Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 98(5): e0006824, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38661364

RESUMO

The portal protein of tailed bacteriophage plays essential roles in various aspects of capsid assembly, motor assembly, genome packaging, connector formation, and infection processes. After DNA packaging is complete, additional proteins are assembled onto the portal to form the connector complex, which is crucial as it bridges the mature head and tail. In this study, we report high-resolution cryo-electron microscopy (cryo-EM) structures of the portal vertex from bacteriophage lambda in both its prohead and mature virion states. Comparison of these structures shows that during head maturation, in addition to capsid expansion, the portal protein undergoes conformational changes to establish interactions with the connector proteins. Additionally, the independently assembled tail undergoes morphological alterations at its proximal end, facilitating its connection to the head-tail joining protein and resulting in the formation of a stable portal-connector-tail complex. The B-DNA molecule spirally glides through the tube, interacting with the nozzle blade region of the middle-ring connector protein. These insights elucidate a mechanism for portal maturation and DNA translocation within the phage lambda system. IMPORTANCE: The tailed bacteriophages possess a distinct portal vertex that consists of a ring of 12 portal proteins associated with a 5-fold capsid shell. This portal protein is crucial in multiple stages of virus assembly and infection. Our research focused on examining the structures of the portal vertex in both its preliminary prohead state and the fully mature virion state of bacteriophage lambda. By analyzing these structures, we were able to understand how the portal protein undergoes conformational changes during maturation, the mechanism by which it prevents DNA from escaping, and the process of DNA spirally gliding.


Assuntos
Bacteriófago lambda , Proteínas do Capsídeo , Capsídeo , Montagem de Vírus , Bacteriófago lambda/fisiologia , Bacteriófago lambda/genética , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Empacotamento do DNA , DNA Viral/genética , DNA Viral/metabolismo , Modelos Moleculares , Conformação Proteica , Vírion/metabolismo , Vírion/ultraestrutura
2.
Microb Pathog ; 195: 106891, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39214425

RESUMO

Aim -To isolate bacteriophages targeting extended-spectrum beta-lactamase-producing K. pneumoniae and evaluate their effectiveness across diverse models, incorporating innovative alternatives in animal testing. METHODS AND RESULTS: vB_kpnS-Kpn15 was isolated from sewage sample from Thane district. It produced a clear plaques on K. pneumoniae ATCC 700603. It has a flexible, non-contractile long tail and an icosahedral head and the Siphoviridae family of viruses in the order Caudovirales matched all of its structural criteria. Sequencing of vB_kpnS-Kpn15 revealed a 48,404 bp genome. The vB_KpnS-Kpn15 genome was found to contain 50 hypothetical proteins, of which 16 were found to possess different functions. The vB_KpnS-Kpn15 was also found to possess enzymes for its DNA synthesis. It was found to be lytic for the planktonic cells of K. pneumoniae and bactericidal for up to 48 h and potentially affected established K. pneumoniae biofilms. It demonstrated a broad host range and caused lytic zones on about 46 % of K. pneumoniae multi-drug resistant strains. In an in vitro wound and burn infection model, phage vB_kpnS-Kpn15 in combination with other phages resulted in successful cell proliferation and wound healing. Based on vB_kpnS-Kpn15's lytic properties, it can be incorporated in a bacteriophage cocktail to combat ESBL strains. CONCLUSIONS: The phages isolated during this research are better candidates for phage therapy, and therefore provide new and exciting options for the successful control of antibiotic-resistant bacterial infections in the future. The utilization of animal alternative models in this study elucidates cellular proliferation and migration, underscoring its significance in screening novel drugs with potential applications in the treatment of wound and burn infections. SIGNIFICANCE AND IMPACT OF THE RESEARCH: The findings of this research have implications for the creation of innovative, promising strategies to treat ESBL K. pneumoniae infections.


Assuntos
Bacteriófagos , Biofilmes , Modelos Animais de Doenças , Genoma Viral , Especificidade de Hospedeiro , Infecções por Klebsiella , Klebsiella pneumoniae , Terapia por Fagos , Esgotos , beta-Lactamases , Klebsiella pneumoniae/virologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Animais , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/terapia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Biofilmes/crescimento & desenvolvimento , Esgotos/microbiologia , Esgotos/virologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Humanos , Camundongos , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/terapia , Caudovirales/genética , Caudovirales/isolamento & purificação , Siphoviridae/genética , Siphoviridae/isolamento & purificação , Siphoviridae/fisiologia , Testes de Sensibilidade Microbiana
3.
BMC Infect Dis ; 24(1): 310, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486152

RESUMO

BACKGROUND: Escherichia coli is a common fecal coliform, facultative aerobic, gram-negative bacterium. Pathogenic strains of such microbes have evolved to cause diarrhea, urinary tract infections, and septicemias. The emergence of antibiotic resistance urged the identification of an alternative strategy. The use of lytic bacteriophages against the control of pathogenic E. coli in clinics and different environmental setups (waste and drink water management) has become an alternative therapy to antibiotic therapy. Thus, this study aimed to isolate and characterize lytic bacteriophage from various sources in Addis Ababa, tested them against antimicrobial-resistant diarrheagenic E. coli strains and evaluated their therapeutic potential under in vitro conditions. METHODS: A total of 14 samples were processed against six different diarrheagenic E. coli strains. The conventional culture and plaque analysis agar overlay method was used to recover lytic bacteriophage isolates. The phage isolates were characterized to determine their lytic effect, growth characteristics, host range activity, and stability under different temperature and pH conditions. Phage isolates were identified by scanning electron microscope (SEM), and molecular techniques (PCR). RESULTS: In total, 17 phages were recovered from 84 tested plates. Of the 17 phage isolates, 11 (65%) were Myoviridae-like phages, and 6 (35%) phage isolates were Podoviridae and Siphoviridae by morphology and PCR identification. Based on the host range test, growth characteristics, and stability test 7 potent phages were selected. These phages demonstrated better growth characteristics, including short latent periods, highest burst sizes, and wider host ranges, as well as thermal stability and the ability to survive in a wide range of pH levels. CONCLUSIONS: The promising effect of the phages isolated in this study against AMR pathogenic E. coli has raised the possibility of their use in the future treatment of E. coli infections.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Siphoviridae , Humanos , Escherichia coli , Etiópia , Infecções por Escherichia coli/terapia , Antibacterianos/farmacologia
4.
Appl Environ Microbiol ; 88(10): e0247821, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35499330

RESUMO

The infection of a bacterium by a tailed phage starts from the adsorption process, which consists of a specific and strong interaction between viral proteins called receptor binding proteins (RBPs) and receptors located on the bacterial surface. In addition to RBPs, other tail proteins, such as evolved distal tail (evoDit) proteins and tail lysins, harboring carbohydrate binding modules (CBMs) have been shown to facilitate the phage adsorption by interacting with host polysaccharides. In this work, the proteins involved in the adsorption of Deep-Purple, a siphovirus targeting bacteria of the Bacillus cereus group, were studied. Bioinformatic analysis of Deep-Purple tail protein region revealed that it contains two proteins presenting CBM domains: Gp28, an evoDit protein, and Gp29, the potential RBP. The implication of both proteins in the adsorption of Deep-Purple particles was confirmed through cell wall decoration assays. Interestingly, whereas RBP-Gp29 exhibited the same host spectrum as Deep-Purple, evoDit-Gp28 was able to bind to many B. cereus group strains, including some that are not sensitive to the phage infection. Using immunogold microscopy, both proteins were shown to be located in the phage baseplate. Additionally, an in silico analysis of the tail regions encoded by several Siphoviridae infecting the B. cereus group was performed. It revealed that although the tail organization displayed by Deep-Purple is the most prevalent, different tail arrangements are observed, suggesting that distinct baseplate organization and adsorption mechanisms are encountered in siphoviruses targeting the B. cereus group. IMPORTANCE The B. cereus group is a complex cluster of closely related species, among which certain strains can be pathogenic (i.e., Bacillus anthracis, Bacillus cereus sensu stricto, and Bacillus cytotoxicus). Nowadays, phages are receiving increasing attention for applications in controlling and detecting such pathogens. Thus, understanding the molecular mechanisms governing the phage adsorption to its bacterial host is paramount as this step is a key determinant of the phage host spectrum. Until now, the knowledge regarding the adsorption process of tailed phage targeting the B. cereus groups was mainly restricted to the phage gamma infecting B. anthracis. With this work, we provide novel insights into the adsorption of Deep-Purple, a siphovirus infecting the B. cereus group. We showed that this phage recognizes polysaccharides and relies on two different viral proteins for its successful adsorption.


Assuntos
Fagos Bacilares , Siphoviridae , Adsorção , Fagos Bacilares/genética , Bacillus cereus , Siphoviridae/genética , Proteínas Virais
5.
Appl Environ Microbiol ; 88(1): e0148321, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34705552

RESUMO

Lactococcus lactis strains residing in the microbial community of a complex dairy starter culture named "Ur" are hosts to prophages belonging to the family Siphoviridae. L. lactis strains (TIFN1 to TIFN7) showed detectable spontaneous phage production and release (109 to 1010 phage particles/ml) and up to 10-fold increases upon prophage induction, while in both cases we observed no obvious cell lysis typically described for the lytic life cycle of Siphoviridae phages. Intrigued by this phenomenon, we investigated the host-phage interaction using strain TIFN1 (harboring prophage proPhi1) as a representative. We confirmed that during the massive phage release, all bacterial cells remain viable. Further, by monitoring phage replication in vivo, using a green fluorescence protein reporter combined with flow cytometry, we demonstrated that the majority of the bacterial population (over 80%) is actively producing phage particles when induced with mitomycin C. The released tailless phage particles were found to be engulfed in lipid membranes, as evidenced by electron microscopy and lipid staining combined with chemical lipid analysis. Based on the collective observations, we propose a model of phage-host interaction in L. lactis TIFN1 where the phage particles are engulfed in membranes upon release, thereby leaving the producing host intact. Moreover, we discuss possible mechanisms of chronic, or nonlytic, release of LAB Siphoviridae phages and its impact on the bacterial host. IMPORTANCE In complex microbial consortia such as fermentation starters, bacteriophages can alter the dynamics and diversity of microbial communities. Bacteriophages infecting Lactococcus lactis are mostly studied for their detrimental impact on industrial dairy fermentation processes. In this study, we describe a novel form of phage-bacterium interaction in an L. lactis strain isolated from a complex dairy starter culture: when the prophages harbored in the L. lactis genome are activated, the phage particles are engulfed in lipid membranes upon release, leaving the producing host intact. Findings from this study provide additional insights into the diverse manners of phage-bacterium interactions and coevolution, which are essential for understanding the population dynamics in complex microbial communities like fermentation starters.


Assuntos
Bacteriófagos , Lactococcus lactis , Siphoviridae , Bacteriófagos/genética , Fermentação , Prófagos/genética , Siphoviridae/genética
6.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132234

RESUMO

A novel lytic bacteriophage, ValSw3-3, which efficiently infects pathogenic strains of Vibrio alginolyticus, was isolated from sewage water and characterized by microbiological and in silico genomic analyses. Transmission electron microscopy indicated that ValSw3-3 has the morphology of siphoviruses. This phage can infect four species in the Vibrio genus and has a latent period of 15 min and a burst size of 95 ± 2 PFU/infected bacterium. Genome sequencing results show that ValSw3-3 has a 39,846-bp double-stranded DNA genome with a GC content of 43.1%. The similarity between the genome sequences of ValSw3-3 and those of other phages recorded in the GenBank database was below 50% (42%), suggesting that ValSw3-3 significantly differs from previously reported phages at the DNA level. Multiple genome comparisons and phylogenetic analysis based on the major capsid protein revealed that phage ValSw3-3 is grouped in a clade with five other phages, including Listonella phage phiHSIC (GenBank accession no. NC_006953.1), Vibrio phage P23 (MK097141.1), Vibrio phage pYD8-B (NC_021561.1), Vibrio phage 2E1 (KX507045.1), and Vibrio phage 12G5 (HQ632860.1), and is distinct from all known genera within the Siphoviridae family that have been ratified by the International Committee on Taxonomy of Viruses (ICTV). An in silico proteomic comparison of diverse phages from the Siphoviridae family supported this clustering result and suggested that ValSw3-3, phiHSIC, P23, pYD8-B, 2E1, and 12G5 should be classified as a novel genus cluster of Siphoviridae A subsequent analysis of core genes also revealed the common genes shared within this new cluster. Overall, these results provide a characterization of Vibrio phage ValSw3-3 and support our proposal of a new viral genus within the family SiphoviridaeIMPORTANCE Phage therapy has been considered a potential alternative to antibiotic therapy in treating bacterial infections. For controlling the vibriosis-causing pathogen Vibrio alginolyticus, well-documented phage candidates are still lacking. Here, we characterize a novel lytic Vibrio phage, ValSw3-3, based on its morphology, host range and infectivity, growth characteristics, stability under various conditions, and genomic features. Our results show that ValSw3-3 could be a potent candidate for phage therapy to treat V. alginolyticus infections due to its stronger infectivity and better pH and thermal stability than those of previously reported Vibrio phages. Moreover, genome sequence alignments, phylogenetic analysis, in silico proteomic comparison, and core gene analysis all support that this novel phage, ValSw3-3, and five unclassified phages form a clade distant from those of other known genera ratified by the ICTV. Thus, we propose a new viral genus within the Siphoviridae family to accommodate this clade, with ValSw3-3 as a representative member.


Assuntos
Genoma Viral , Genômica , Siphoviridae/genética , Vibrio alginolyticus/virologia , Composição de Bases , Proteínas do Capsídeo/classificação , DNA Viral , Especificidade de Hospedeiro , Microscopia Eletrônica de Transmissão , Filogenia , Proteômica , Esgotos/virologia , Siphoviridae/classificação , Siphoviridae/isolamento & purificação , Siphoviridae/fisiologia , Vibrio alginolyticus/genética , Sequenciamento Completo do Genoma
7.
Can J Microbiol ; 67(2): 147-160, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32905709

RESUMO

Mesorhizobium phage vB_MloS_Cp1R7A-A1 was isolated from soil planted with chickpea in Saskatchewan. It is dissimilar in sequence and morphology to previously described rhizobiophages. It is a B3 morphotype virus with a distinct prolate capsid and belongs to the tailed phage family Siphoviridae. Its genome has a GC content of 60.3% and 238 predicted genes. Putative functions were predicted for 57 genes, which include 27 tRNA genes with anticodons corresponding to 18 amino acids. This represents the highest number of tRNA genes reported yet in a rhizobiophage. The gene arrangement shows a partially modular organization. Most of the structural genes are found in one module, whereas tRNA genes are in another. Genes for replication, recombination, and nucleotide metabolism form the third module. The arrangement of the replication module resembles the replication module of Enterobacteria phage T5, raising the possibility that it uses a recombination-based replication mechanism, but there is also a suggestion that a T7-like replication mechanism could be used. Phage termini appear to be long direct repeats of just over 12 kb in length. Phylogenetic analysis revealed that Cp1R7A-A1 is more closely related to PhiCbK-like Caulobacter phages and other B3 morphotype phages than to other rhizobiophages sequenced thus far.


Assuntos
Bacteriófagos/isolamento & purificação , Capsídeo/ultraestrutura , Mesorhizobium/virologia , Fosmet , Siphoviridae/isolamento & purificação , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Caulobacter crescentus/virologia , Genes Virais/genética , Genoma Viral/genética , Filogenia , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/ultraestrutura , Especificidade da Espécie
8.
Lett Appl Microbiol ; 71(2): 203-209, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32294268

RESUMO

Bacteriophages may be formulated into semi-solid bases for therapeutic delivery. This work investigated the effects of a range of preservatives on the viability of Myoviridae and Siphoviridae bacteriophages when these were formulated into a standard semi-solid cream base. The six preservatives tested included: benzoic acid (0·1%), chlorocresol (0·1%), combination hydroxybenzoates (propyl 4-hydroxybenzoates with methyl 4-hydroxybenzoates) (0·1%), methyl 4-hydroxybenzoate (0·08%), 2-phenoxyethanol (1%) and propyl 4-hydroxybenzoate (0·02%). These were each formulated into cetomacrogol cream aqueous to generate six individual semi-solid bases into which Myoviridae and Siphoviridae bacteriophages were added and tested for stability. Optimal bacteriophage stability was seen when the preservative chlorocresol was used. Bacteriophage in the acidic benzoic acid were the least stable, resulting in complete loss of viability after 4-5 weeks. Of the bacteriophages tested, the Myoviridae KOX1 was significantly more stable than the Siphoviridae PAC1 after 91 days in formulations with each of the preservatives. Our results suggest the need for individual testing of specific bacteriophages in pharmaceutical formulations, as their efficacy when exposed to preservatives and excipients in these delivery forms may vary. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteriophages are being increasingly investigated as alternatives to antibiotics. While bacteriophages can be formulated in diverse ways for therapeutic delivery, there has been scant work on how excipients and preservatives in these formulations affect stability of different bacteriophages. We demonstrate that the nature of preservatives in formulations will affect bacteriophage stability, and that in these formulations, viability of bacteriophage differs according to their morphology. Our work highlights the need for individual testing of specific bacteriophages in pharmaceutical formulations, as efficacy when exposed to preservatives and excipients in these delivery forms may vary.


Assuntos
Ácido Benzoico/farmacologia , Cresóis/farmacologia , Hidroxibenzoatos/farmacologia , Myoviridae/efeitos dos fármacos , Conservantes Farmacêuticos/farmacologia , Siphoviridae/efeitos dos fármacos , Myoviridae/crescimento & desenvolvimento , Parabenos/farmacologia , Terapia por Fagos/métodos , Siphoviridae/crescimento & desenvolvimento
9.
Genomics ; 111(6): 1283-1291, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30149052

RESUMO

Proteus mirabilis is one of the most common causes of complicated urinary tract infections (UTI), especially in catheter-associated UTIs. The increased resistance to antibiotics, among P. mirabilis isolates has led us to search for alternative antibacterial agents. In this study, genome of a lytic Proteus phage VB_PmiS-Isfahan, isolated from wastewater, and active against planktonic and biofilms of P. mirabilis, isolated from UTI, was analyzed. Accordingly, the genome was sequenced and its similarity to other phages was assessed by the Mauve and EasyFig softwares. "One Click" was used for phylogenetic tree construction. The complete genome of VB_PmiS-Isfahan was 54,836 bp, dsDNA with a G+C content of 36.09%. Nighty-one open reading frames (ORFs) was deduced, among them, 23 were considered as functional genes, based on the homology to the previously characterized proteins. The BLASTn of VB_PmiS-Isfahan showed low similarity to complete genome of Salmonella phages VB_SenS_Sasha, 9NA, and VB_SenS-Sergei. A comparison of Nucleic acid and amino acid sequence, and phylogenetic analyses indicated that the phage is novel, significantly differs, and is distant from other genera, within Siphoviridae family. No virulence-associated and antibiotic resistance genes were detected. Thus, VB_PmiS-Isfahan phage is suggested as a potential novel candidate for the treatment of diseases, caused by P. mirabilis.


Assuntos
Genoma Viral , Siphoviridae/genética , Genômica , Filogenia , Proteus mirabilis/virologia , Siphoviridae/classificação , Proteínas Virais/genética
10.
Appl Environ Microbiol ; 85(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30367000

RESUMO

While filamentous cyanobacteria play a crucial role in food web dynamics and biogeochemical cycling of many aquatic ecosystems around the globe, the knowledge regarding the phages infecting them is limited. Here, we describe the complete genome of the virulent cyanophage vB_AphaS-CL131 (here, CL 131), a Siphoviridae phage that infects the filamentous diazotrophic bloom-forming cyanobacterium Aphanizomenon flos-aquae in the brackish Baltic Sea. CL 131 features a 112,793-bp double-stranded DNA (dsDNA) genome encompassing 149 putative open reading frames (ORFs), of which the majority (86%) lack sequence homology to genes with known functions in other bacteriophages or bacteria. Phylogenetic analysis revealed that CL 131 possibly represents a new evolutionary lineage within the group of cyanophages infecting filamentous cyanobacteria, which form a separate cluster from phages infecting unicellular cyanobacteria. CL 131 encodes a putative type V-U2 CRISPR-Cas system with one spacer (out of 10) targeting a DNA primase pseudogene in a cyanobacterium and a putative type II toxin-antitoxin system, consisting of a GNAT family N-acetyltransferase and a protein of unknown function containing the PRK09726 domain (characteristic of HipB antitoxins). Comparison of CL 131 proteins to reads from Baltic Sea and other available fresh- and brackish-water metagenomes and analysis of CRISPR-Cas arrays in publicly available A. flos-aquae genomes demonstrated that phages similar to CL 131 are present and dynamic in the Baltic Sea and share a common history with their hosts dating back at least several decades. In addition, different CRISPR-Cas systems within individual A. flos-aquae genomes targeted several sequences in the CL 131 genome, including genes related to virion structure and morphogenesis. Altogether, these findings revealed new genomic information for exploring viral diversity and provide a model system for investigation of virus-host interactions in filamentous cyanobacteria.IMPORTANCE The genomic characterization of novel cyanophage vB_AphaS-CL131 and the analysis of its genomic features in the context of other viruses, metagenomic data, and host CRISPR-Cas systems contribute toward a better understanding of aquatic viral diversity and distribution in general and of brackish-water cyanophages infecting filamentous diazotrophic cyanobacteria in the Baltic Sea in particular. The results of this study revealed previously undescribed features of cyanophage genomes (e.g., self-excising intein-containing putative dCTP deaminase and putative cyanophage-encoded CRISPR-Cas and toxin-antitoxin systems) and can therefore be used to predict potential interactions between bloom-forming cyanobacteria and their cyanophages.


Assuntos
Aphanizomenon/virologia , Genoma Viral/genética , Siphoviridae/genética , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Viral/análise , Lituânia , Filogenia , Siphoviridae/classificação
11.
Appl Environ Microbiol ; 85(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824445

RESUMO

Extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) is a life-threatening pathogen that causes serious global problems. Here, we investigated two novel P. aeruginosa bacteriophages (phages), Bϕ-R656 and Bϕ-R1836, in vitro, in silico, and in vivo to evaluate the potential of phage therapy to control XDR-PA clinical strains. Bϕ-R656 and Bϕ-R1836 belong to the Siphoviridae family and exhibited broad host ranges which could lyse 18 (64%) and 14 (50%) of the 28 XDR-PA strains. In addition, the two phages showed strong bacteriolytic activity against XDR-PA host strains from pneumonia patients. The whole genomes of Bϕ-R656 and Bϕ-R1836 have linear double-stranded DNA of 60,919 and 37,714 bp, respectively. The complete sequence of Bϕ-R656 had very low similarity to the previously discovered P. aeruginosa phages in GenBank, but phage Bϕ-R1836 exhibited 98% and 91% nucleotide similarity to Pseudomonas phages YMC12/01/R24 and PA1/KOR/2010, respectively. In the two in vivo infection models, treatment with Bϕ-R656 and Bϕ-R1836 enhanced the survival of Galleria mellonella larvae (50% and 60%, respectively) at 72 h postinfection and pneumonia-model mice (66% and 83%, respectively) at 12 days postinfection compared with untreated controls. Treatment with Bϕ-R656 or Bϕ-R1836 also significantly decreased the bacterial load in the lungs of the mouse pneumonia model (>6 log10 CFU and >4 log10 CFU, respectively) on day 5.IMPORTANCE In this study, two novel P. aeruginosa phages, Bϕ-R656 and Bϕ-R1836, were evaluated in vitro, in silico, and in vivo for therapeutic efficacy and safety as an alternative antibacterial agent to control XDR-PA strains collected from pneumonia patients. Both phages exhibited potent bacteriolytic activity and greatly improved survival in G. mellonella larva infection and a mouse acute pneumonia model. Based on these results, we strongly predict that these two new phages could be used as fast-acting and safe alternative biological weapons against XDR-PA infections.


Assuntos
Mariposas/microbiologia , Pneumonia/terapia , Infecções por Pseudomonas/terapia , Fagos de Pseudomonas/fisiologia , Pseudomonas aeruginosa/fisiologia , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla , Feminino , Larva/crescimento & desenvolvimento , Larva/microbiologia , Longevidade , Mariposas/crescimento & desenvolvimento , Pneumonia/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos
12.
Virol J ; 16(1): 128, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694663

RESUMO

BACKGROUND: Members of the Roseobacter lineage are a major group of marine heterotrophic bacteria because of their wide distribution, versatile lifestyles and important biogeochemical roles. Bacteriophages, the most abundant biological entities in the ocean, play important roles in shaping their hosts' population structures and mediating genetic exchange between hosts. However, our knowledge of roseophages (bacteriophages that infect Roseobacter) is far behind that of their host counterparts, partly reflecting the need to isolate and analyze the phages associated with this ecologically important bacterial clade. METHODS: vB_DshS-R4C (R4C), a novel virulent roseophage that infects Dinoroseobacter shibae DFL12T, was isolated with the double-layer agar method. The phage morphology was visualized with transmission electron microscopy. We characterized R4C in-depth with a genomic analysis and investigated the distribution of the R4C genome in different environments with a metagenomic recruitment analysis. RESULTS: The double-stranded DNA genome of R4C consists of 36,291 bp with a high GC content of 66.75%. It has 49 genes with low DNA and protein homologies to those of other known phages. Morphological and phylogenetic analyses suggested that R4C is a novel member of the family Siphoviridae and is most closely related to phages in the genus Cronusvirus. However, unlike the Cronusvirus phages, R4C encodes an integrase, implying its ability to establish a lysogenic life cycle. A terminal analysis shows that, like that of λ phage, the R4C genome utilize the 'cohesive ends' DNA-packaging mechanism. Significantly, homologues of the R4C genes are more prevalent in coastal areas than in the open ocean. CONCLUSIONS: Information about this newly discovered phage extends our understanding of bacteriophage diversity, evolution, and their roles in different environments.


Assuntos
Filogenia , Roseobacter/virologia , Siphoviridae/classificação , Siphoviridae/genética , Composição de Bases , Empacotamento do DNA , Variação Genética , Tamanho do Genoma , Genoma Viral/genética , Lisogenia , Metagenoma , Água do Mar/virologia , Siphoviridae/crescimento & desenvolvimento , Siphoviridae/ultraestrutura , Proteínas Virais/genética
13.
Extremophiles ; 23(5): 599-612, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31376001

RESUMO

A novel thermophilic bacteriophage AP45 and its host strain Aeribacillus sp. CEMTC656 were isolated from the Valley of Geysers, Kamchatka Peninsula, Russia. Bacteriophage AP45 was identified as a member of the Siphoviridae family by electron microscopy. It showed high thermostability and had a slow cycle of reproduction. The AP45 genome had 51,606 base pairs (bp) and contained 71 open reading frames (ORFs), 40 of them encoding proteins of predicted function. Genes encoding DNA and RNA polymerases were not identified, indicating that AP45 used host polymerases. Based on the ORF65 encoding putative endolysin, the recombinant protein rAP45Lys was developed and its peptidoglycan-hydrolyzing activity was demonstrated. The AP45 genome exhibited limited identity to other phage sequences; the highest identity, 36%, was with the genome of the thermophilic Geobacillus myovirus D6E. The majority of putative proteins encoded by the AP45 genome had higher similarity to proteins from bacteria belonging to the Bacillaceae family, than to bacteriophages. In addition, more than half of the putative ORFs in the AP45 genome were highly similar to prophage sequences of A. pallidus strain 8m3, which was isolated in north-east China. The AP45 phage and revealed prophages might be members of a new genus belonging to the Siphoviridae family.


Assuntos
Bacillaceae/virologia , Genoma Viral , Siphoviridae/genética , Termotolerância , Fontes Termais/microbiologia , Fontes Termais/virologia , Fases de Leitura Aberta , Filogenia , Siphoviridae/classificação , Siphoviridae/patogenicidade
14.
Virus Genes ; 55(6): 834-842, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31420829

RESUMO

A novel Vibrio phage, P23, belonging to the family Siphoviridae was isolated from the surface water of the Yellow Sea, China. The complete genome of this phage was determined. A one-step growth curve showed that the latent period was approximately 30 min, the burst size was 24 PFU/cell, and the rise period was 20 min. The phage is host specific and is stable over a range of pH (5-10) and temperatures (4-65 °C). Transmission electron microscopy showed that phage P23 can be categorized into the Siphoviridae family, with an icosahedral head of 60 nm and a long noncontractile tail of 144 nm. The genome consisted of a linear, double-stranded 40.063 kb DNA molecule with 42.5% G+C content and 72 putative open reading frames (ORFs) without tRNA. The predicted ORFs were classified into six functional groups, including DNA replication, regulation and nucleotide metabolism, transcription, phage packaging, phage structure, lysis, and hypothetical proteins. The Vibrio phage P23 genome is a new marine Siphoviridae-family phage genome that provides basic information for further molecular research on interaction mechanisms between bacteriophages and their hosts.


Assuntos
Bacteriófagos/genética , Genoma Viral/genética , Filogenia , Sequenciamento Completo do Genoma , Bacteriófagos/classificação , Composição de Bases/genética , China , Genômica , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Análise de Sequência de DNA , Siphoviridae/genética , Vibrio/genética , Vibrio/virologia
15.
Virus Genes ; 55(2): 257-265, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30560472

RESUMO

We describe here the isolation and characterization of the bacteriophage, NTR1 from activated sludge. This phage is lytic for Nocardia transvalensis, Nocardia brasiliensis and Nocardia farcinica. NTR1 phage has a genome sequence of 65,275 bp in length, and its closest match is to the Skermania piniformis phage SPI1 sharing over 36% of its genome. The phage belongs to the Siphoviridae family, possessing a long non-contractile tail and icosahedral head. Annotation of the genome reveals 97 putative open reading frames arranged in the characteristic modular organization of Siphoviridae phages and contains a single tRNA-Met gene.


Assuntos
Bacteriófagos/genética , Nocardiose/virologia , Nocardia/virologia , Siphoviridae/genética , Bacteriófagos/isolamento & purificação , DNA Viral/genética , Genoma Viral/genética , Nocardia/genética , Nocardia/patogenicidade , Nocardiose/genética , Nocardiose/microbiologia , Filogenia , Esgotos/microbiologia , Esgotos/virologia
16.
J Basic Microbiol ; 59(7): 754-764, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31099101

RESUMO

To date, a small number of temperate phages are known to infect members of the genus Erwinia. In this study, the genomes of temperate phages vB_EhrS_49 and vB_EhrS_59 infecting Erwinia horticola, the causative agent of beech black bacteriosis in Ukraine, were sequenced and annotated. Their genomes reveal no significant similarity to that of any previously reported viruses of Enterobacteriaceae. At the same time, phages 49 and 59 share extensive nucleotide sequence identity across the regions encoding head assembly, DNA packaging, and lysis. Despite significant homology between structural modules, the organization of distal tail morphogenesis genes is different. Furthermore, a number of putative morons and DNA methylases have been found in both phage genomes. Due to the revealed synteny as well as the structure of lysogeny module, phages 49 and 59 are suggested to be novel members of the lambdoid phage group. Conservative structural genes together with varying homology across the nonstructural region of the genomes make phages 49 and 59 highly promising objects for studying the genetic recombination and evolution of microbial viruses. The obtained data may as well be helpful for better understanding of relationships among Erwinia species.


Assuntos
Bacteriófagos/genética , Erwinia/virologia , Genoma Bacteriano/genética , Genoma Viral/genética , Siphoviridae/genética , DNA Viral/genética , Genes Virais , Lisogenia , Filogenia , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Siphoviridae/classificação , Especificidade da Espécie , Sintenia
17.
J Virol ; 91(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28122988

RESUMO

This is the first report on a myophage that infects Arthrobacter A novel virus, vB_ArtM-ArV1 (ArV1), was isolated from soil using Arthrobacter sp. strain 68b for phage propagation. Transmission electron microscopy showed its resemblance to members of the family Myoviridae: ArV1 has an isometric head (∼74 nm in diameter) and a contractile, nonflexible tail (∼192 nm). Phylogenetic and comparative sequence analyses, however, revealed that ArV1 has more genes in common with phages from the family Siphoviridae than it does with any myovirus characterized to date. The genome of ArV1 is a linear, circularly permuted, double-stranded DNA molecule (71,200 bp) with a GC content of 61.6%. The genome includes 101 open reading frames (ORFs) yet contains no tRNA genes. More than 50% of ArV1 genes encode unique proteins that either have no reliable identity to database entries or have homologues only in Arthrobacter phages, both sipho- and myoviruses. Using bioinformatics approaches, 13 ArV1 structural genes were identified, including those coding for head, tail, tail fiber, and baseplate proteins. A further 6 ArV1 ORFs were annotated as encoding putative structural proteins based on the results of proteomic analysis. Phylogenetic analysis based on the alignment of four conserved virion proteins revealed that Arthrobacter myophages form a discrete clade that seems to occupy a position somewhat intermediate between myo- and siphoviruses. Thus, the data presented here will help to advance our understanding of genetic diversity and evolution of phages that constitute the order CaudoviralesIMPORTANCE Bacteriophages, which likely originated in the early Precambrian Era, represent the most numerous population on the planet. Approximately 95% of known phages are tailed viruses that comprise three families: Podoviridae (with short tails), Siphoviridae (with long noncontractile tails), and Myoviridae (with contractile tails). Based on the current hypothesis, myophages, which may have evolved from siphophages, are thought to have first emerged among Gram-negative bacteria, whereas they emerged only later among Gram-positive bacteria. The results of the molecular characterization of myophage vB_ArtM-ArV1 presented here conform to the aforementioned hypothesis, since, at a glance, bacteriophage vB_ArtM-ArV1 appears to be a siphovirus that possesses a seemingly functional contractile tail. Our work demonstrates that such "chimeric" myophages are of cosmopolitan nature and are likely characteristic of the ecologically important soil bacterial genus Arthrobacter.


Assuntos
Arthrobacter/virologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Myoviridae/genética , Myoviridae/isolamento & purificação , Microbiologia do Solo , Bacteriófagos/ultraestrutura , Composição de Bases , Biologia Computacional , DNA Viral/química , DNA Viral/genética , Ordem dos Genes , Genoma Viral , Microscopia Eletrônica de Transmissão , Myoviridae/ultraestrutura , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA , Proteínas da Cauda Viral/genética , Vírion/ultraestrutura
18.
Can J Microbiol ; 64(11): 865-875, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29990444

RESUMO

Salmonella is a common and widely distributed foodborne pathogen that is frequently implicated in gastrointestinal infections. The emergence and spread of Salmonella strains resistant to multiple antibiotics poses a significant health threat, highlighting the urgent need for early and effective therapeutic strategies. We isolated a total of 32 phages from water samples and anal swabs from pigs. Of these, three phages that produced large, clear plaques were selected for further study using the following methods: electron microscopy, analysis of the life cycle parameters, genetic analysis, inhibition of bacterial growth, and activity against biofilms. The three Salmonella phages (vB_SenS_CSP01, vB_SenS_PHB06, and vB_SenS_PHB07) were assigned to the family Siphoviridae on the basis of their morphology. All showed polyvalent infectivity, and individual phages or phage cocktails could inhibit the growth of host Salmonella enterica serovar Enteritidis strains or reduce biofilm formation by Salmonella enterica serovar Typhimurium. In summary, these three phages merit further research as biocontrol agents for Salmonella infection.


Assuntos
Terapia por Fagos , Fagos de Salmonella/fisiologia , Salmonella enteritidis/virologia , Siphoviridae/fisiologia , Animais , Biofilmes , Infecções por Salmonella , Fagos de Salmonella/isolamento & purificação , Sorogrupo , Siphoviridae/isolamento & purificação , Suínos
19.
Can J Microbiol ; 64(3): 183-190, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29253355

RESUMO

As the "kidneys of the Earth", wetlands play important roles as biodiversity reservoirs, in water purification, and in flood control. In this study, 2 lytic cold-active bacteriophages, named VW-6S and VW-6B, infecting Pseudomonas fluorescens W-6 cells from the Napahai plateau wetland in China were isolated and characterized. Electron microscopy showed that both VW-6S and VW-6B had an icosahedral head (66.7 and 61.1 nm, respectively) and a long tail (8.3 nm width × 233.3 nm length and 11.1 nm width × 166.7 nm length, respectively). The bacteriophages VW-6S and VW-6B were classified as Siphoviridae and had an approximate genome size of 30-40 kb. The latent and burst periods of VW-6S were 60 and 30 min, whereas those of VW-6B were 30 and 30 min, respectively. The optimal pH values for the bacteriophages VW-6S and VW-6B were 8.0 and 10.0, respectively, and their activity decreased rapidly at temperatures higher than 60 °C. These cold-active bacteriophages provide good materials for further study of cold-adaptation mechanisms and interaction with the host P. fluorescens.


Assuntos
Bacteriófagos/isolamento & purificação , Pseudomonas fluorescens/virologia , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , China , Temperatura Baixa , DNA Viral/genética , Genoma Viral , Especificidade de Hospedeiro , Concentração de Íons de Hidrogênio , Microbiologia da Água , Áreas Alagadas
20.
J Food Sci Technol ; 55(2): 550-559, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29391619

RESUMO

Shigellosis (bacillary dysentery) is an acute enteric infection caused by members of Shigella genus. It causes annual deaths of approximately five million children in developing countries. Among Shigella spp., S. flexneri causes more serious forms of dysentery than other Shigella species. Due to the appearance of multidrug-resistant strains of Shigella spp., it is necessary to find alternative antimicrobial agents. The aims of this study were the isolation of a novel species-specific phage against S. flexneri and to evaluate its potential and efficacy for biocontrolling of S. flexneri in foods. Shigella flexneri PTCC 1234 was used as the host strain for bacteriophage isolation from waste water. A lytic phage of the Siphoviridae family was isolated and designated as vB_SflS-ISF001. The phage activity remained at high levels after 1 h of incubation at - 20 to 50 °C and was fairly stable for 1 h at pH values ranging from 7 to 9. The latent period and burst size were approximately 20 min and 53 ± 4 phages per host cell, respectively. Raw and cooked chicken breast were inoculated with a predetermined amount of S. flexneri and subjected to biocontrol test. The results showed that using vB_SflS-ISF001 phage led to more than two logs reduction in the count of viable S. flexneri. It was demonstrated that using vB_SflS-ISF001 phage is of high potential for developing an alternative strategy against S. flexneri contamination in foodstuffs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA