânglios Espinais/metabolismo , Cálcio/metabolismo , Cálcio/farmacologia , Neuroglia/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Inflamação , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia
7.
J Cell Mol Med ; 26(2): 527-539, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34877779

RESUMO

Satellite glial cells (SGCs) of dorsal root ganglia (DRG) react in response to various injuries in the nervous system. This study investigates reactive changes within SGCs in a murine model for GM1 -gangliosidosis (GM1 ). DRG of homozygous ß-galactosidase-knockout mice and homozygous C57BL/6 wild-type mice were investigated performing immunostaining on formalin-fixed, paraffin-embedded tissue. A marked upregulation of glial fibrillary acidic protein (GFAP), the progenitor marker nestin and Ki67 within SGCs of diseased mice, starting after 4 months at the earliest GFAP, along with intracytoplasmic accumulation of ganglioside within neurons and deterioration of clinical signs was identified. Interestingly, nestin-positive SGCs were detected after 8 months only. No changes regarding inwardly rectifying potassium channel 4.1, 2, 3-cyclic nucleotide 3-phosphodiesterase, Sox2, doublecortin, periaxin and caspase3 were observed in SGCs. Iba1 was only detected in close vicinity of SGCs indicating infiltrating or tissue-resident macrophages. These results indicate that SGCs of DRG show phenotypical changes during the course of GM1 , characterized by GFAP upregulation, proliferation and expression of a neural progenitor marker at a late time point. This points towards an important role of SGCs during neurodegenerative disorders and supports that SGCs represent a multipotent glial precursor cell line with high plasticity and functionality.


Assuntos
Gangliosidoses , Neuroglia , Animais , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Gangliosidoses/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo
8.
Curr Issues Mol Biol ; 44(3): 1257-1272, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35723307

RESUMO

Several studies have proved that glial cells, as well as neurons, play a role in pain pathophysiology. Most of these studies have focused on the contribution of central glial cells (e.g., microglia and astrocytes) to neuropathic pain. Likewise, some works have suggested that peripheral glial cells, particularly satellite glial cells (SGCs), and the crosstalk between these cells and the sensory neurons located in the peripheral ganglia, play a role in the phenomenon that leads to pain. Nonetheless, the study of SGCs may be challenging, as the validity of studying those cells in vitro is still controversial. In this study, a research protocol was developed to examine the potential use of primary mixed neuronal-glia cell cultures obtained from the trigeminal ganglion cells (TGCs) of neonate mice (P10-P12). Primary cultures were established and analyzed at 4 h, 24 h, and 48 h. To this purpose, phase contrast microscopy, immunocytochemistry with antibodies against anti-ßIII-tubulin and Sk3, scanning electron microscopy, and time-lapse photography were used. The results indicated the presence of morphological changes in the cultured SGCs obtained from the TGCs. The SGCs exhibited a close relationship with neurons. They presented a round shape in the first 4 h, and a more fusiform shape at 24 h and 48 h of culture. On the other hand, neurons changed from a round shape to a more ramified shape from 4 h to 48 h. Intriguingly, the expression of SK3, a marker of the SGCs, was high in all samples at 4 h, with some cells double-staining for SK3 and ßIII-tubulin. The expression of SK3 decreased at 24 h and increased again at 48 h in vitro. These results confirm the high plasticity that the SGCs may acquire in vitro. In this scenario, the authors hypothesize that, at 4 h, a group of the analyzed cells remained undifferentiated and, therefore, were double-stained for SK3 and ßIII-tubulin. After 24 h, these cells started to differentiate into SCGs, which was clearer at 48 h in the culture. Mixed neuronal-glial TGC cultures might be implemented as a platform to study the plasticity and crosstalk between primary sensory neurons and SGCs, as well as its implications in the development of chronic orofacial pain.

9.
J Recept Signal Transduct Res ; 42(2): 160-168, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33504266

RESUMO

The activation of glial cells and its possible mechanism play an extremely important role in understanding the pathophysiological process of some clinical diseases, and catestatin (CST) is involved in regulating this activation. In this project, we found that CST could enhance the activation of satellite glial cells (SGCs) and microglial cells and that the expression of P2X4 was increased; the co-expression of the P2X4 receptor with glial fibrillary acidic protein (GFAP) and the P2X4 receptor with CD11b was also increased significantly in glial cells of the ATP + CST group, and TNF-α and IL-1ß also showed a rising trend; the expression of phosphorylated ERK1/2 was also increased in the ATP + CST group. In summary, we conclude that CST could enhance ATP-induced activation of SGCs and microglial cells mediated by the P2X4 receptor and that the ERK1/2 signaling pathway may be involved in this activation process.


Assuntos
Cromogranina A , Neuroglia , Receptores Purinérgicos P2X4 , Trifosfato de Adenosina/metabolismo , Animais , Cromogranina A/farmacologia , Neuroglia/metabolismo , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo
10.
Mol Cell Neurosci ; 110: 103573, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248236

RESUMO

Peripheral nerve injuries have the potential to bring about long-term disabilities in individuals. The major issue in repairing nerve injuries is the poor growth rate of axons. Although several molecules have been identified as potential candidates for improving axon growth, their potential translation into clinical practice is preliminary and largely unexplored. This necessitates identifying additional molecular candidates with superior potential to improve axon growth. Lack of a simple non-surgical screening model also poses a hurdle in rapidly screening potential candidate molecules. In this work, we developed a novel, rapid screening model for nerve regeneration therapeutics that retains a focus on adult neurons. The model involves simple incubation of sensory ganglia over a period of 24 h prior to dissociation. Surprisingly, this model features unique events that reprogram both sensory neurons and supporting glia favoring axon growth. Moreover, several associated cellular and molecular changes involved in this model partially mimic classic axotomy-induced changes in sensory ganglia. Overall, this model presents with a platform that not only allows rapid screening of drug candidates but offers opportunities in studying novel intrinsic molecular changes in both neurons and glial cells directed towards improving the pace of axon growth.


Assuntos
Descoberta de Drogas/métodos , Regeneração Nervosa , Crescimento Neuronal , Fármacos Neuroprotetores/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Células Cultivadas , Gânglios Espinais/citologia , Masculino , Neuroglia/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/fisiologia
11.
J Integr Neurosci ; 21(1): 1, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35164437

RESUMO

A nutraceutical is a food-derived molecule that provides medical or health benefits beyond its basic nutritional role, including the prevention and treatment of disease and its symptoms. In the peripheral nervous system, satellite glial cells are found in close relationship with neurons, mainly in peripheral sensory ganglia, but, compared with other glial cells, the relationship between these cells and nutraceuticals has received little attention. After describing satellite glial cells and their role and changes in physiology and pathology, we review the studies on the effects of nutraceuticals as modulators of their functions. Maybe due to the difficulties in selectively labeling these cells, only a few studies, performed mainly in rodent models, have analyzed nutraceutical effects, showing that N-acetylcysteine, curcumin, quercetin, osthole and resveratrol may palliate neuropathic pain through satellite glial cells-dependent pathways, namely antioxidant mechanisms and/or interference with purinergic signaling. Neither other conditions in which satellite glial cells are involved (visceral pain, nerve regeneration) nor other nutraceuticals or mechanisms of action have been studied. Although more preclinical and clinical research is needed, the available reports support the general notion that nutraceuticals may become interesting alternatives in the prevention and/or treatment of peripheral gliopathies and their associated conditions, including those affecting the satellite glial cells.


Assuntos
Curcumina/uso terapêutico , Suplementos Nutricionais , Neuroglia/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/terapia , Quercetina/uso terapêutico , Resveratrol/uso terapêutico , Animais , Humanos
12.
J Cell Mol Med ; 25(14): 6909-6924, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34096171

RESUMO

Satellite glial cells (SGCs) are located in the spinal ganglia (SG) of the peripheral nervous system and tightly envelop each neuron. They preserve tissue homeostasis, protect neurons and react in response to injury. This study comparatively characterizes the phenotype of murine (mSGCs) and canine SGCs (cSGCs). Immunohistochemistry and immunofluorescence as well as 2D and 3D imaging techniques were performed to describe a SGC-specific marker panel, identify potential functional subsets and other phenotypical, species-specific peculiarities. Glutamine synthetase (GS) and the potassium channel Kir 4.1 are SGC-specific markers in murine and canine SG. Furthermore, a subset of mSGCs showed CD45 immunoreactivity and the majority of mSGCs were immunopositive for neural/glial antigen 2 (NG2), indicating an immune and a progenitor cell character. The majority of cSGCs were immunopositive for glial fibrillary acidic protein (GFAP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) and Sox2. Therefore, cSGCs resemble central nervous system glial cells and progenitor cells. SGCs lacked expression of macrophage markers CD107b, Iba1 and CD204. Double labelling with GS/Kir 4.1 highlights the unique anatomy of SGC-neuron units and emphasizes the indispensability of further staining and imaging techniques for closer insights into the specific distribution of markers and potential colocalizations.


Assuntos
Gânglios Espinais/citologia , Neuroglia/citologia , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Animais , Cães , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Especificidade da Espécie
13.
Glia ; 69(4): 971-996, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33251681

RESUMO

Diabetic peripheral neuropathy (DPN) is a common complication of uncontrolled diabetes. The pathogenesis of DPN is associated with chronic inflammation in dorsal root ganglion (DRG), eventually causing structural and functional changes. Studies on DPN have primarily focused on neuronal component, and there is limited knowledge about the role of satellite glial cells (SGCs), although they completely enclose neuronal soma in DRG. Lipocalin-2 (LCN2) is a pro-inflammatory acute-phase protein found in high levels in diverse neuroinflammatory and metabolic disorders. In diabetic DRG, the expression of LCN2 was increased exclusively in the SGCs. This upregulation of LCN2 in SGCs correlated with increased inflammatory responses in DRG and sciatic nerve. Furthermore, diabetes-induced inflammation and morphological changes in DRG, as well as sciatic nerve, were attenuated in Lcn2 knockout (KO) mice. Lcn2 gene ablation also ameliorated neuropathy phenotype as determined by nerve conduction velocity and intraepidermal nerve fiber density. Mechanistically, studies using specific gene KO mice, adenovirus-mediated gene overexpression strategy, and primary cultures of DRG SGCs and neurons have demonstrated that LCN2 enhances the expression of mitochondrial gate-keeping regulator pyruvate dehydrogenase kinase-2 (PDK2) through PPARß/δ, thereby inhibiting pyruvate dehydrogenase activity and increasing production of glycolytic end product lactic acid in DRG SGCs and neurons of diabetic mice. Collectively, our findings reveal a crucial role of glial LCN2-PPARß/δ-PDK2-lactic acid axis in progression of DPN. Our results establish a link between pro-inflammatory LCN2 and glycolytic PDK2 in DRG SGCs and neurons and propose a novel glia-based mechanism and drug target for therapy of DPN. MAIN POINTS: Diabetes upregulates LCN2 in satellite glia, which in turn increases pyruvate dehydrogenase kinase-2 (PDK2) expression and lactic acid production in dorsal root ganglia (DRG). Glial LCN2-PDK2-lactic acid axis in DRG plays a crucial role in the pathogenesis of diabetic neuropathy.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Lipocalina-2 , PPAR beta , Animais , Camundongos , Gânglios Espinais , Inflamação , Ácido Láctico , Lipocalina-2/genética , Camundongos Knockout , Neuroglia , Piruvato Desidrogenase Quinase de Transferência de Acetil
14.
Glia ; 69(5): 1281-1291, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33432730

RESUMO

Stellate ganglion neurons, important mediators of cardiopulmonary neurotransmission, are surrounded by satellite glial cells (SGCs), which are essential for the function, maintenance, and development of neurons. However, it remains unknown whether SGCs in adult sympathetic ganglia exhibit any functional diversity, and what role this plays in modulating neurotransmission. We performed single-cell RNA sequencing of mouse stellate ganglia (n = 8 animals), focusing on SGCs (n = 11,595 cells). SGCs were identified by high expression of glial-specific transcripts, S100b and Fabp7. Microglia and Schwann cells were identified by expression of C1qa/C1qb/C1qc and Ncmap/Drp2, respectively, and excluded from further analysis. Dimensionality reduction and clustering of SGCs revealed six distinct transcriptomic subtypes, one of which was characterized the expression of pro-inflammatory markers and excluded from further analyses. The transcriptomic profiles and corresponding biochemical pathways of the remaining subtypes were analyzed and compared with published astrocytic transcriptomes. This revealed gradual shifts of developmental and functional pathways across the subtypes, originating from an immature and pluripotent subpopulation into two mature populations of SGCs, characterized by upregulated functional pathways such as cholesterol metabolism. As SGCs aged, these functional pathways were downregulated while genes and pathways associated with cellular stress responses were upregulated. These findings were confirmed and furthered by an unbiased pseudo-time analysis, which revealed two distinct trajectories involving the five subtypes that were studied. These findings demonstrate that SGCs in mouse stellate ganglia exhibit transcriptomic heterogeneity along maturation or differentiation axes. These subpopulations and their unique biochemical properties suggest dynamic physiological adaptations that modulate neuronal function.


Assuntos
Gânglio Estrelado , Transcriptoma , Animais , Gânglios Espinais , Camundongos , Neuroglia , Neurônios , Células Satélites Perineuronais , Células de Schwann
15.
Somatosens Mot Res ; 38(3): 194-201, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34187291

RESUMO

PURPOSE: Satellite glial cells (SGC) surrounding neurons in sensory ganglia can buffer extracellular potassium, regulating the excitability of injured neurons and possibly influencing a shift from acute to neuropathic pain. SGC apoptosis may be a key component in this process. This work evaluated induction or enhancement of apoptosis in cultured trigeminal SGC following changes in intracellular potassium [K]ic. MATERIALS AND METHODS: We developed SGC primary cultures from rat trigeminal ganglia (TG). Purity of our cultures was confirmed using immunofluorescence and western blot analysis for the presence of the specific marker of SGC, glutamine synthetase (GS). SGC [K]ic was depleted using hypo-osmotic shock and 4 mM bumetanide plus 10 mM ouabain. [K]ic was measured using the K+ fluorescent indicator potassium benzofuran isophthalate (PBFI-AM). RESULTS: SGC tested positive for GS and hypo-osmotic shock induced a significant decrease in [K]ic at every evaluated time. Cells were then incubated for 5 h with either 2 mM staurosporine (STS) or 20 ng/ml of TNF-α and evaluated for early apoptosis and late apoptosis/necrosis by flow cytometry using annexin V and propidium iodide. A significant increase in early apoptosis, from 16 to 38%, was detected in SGC with depleted [K]ic after incubation with STS. In contrast, TNF-α did not increase early apoptosis in normal or [K]ic depleted SGC. CONCLUSION: Hypo-osmotic shock induced a decrease in intracellular potassium in cultured trigeminal SGC and this enhanced apoptosis induced by STS that is associated with the mitochondrial pathway. These results suggest that K+ dysregulation may underlie apoptosis in trigeminal SGC.


Assuntos
Neuroglia , Gânglio Trigeminal , Animais , Apoptose , Potássio , Ratos , Estaurosporina/farmacologia
16.
Mol Cell Neurosci ; 105: 103499, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32389805

RESUMO

Platinum-based chemotherapeutics still play an important role in cancer therapy, however, severe side effects, such as painful neuropathy, occur frequently. The pathophysiologic mechanisms depend on the applied chemotherapeutic agent and are still controversial. In addition to neuronal damage, disturbance of glial cell activity may contribute to neurotoxicity. Here, we focused on the effect of oxaliplatin on satellite glial cell (SGC) function and on the activity of the dorsal root ganglion (DRG) neurons. SGCs were isolated as high-purity cultures and treated with 1 and 10 µM oxaliplatin for 2, 4 and 24 h. Subsequently, glial fibrillary acid protein (GFAP), reactive oxygen species (ROS), Connexin-43 (Cx-43), and inward rectifier potassium channel 4.1 (Kir4.1) expression was determined by immunocytochemical staining (ICC) and Western blot analyses. Immunochemical staining and Western blot analysis showed an increase in the immune reactivity (IR) and protein levels of ROS, GFAP, and Cx-43. Furthermore, reduction of the IR and protein levels and current density were demonstrated using patch-clamp measurements, of Kir4.1 channels after oxaliplatin exposure. Cytokine release in SGCs was measured using enzyme-linked immunosorbent assays (ELISA) after oxaliplatin exposure and indicated an increased release of IL-6 and TNFα, while IL-1ß was decreased. The direct influence of SGC-secreted factors in the supernatant after oxaliplatin treatment led to the hyperexcitability of cultured DRG neurons. In summary, oxaliplatin has a direct impact on the modulation and function of different SGC proteins. Furthermore, SGC-released factors influence the excitability of sensory neurons, qualifying SGCs as potential targets for the prevention and treatment of oxaliplatin-induced polyneuropathy.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Oxaliplatina/farmacologia , Animais , Antineoplásicos/farmacologia , Conexina 43/metabolismo , Gânglios Espinais/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/metabolismo , Oxaliplatina/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Células Satélites Perineuronais/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo
17.
Lasers Med Sci ; 36(6): 1297-1305, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33452567

RESUMO

The aim of this work was to investigate the involvement of substance P (SP), osteopontin (OPN), and satellite glial cells (SGC) on photobiomodulation-induced (PBM) antinociceptive effect in an experimental model of dentin hypersensitivity (DH). Rats ingested isotonic drink (ID, pH 2.87) for 45 consecutive days and after this period received PBM irradiation at λ660 nm or λ808 nm (1 J, 3.5 J/cm2, 100 mW, 10 s, 0.028 cm2, continuous wave, 3 consecutive daily sessions), and were evaluated for nociceptive behavior 24, 48, 72 h, and 14 days after laser treatments. ID ingestion induced an increase on thermal sensitivity of DH characteristics in rats that was completely reversed by PBM treatment at both 660 and 808 nm. Immunohistochemical analysis revealed increased SP expression at both dentin-pulp complex (DPC) and trigeminal ganglia (TG) of DH-rats which did not occur in PBM groups by PBM treatment. Also, the increase of glial fibrillary acidic protein (GFAP) observed in the TG of DH-rats was also reversed by PBM treatment. Finally, PBM at both 660 and 808 nm increased OPN expression in the dentin-pulp complex of DH-rats after 14 days of PBM treatment. All in all, this data demonstrates that PBM reverses nociception in a DH experimental model by inhibiting neurogenic inflammation and inducing a regenerative response.


Assuntos
Substância P , Analgésicos , Animais , Sensibilidade da Dentina , Terapia com Luz de Baixa Intensidade , Masculino , Modelos Teóricos , Neuroglia , Nociceptividade , Osteopontina , Ratos , Gânglio Trigeminal
18.
Glia ; 68(7): 1375-1395, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32045043

RESUMO

Satellite glial cells (SGCs) are homeostatic cells enveloping the somata of peripheral sensory and autonomic neurons. A wide variety of neuronal stressors trigger activation of SGCs, contributing to, for example, neuropathic pain through modulation of neuronal activity. However, compared to neurons and other glial cells of the nervous system, SGCs have received modest scientific attention and very little is known about SGC biology, possibly due to the experimental challenges associated with studying them in vivo and in vitro. Utilizing a recently developed method to obtain SGC RNA from dorsal root ganglia (DRG), we took a systematic approach to characterize the SGC transcriptional fingerprint by using next-generation sequencing and, for the first time, obtain an overview of the SGC injury response. Our RNA sequencing data are easily accessible in supporting information in Excel format. They reveal that SGCs are enriched in genes related to the immune system and cell-to-cell communication. Analysis of SGC transcriptional changes in a nerve injury-paradigm reveal a differential response at 3 days versus 14 days postinjury, suggesting dynamic modulation of SGC function over time. Significant downregulation of several genes linked to cholesterol synthesis was observed at both time points. In contrast, regulation of gene clusters linked to the immune system (MHC protein complex and leukocyte migration) was mainly observed after 14 days. Finally, we demonstrate that, after nerve injury, macrophages are in closer physical proximity to both small and large DRG neurons, and that previously reported injury-induced proliferation of SGCs may, in fact, be proliferating macrophages.


Assuntos
Gânglios Espinais/citologia , Neuroglia/citologia , Traumatismos dos Nervos Periféricos/metabolismo , Células Satélites Perineuronais/metabolismo , Animais , Comunicação Celular/fisiologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Neuralgia/metabolismo , Neuroglia/metabolismo , Neurônios/citologia , RNA/metabolismo , Células Satélites Perineuronais/fisiologia
19.
Mol Pain ; 16: 1744806920925425, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32484015

RESUMO

Transient receptor potential ankyrin 1 (TRPA1) is well documented as an important molecule in pain hypersensitivity following inflammation and nerve injury and in many other cellular biological processes. Here, we show that TRPA1 is expressed not only by sensory neurons of the dorsal root ganglia (DRG) but also in their adjacent satellite glial cells (SGCs), as well as nonmyelinating Schwann cells. TRPA1 immunoreactivity is also detected in various cutaneous structures of sensory neuronal terminals, including small and large caliber cutaneous sensory fibers and endings. The SGC-expressed TRPA1 is functional. Like DRG neurons, dissociated SGCs exhibit a robust response to the TRPA1-selective agonist allyl isothiocyanate (AITC) by an increase of intracellular Ca2+ concentration ([Ca2+]i). These responses are abolished by the TRPA1 antagonist HC030031 and are absent in SGCs and neurons from global TRPA1 null mice. SGCs and neurons harvested from DRG proximal to painful tissue inflammation induced by plantar injection of complete Freund's adjuvant show greater AITC-evoked elevation of [Ca2+]i and slower recovery compared to sham controls. Similar TRPA1 sensitization occurs in both SGCs and neurons during neuropathic pain induced by spared nerve injury. Together, these results show that functional TRPA1 is expressed by sensory ganglia SGCs, and TRPA1 function in SGCs is enhanced after both peripheral inflammation and nerve injury, and suggest that TRPA1 in SGCs may contribute to inflammatory and neuropathic pain.


Assuntos
Inflamação/patologia , Neuralgia/metabolismo , Neuralgia/patologia , Neuroglia/patologia , Células Receptoras Sensoriais/patologia , Canal de Cátion TRPA1/metabolismo , Animais , Tamanho Celular , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Isotiocianatos , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Células Receptoras Sensoriais/metabolismo
20.
J Neuroinflammation ; 17(1): 170, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471455

RESUMO

BACKGROUND: The autoimmune disease rheumatoid arthritis (RA) affects approximately 1% of the global population. RA is characterized with chronic joint inflammation and often associated with chronic pain. The imbalance of pro-inflammatory and anti-inflammatory macrophages is a feature of RA progression. Glial cells affecting neuronal sensitivity at both peripheral and central levels may also be important for RA progression and associated pain. Genetic variants in the T cell death-associated gene 8 (TDAG8) locus are found to associate with spondyloarthritis. TDAG8 was also found involved in RA disease progression and associated hyperalgesia in the RA mouse model. However, its modulation in RA remains unclear. METHODS: To address this question, we intra-articularly injected complete Freund's adjuvant (CFA) into TDAG8+/+, TDAG8-/- or wild-type mice, followed by pain behavioral tests. Joints and dorsal root ganglia were taken, sectioned, and stained with antibodies to observe the number of immune cells, macrophages, and satellite glial cells (SGCs). For compound treatments, compounds were intraperitoneally or orally administered weekly for 9 consecutive weeks after CFA injection. RESULTS: We demonstrated that TDAG8 deletion slightly reduced RA pain in the early phase but dramatically attenuated RA progression and pain in the chronic phase (> 7 weeks). TDAG8 deletion inhibited an increase in SGC number and inhibition of SGC function attenuated chronic phase of RA pain, so TDAG8 could regulate SGC number to control chronic pain. TDAG8 deletion also reduced M1 pro-inflammatory macrophage number at 12 weeks, contributing to the attenuation of chronic RA pain. Such results were further confirmed by using salicylanilide derivatives, CCL-2d or LCC-09, to suppress TDAG8 expression and function. CONCLUSIONS: This study demonstrates that TDAG8 deletion reduced SGC and M1 macrophage number to relieve RA disease severity and associated chronic pain. M1 macrophages are critical for the development and maintenance of RA disease and pain, but glial activation is also required for the chronic phase of RA pain.


Assuntos
Artrite Reumatoide/metabolismo , Macrófagos/imunologia , Neuroglia/imunologia , Animais , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Dor Crônica/imunologia , Dor Crônica/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Camundongos , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA