Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 347
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(39): e2218173120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37729206

RESUMO

In biological neural systems, different neurons are capable of self-organizing to form different neural circuits for achieving a variety of cognitive functions. However, the current design paradigm of spiking neural networks is based on structures derived from deep learning. Such structures are dominated by feedforward connections without taking into account different types of neurons, which significantly prevent spiking neural networks from realizing their potential on complex tasks. It remains an open challenge to apply the rich dynamical properties of biological neural circuits to model the structure of current spiking neural networks. This paper provides a more biologically plausible evolutionary space by combining feedforward and feedback connections with excitatory and inhibitory neurons. We exploit the local spiking behavior of neurons to adaptively evolve neural circuits such as forward excitation, forward inhibition, feedback inhibition, and lateral inhibition by the local law of spike-timing-dependent plasticity and update the synaptic weights in combination with the global error signals. By using the evolved neural circuits, we construct spiking neural networks for image classification and reinforcement learning tasks. Using the brain-inspired Neural circuit Evolution strategy (NeuEvo) with rich neural circuit types, the evolved spiking neural network greatly enhances capability on perception and reinforcement learning tasks. NeuEvo achieves state-of-the-art performance on CIFAR10, DVS-CIFAR10, DVS-Gesture, and N-Caltech101 datasets and achieves advanced performance on ImageNet. Combined with on-policy and off-policy deep reinforcement learning algorithms, it achieves comparable performance with artificial neural networks. The evolved spiking neural circuits lay the foundation for the evolution of complex networks with functions.


Assuntos
Redes Neurais de Computação , Neurônios , Cognição , Algoritmos , Comunicação Celular
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042792

RESUMO

To rapidly process temporal information at a low metabolic cost, biological neurons integrate inputs as an analog sum, but communicate with spikes, binary events in time. Analog neuromorphic hardware uses the same principles to emulate spiking neural networks with exceptional energy efficiency. However, instantiating high-performing spiking networks on such hardware remains a significant challenge due to device mismatch and the lack of efficient training algorithms. Surrogate gradient learning has emerged as a promising training strategy for spiking networks, but its applicability for analog neuromorphic systems has not been demonstrated. Here, we demonstrate surrogate gradient learning on the BrainScaleS-2 analog neuromorphic system using an in-the-loop approach. We show that learning self-corrects for device mismatch, resulting in competitive spiking network performance on both vision and speech benchmarks. Our networks display sparse spiking activity with, on average, less than one spike per hidden neuron and input, perform inference at rates of up to 85,000 frames per second, and consume less than 200 mW. In summary, our work sets several benchmarks for low-energy spiking network processing on analog neuromorphic hardware and paves the way for future on-chip learning algorithms.


Assuntos
Redes Neurais de Computação , Potenciais de Ação/fisiologia , Algoritmos , Encéfalo/fisiologia , Computadores , Modelos Biológicos , Modelos Neurológicos , Modelos Teóricos , Neurônios/fisiologia
3.
Nanotechnology ; 35(29)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38593756

RESUMO

Many studies suggest that probabilistic spiking in biological neural systems is beneficial as it aids learning and provides Bayesian inference-like dynamics. If appropriately utilised, noise and stochasticity in nanoscale devices can benefit neuromorphic systems. In this paper, we build a stochastic leaky integrate and fire (LIF) neuron, utilising a Mott memristor's inherent stochastic switching dynamics. We demonstrate that the developed LIF neuron is capable of biological neural dynamics. We leverage these characteristics of the proposed LIF neuron by integrating it into a population-coded spiking neural network and a spiking restricted Boltzmann machine (sRBM), thereby showcasing its ability to implement probabilistic learning and inference. The sRBM achieves a software-comparable accuracy of 87.13%. Unlike CMOS-based probabilistic neurons, our design does not require any external noise sources. The designed neurons are highly energy efficient and ultra-compact, requiring only three components: a resistor, a capacitor and a memristor device.

4.
Biol Cybern ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382577

RESUMO

The development of biologically-inspired computational models has been the focus of study ever since the artificial neuron was introduced by McCulloch and Pitts in 1943. However, a scrutiny of literature reveals that most attempts to replicate the highly efficient and complex biological visual system have been futile or have met with limited success. The recent state-of the-art computer vision models, such as pre-trained deep neural networks and vision transformers, may not be biologically inspired per se. Nevertheless, certain aspects of biological vision are still found embedded, knowingly or unknowingly, in the architecture and functioning of these models. This paper explores several principles related to visual neuroscience and the biological visual pathway that resonate, in some manner, in the architectural design and functioning of contemporary computer vision models. The findings of this survey can provide useful insights for building futuristic bio-inspired computer vision models. The survey is conducted from a historical perspective, tracing the biological connections of computer vision models starting with the basic artificial neuron to modern technologies such as deep convolutional neural network (CNN) and spiking neural networks (SNN). One spotlight of the survey is a discussion on biologically plausible neural networks and bio-inspired unsupervised learning mechanisms adapted for computer vision tasks in recent times.

5.
Sensors (Basel) ; 24(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257584

RESUMO

This paper investigates spiking neural networks (SNN) for novel robotic controllers with the aim of improving accuracy in trajectory tracking. By emulating the operation of the human brain through the incorporation of temporal coding mechanisms, SNN offer greater adaptability and efficiency in information processing, providing significant advantages in the representation of temporal information in robotic arm control compared to conventional neural networks. Exploring specific implementations of SNN in robot control, this study analyzes neuron models and learning mechanisms inherent to SNN. Based on the principles of the Neural Engineering Framework (NEF), a novel spiking PID controller is designed and simulated for a 3-DoF robotic arm using Nengo and MATLAB R2022b. The controller demonstrated good accuracy and efficiency in following designated trajectories, showing minimal deviations, overshoots, or oscillations. A thorough quantitative assessment, utilizing performance metrics like root mean square error (RMSE) and the integral of the absolute value of the time-weighted error (ITAE), provides additional validation for the efficacy of the SNN-based controller. Competitive performance was observed, surpassing a fuzzy controller by 5% in terms of the ITAE index and a conventional PID controller by 6% in the ITAE index and 30% in RMSE performance. This work highlights the utility of NEF and SNN in developing effective robotic controllers, laying the groundwork for future research focused on SNN adaptability in dynamic environments and advanced robotic applications.

6.
Nano Lett ; 23(22): 10594-10599, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955398

RESUMO

The biological brain is a highly efficient computational system in which information processing is performed via electrical spikes. Neuromorphic computing systems that work on similar principles could support the development of the next generation of artificial intelligence and, in particular, enable low-power edge computing. Percolating networks of nanoparticles (PNNs) have previously been shown to exhibit critical spiking behavior, with promise for highly efficient natural computation. Here we employ a rate coding scheme to show that PNNs can perform Boolean operations and image classification. Near perfect accuracy is achieved in both tasks by manipulating the spiking activity using certain control voltages. We demonstrate that the key to successful computation is that nanoscale tunnel gaps within the percolating networks transform input data through a powerful modulus-like nonlinearity. These results provide a basis for implementation of further computational schemes that exploit the brain-like criticality of these networks.

7.
Entropy (Basel) ; 26(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38392381

RESUMO

Spiking neural networks (SNNs) are recurrent models that can leverage sparsity in input time series to efficiently carry out tasks such as classification. Additional efficiency gains can be obtained if decisions are taken as early as possible as a function of the complexity of the input time series. The decision on when to stop inference and produce a decision must rely on an estimate of the current accuracy of the decision. Prior work demonstrated the use of conformal prediction (CP) as a principled way to quantify uncertainty and support adaptive-latency decisions in SNNs. In this paper, we propose to enhance the uncertainty quantification capabilities of SNNs by implementing ensemble models for the purpose of improving the reliability of stopping decisions. Intuitively, an ensemble of multiple models can decide when to stop more reliably by selecting times at which most models agree that the current accuracy level is sufficient. The proposed method relies on different forms of information pooling from ensemble models and offers theoretical reliability guarantees. We specifically show that variational inference-based ensembles with p-variable pooling significantly reduce the average latency of state-of-the-art methods while maintaining reliability guarantees.

8.
J Comput Neurosci ; 51(4): 475-490, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37721653

RESUMO

Spiking neural networks (SNNs), as the third generation of neural networks, are based on biological models of human brain neurons. In this work, a shallow SNN plays the role of an explicit image decoder in the image classification. An LSTM-based EEG encoder is used to construct the EEG-based feature space, which is a discriminative space in viewpoint of classification accuracy by SVM. Then, the visual feature vectors extracted from SNN is mapped to the EEG-based discriminative features space by manifold transferring based on mutual k-Nearest Neighbors (Mk-NN MT). This proposed "Brain-guided system" improves the separability of the SNN-based visual feature space. In the test phase, the spike patterns extracted by SNN from the input image is mapped to LSTM-based EEG feature space, and then classified without need for the EEG signals. The SNN-based image encoder is trained by the conversion method and the results are evaluated and compared with other training methods on the challenging small ImageNet-EEG dataset. Experimental results show that the proposed transferring the manifold of the SNN-based feature space to LSTM-based EEG feature space leads to 14.25% improvement at most in the accuracy of image classification. Thus, embedding SNN in the brain-guided system which is trained on a small set, improves its performance in image classification.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Humanos , Encéfalo/fisiologia , Neurônios/fisiologia
9.
Biol Cybern ; 117(4-5): 389-406, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37733033

RESUMO

Foveation can be defined as the organic action of directing the gaze towards a visual region of interest to acquire relevant information selectively. With the recent advent of event cameras, we believe that taking advantage of this visual neuroscience mechanism would greatly improve the efficiency of event data processing. Indeed, applying foveation to event data would allow to comprehend the visual scene while significantly reducing the amount of raw data to handle. In this respect, we demonstrate the stakes of neuromorphic foveation theoretically and empirically across several computer vision tasks, namely semantic segmentation and classification. We show that foveated event data have a significantly better trade-off between quantity and quality of the information conveyed than high- or low-resolution event data. Furthermore, this compromise extends even over fragmented datasets. Our code is publicly available online at: https://github.com/amygruel/FoveationStakes_DVS .


Assuntos
Computadores , Visão Ocular
10.
Biol Cybern ; 117(4-5): 373-387, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37695359

RESUMO

The precise timing of spikes emitted by neurons plays a crucial role in shaping the response of efferent biological neurons. This temporal dimension of neural activity holds significant importance in understanding information processing in neurobiology, especially for the performance of neuromorphic hardware, such as event-based cameras. Nonetheless, many artificial neural models disregard this critical temporal dimension of neural activity. In this study, we present a model designed to efficiently detect temporal spiking motifs using a layer of spiking neurons equipped with heterogeneous synaptic delays. Our model capitalizes on the diverse synaptic delays present on the dendritic tree, enabling specific arrangements of temporally precise synaptic inputs to synchronize upon reaching the basal dendritic tree. We formalize this process as a time-invariant logistic regression, which can be trained using labeled data. To demonstrate its practical efficacy, we apply the model to naturalistic videos transformed into event streams, simulating the output of the biological retina or event-based cameras. To evaluate the robustness of the model in detecting visual motion, we conduct experiments by selectively pruning weights and demonstrate that the model remains efficient even under significantly reduced workloads. In conclusion, by providing a comprehensive, event-driven computational building block, the incorporation of heterogeneous delays has the potential to greatly improve the performance of future spiking neural network algorithms, particularly in the context of neuromorphic chips.


Assuntos
Aprendizagem , Redes Neurais de Computação , Potenciais de Ação/fisiologia , Algoritmos , Neurônios/fisiologia
11.
Biol Cybern ; 117(1-2): 95-111, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37004546

RESUMO

Deep neural networks have surpassed human performance in key visual challenges such as object recognition, but require a large amount of energy, computation, and memory. In contrast, spiking neural networks (SNNs) have the potential to improve both the efficiency and biological plausibility of object recognition systems. Here we present a SNN model that uses spike-latency coding and winner-take-all inhibition (WTA-I) to efficiently represent visual stimuli using multi-scale parallel processing. Mimicking neuronal response properties in early visual cortex, images were preprocessed with three different spatial frequency (SF) channels, before they were fed to a layer of spiking neurons whose synaptic weights were updated using spike-timing-dependent-plasticity. We investigate how the quality of the represented objects changes under different SF bands and WTA-I schemes. We demonstrate that a network of 200 spiking neurons tuned to three SFs can efficiently represent objects with as little as 15 spikes per neuron. Studying how core object recognition may be implemented using biologically plausible learning rules in SNNs may not only further our understanding of the brain, but also lead to novel and efficient artificial vision systems.


Assuntos
Modelos Neurológicos , Plasticidade Neuronal , Humanos , Plasticidade Neuronal/fisiologia , Redes Neurais de Computação , Aprendizagem/fisiologia , Percepção Visual/fisiologia
12.
Sensors (Basel) ; 23(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37514842

RESUMO

Spiking neural networks (SNNs) have attracted considerable attention as third-generation artificial neural networks, known for their powerful, intelligent features and energy-efficiency advantages. These characteristics render them ideally suited for edge computing scenarios. Nevertheless, the current mapping schemes for deploying SNNs onto neuromorphic hardware face limitations such as extended execution times, low throughput, and insufficient consideration of energy consumption and connectivity, which undermine their suitability for edge computing applications. To address these challenges, we introduce EdgeMap, an optimized mapping toolchain specifically designed for deploying SNNs onto edge devices without compromising performance. EdgeMap consists of two main stages. The first stage involves partitioning the SNN graph into small neuron clusters based on the streaming graph partition algorithm, with the sizes of neuron clusters limited by the physical neuron cores. In the subsequent mapping stage, we adopt a multi-objective optimization algorithm specifically geared towards mitigating energy costs and communication costs for efficient deployment. EdgeMap-evaluated across four typical SNN applications-substantially outperforms other state-of-the-art mapping schemes. The performance improvements include a reduction in average latency by up to 19.8%, energy consumption by 57%, and communication cost by 58%. Moreover, EdgeMap exhibits an impressive enhancement in execution time by a factor of 1225.44×, alongside a throughput increase of up to 4.02×. These results highlight EdgeMap's efficiency and effectiveness, emphasizing its utility for deploying SNN applications in edge computing scenarios.

13.
Sensors (Basel) ; 23(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36991750

RESUMO

Spiking neural networks (SNNs) are subjects of a topic that is gaining more and more interest nowadays. They more closely resemble actual neural networks in the brain than their second-generation counterparts, artificial neural networks (ANNs). SNNs have the potential to be more energy efficient than ANNs on event-driven neuromorphic hardware. This can yield drastic maintenance cost reduction for neural network models, as the energy consumption would be much lower in comparison to regular deep learning models hosted in the cloud today. However, such hardware is still not yet widely available. On standard computer architectures consisting mainly of central processing units (CPUs) and graphics processing units (GPUs) ANNs, due to simpler models of neurons and simpler models of connections between neurons, have the upper hand in terms of execution speed. In general, they also win in terms of learning algorithms, as SNNs do not reach the same levels of performance as their second-generation counterparts in typical machine learning benchmark tasks, such as classification. In this paper, we review existing learning algorithms for spiking neural networks, divide them into categories by type, and assess their computational complexity.


Assuntos
Algoritmos , Redes Neurais de Computação , Humanos , Potenciais de Ação/fisiologia , Computadores , Encéfalo/fisiologia
14.
Sensors (Basel) ; 23(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37765758

RESUMO

Over the past decade, the artificial neural networks domain has seen a considerable embracement of deep neural networks among many applications. However, deep neural networks are typically computationally complex and consume high power, hindering their applicability for resource-constrained applications, such as self-driving vehicles, drones, and robotics. Spiking neural networks, often employed to bridge the gap between machine learning and neuroscience fields, are considered a promising solution for resource-constrained applications. Since deploying spiking neural networks on traditional von-Newman architectures requires significant processing time and high power, typically, neuromorphic hardware is created to execute spiking neural networks. The objective of neuromorphic devices is to mimic the distinctive functionalities of the human brain in terms of energy efficiency, computational power, and robust learning. Furthermore, natural language processing, a machine learning technique, has been widely utilized to aid machines in comprehending human language. However, natural language processing techniques cannot also be deployed efficiently on traditional computing platforms. In this research work, we strive to enhance the natural language processing traits/abilities by harnessing and integrating the SNNs traits, as well as deploying the integrated solution on neuromorphic hardware, efficiently and effectively. To facilitate this endeavor, we propose a novel, unique, and efficient sentiment analysis model created using a large-scale SNN model on SpiNNaker neuromorphic hardware that responds to user inputs. SpiNNaker neuromorphic hardware typically can simulate large spiking neural networks in real time and consumes low power. We initially create an artificial neural networks model, and then train the model using an Internet Movie Database (IMDB) dataset. Next, the pre-trained artificial neural networks model is converted into our proposed spiking neural networks model, called a spiking sentiment analysis (SSA) model. Our SSA model using SpiNNaker, called SSA-SpiNNaker, is created in such a way to respond to user inputs with a positive or negative response. Our proposed SSA-SpiNNaker model achieves 100% accuracy and only consumes 3970 Joules of energy, while processing around 10,000 words and predicting a positive/negative review. Our experimental results and analysis demonstrate that by leveraging the parallel and distributed capabilities of SpiNNaker, our proposed SSA-SpiNNaker model achieves better performance compared to artificial neural networks models. Our investigation into existing works revealed that no similar models exist in the published literature, demonstrating the uniqueness of our proposed model. Our proposed work would offer a synergy between SNNs and NLP within the neuromorphic computing domain, in order to address many challenges in this domain, including computational complexity and power consumption. Our proposed model would not only enhance the capabilities of sentiment analysis but also contribute to the advancement of brain-inspired computing. Our proposed model could be utilized in other resource-constrained and low-power applications, such as robotics, autonomous, and smart systems.


Assuntos
Veículos Autônomos , Análise de Sentimentos , Humanos , Encéfalo , Bases de Dados Factuais , Redes Neurais de Computação
15.
J Digit Imaging ; 36(3): 1137-1147, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36690775

RESUMO

Skin cancer is one of the primary causes of death globally, and experts diagnose it by visual inspection, which can be inaccurate. The need for developing a computer-aided method to aid dermatologists in diagnosing skin cancer is highlighted by the fact that early identification can lower the number of deaths caused by skin malignancies. Among computer-aided techniques, deep learning is the most popular for identifying cancer from skin lesion images. Due to their power-efficient behavior, spiking neural networks are attractive deep neural networks for hardware implementation. We employed deep spiking neural networks using the surrogate gradient descent method to classify 3670 melanoma and 3323 non-melanoma images from the ISIC 2019 dataset. We achieved an accuracy of 89.57% and an F1 score of 90.07% using the proposed spiking VGG-13 model, which is higher than the VGG-13 and AlexNet using less trainable parameters.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Dermoscopia/métodos , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Melanoma/diagnóstico por imagem , Melanoma/patologia , Pele/patologia , Redes Neurais de Computação
16.
Molecules ; 28(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36771009

RESUMO

Spiking neural networks are biologically inspired machine learning algorithms attracting researchers' attention for their applicability to alternative energy-efficient hardware other than traditional computers. In the current work, spiking neural networks have been tested in a quantitative structure-activity analysis targeting the toxicity of molecules. Multiple public-domain databases of compounds have been evaluated with spiking neural networks, achieving accuracies compatible with high-quality frameworks presented in the previous literature. The numerical experiments also included an analysis of hyperparameters and tested the spiking neural networks on molecular fingerprints of different lengths. Proposing alternatives to traditional software and hardware for time- and resource-consuming tasks, such as those found in chemoinformatics, may open the door to new research and improvements in the field.


Assuntos
Algoritmos , Redes Neurais de Computação , Software , Computadores , Aprendizado de Máquina
17.
Philos Trans A Math Phys Eng Sci ; 380(2228): 20210018, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35658675

RESUMO

This paper describes a fully experimental hybrid system in which a [Formula: see text] memristive crossbar spiking neural network (SNN) was assembled using custom high-resistance state memristors with analogue CMOS neurons fabricated in 180 nm CMOS technology. The custom memristors used NMOS selector transistors, made available on a second 180 nm CMOS chip. One drawback is that memristors operate with currents in the micro-amperes range, while analogue CMOS neurons may need to operate with currents in the pico-amperes range. One possible solution was to use a compact circuit to scale the memristor-domain currents down to the analogue CMOS neuron domain currents by at least 5-6 orders of magnitude. Here, we proposed using an on-chip compact current splitter circuit based on MOS ladders to aggressively attenuate the currents by over 5 orders of magnitude. This circuit was added before each neuron. This paper describes the proper experimental operation of an SNN circuit using a [Formula: see text] 1T1R synaptic crossbar together with four post-synaptic CMOS circuits, each with a 5-decade current attenuator and an integrate-and-fire neuron. It also demonstrates one-shot winner-takes-all training and stochastic binary spike-timing-dependent-plasticity learning using this small system. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.


Assuntos
Redes Neurais de Computação , Neurônios
18.
Network ; 33(1-2): 17-61, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35380085

RESUMO

This paper presents a framework for spiking neural networks to be prepared for the Integrated Information Theory (IIT) analysis, using a stochastic nonlinear integrate-and-fire model. The model includes the crucial dynamics of the all-or-none law and after-spike refractoriness. The noise is modelled as an additive term in the system's equations. By preparing the model for the IIT analysis, it is meant to determine the length of the analysis time-window and the transition probability distributions required for the IIT 3.0. To this end, a system of differential equations is proposed to estimate the time evolution of the system's mean and covariance. Assuming the binary Fired/Silent activity as the possible states of each neuron, an algorithm is proposed to calculate the required probability distributions. As long as the Fired/Silent probabilities are only concerned, the Gaussian density assumption with the estimated moments is a reasonable estimate. The synaptic inputs are treated as random variables with low variances to avoid the costs of conditioning on the system's past activities. The Monte-Carlo simulation is used to validate the estimation methods. To increase the reliability of the inductive inference behind the Monte-Carlo method, various stimulation protocols are applied to evoke the dynamics of the equations.


Assuntos
Teoria da Informação , Redes Neurais de Computação , Potenciais de Ação/fisiologia , Simulação por Computador , Modelos Neurológicos , Neurônios/fisiologia , Reprodutibilidade dos Testes , Processos Estocásticos
19.
IEEE J Solid-State Circuits ; 57(10): 3058-3070, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36741239

RESUMO

This paper presents a bio-inspired event-driven neuromorphic sensing system (NSS) capable of performing on-chip feature extraction and "send-on-delta" pulse-based transmission, targeting peripheral-nerve neural recording applications. The proposed NSS employs event-based sampling which, by leveraging the sparse nature of electroneurogram (ENG) signals, achieves a data compression ratio of >125×, while maintaining a low normalized RMS error of 4% after reconstruction. The proposed NSS consists of three sub-circuits. A clockless level-crossing (LC) ADC with background offset calibration has been employed to reduce the data rate, while maintaining a high signal to quantization noise ratio. A fully synthesized spiking neural network (SNN) extracts temporal features of compound action potential signals consumes only 13 µW. An event-driven pulse-based body channel communication (Pulse-BCC) with serialized address-event representation encoding (AER) schemes minimizes transmission energy and form factor. The prototype is fabricated in 40-nm CMOS occupying a 0.32-mm2 active area and consumes in total 28.2 µW and 50 µW power in feature extraction and full diagnosis mode, respectively. The presented NSS also extracts temporal features of compound action potential signals with 10-µs precision.

20.
Proc Natl Acad Sci U S A ; 116(45): 22811-22820, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636215

RESUMO

Cortical microcircuits exhibit complex recurrent architectures that possess dynamically rich properties. The neurons that make up these microcircuits communicate mainly via discrete spikes, and it is not clear how spikes give rise to dynamics that can be used to perform computationally challenging tasks. In contrast, continuous models of rate-coding neurons can be trained to perform complex tasks. Here, we present a simple framework to construct biologically realistic spiking recurrent neural networks (RNNs) capable of learning a wide range of tasks. Our framework involves training a continuous-variable rate RNN with important biophysical constraints and transferring the learned dynamics and constraints to a spiking RNN in a one-to-one manner. The proposed framework introduces only 1 additional parameter to establish the equivalence between rate and spiking RNN models. We also study other model parameters related to the rate and spiking networks to optimize the one-to-one mapping. By establishing a close relationship between rate and spiking models, we demonstrate that spiking RNNs could be constructed to achieve similar performance as their counterpart continuous rate networks.


Assuntos
Potenciais de Ação/fisiologia , Rede Nervosa/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA