Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Bacteriol ; 206(4): e0006924, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38488356

RESUMO

Bacteria are capable of withstanding large changes in osmolality and cytoplasmic pH, unlike eukaryotes that tightly regulate their pH and cellular composition. Previous studies on the bacterial acid stress response described a rapid, brief acidification, followed by immediate recovery. More recent experiments with better pH probes have imaged single living cells, and we now appreciate that following acid stress, bacteria maintain an acidic cytoplasm for as long as the stress remains. This acidification enables pathogens to sense a host environment and turn on their virulence programs, for example, enabling survival and replication within acidic vacuoles. Single-cell analysis identified an intracellular pH threshold of ~6.5. Acid stress reduces the internal pH below this threshold, triggering the assembly of a type III secretion system in Salmonella and the secretion of virulence factors in the host. These pathways are significant because preventing intracellular acidification of Salmonella renders it avirulent, suggesting that acid stress pathways represent a potential therapeutic target. Although we refer to the acid stress response as singular, it is actually a complex response that involves numerous two-component signaling systems, several amino acid decarboxylation systems, as well as cellular buffering systems and electron transport chain components, among others. In a recent paper in the Journal of Bacteriology, M. G. Gorelik, H. Yakhnin, A. Pannuri, A. C. Walker, C. Pourciau, D. Czyz, T. Romeo, and P. Babitzke (J Bacteriol 206:e00354-23, 2024, https://doi.org/10.1128/jb.00354-23) describe a new connection linking the carbon storage regulator CsrA to the acid stress response, highlighting new additional layers of complexity.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Cebolas/metabolismo , Proteínas de Bactérias/metabolismo , Citoplasma/metabolismo , Vacúolos/metabolismo , Salmonella/metabolismo , Ácidos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Escherichia coli/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(25): 12462-12467, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31160462

RESUMO

The adaptive in vivo mechanisms underlying the switch in Salmonella enterica lifestyles from the infectious form to a dormant form remain unknown. We employed Caenorhabditis elegans as a heterologous host to understand the temporal dynamics of Salmonella pathogenesis and to identify its lifestyle form in vivo. We discovered that Salmonella exists as sessile aggregates, or in vivo biofilms, in the persistently infected C. elegans gut. In the absence of in vivo biofilms, Salmonella killed the host more rapidly by actively inhibiting innate immune pathways. Regulatory cross-talk between two major Salmonella pathogenicity islands, SPI-1 and SPI-2, was responsible for biofilm-induced changes in host physiology during persistent infection. Thus, biofilm formation is a survival strategy in long-term infections, as prolonging host survival is beneficial for the parasitic lifestyle.


Assuntos
Biofilmes , Caenorhabditis elegans/microbiologia , Imunidade Inata/fisiologia , Salmonella/fisiologia , Animais , Biomarcadores/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Intestinos/parasitologia , Larva/microbiologia , Salmonella/metabolismo , Salmonella/patogenicidade , Virulência
3.
Microbiol Spectr ; 12(1): e0272423, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38095474

RESUMO

IMPORTANCE: The capacity to utilize myo-inositol (MI) as sole carbon and energy source is widespread among bacteria, among them the intestinal pathogen S. Typhimurium. This study elucidates the complex and hierarchical regulation that underlies the utilization of MI by S. Typhimurium under substrate limitation. A total of seven regulatory factors have been identified so far, allowing the pathogen an environment-dependent, efficient, and fine-tuned regulation of a metabolic property that provides growth advantages in different environments.


Assuntos
Salmonella enterica , Salmonella enterica/metabolismo , Salmonella typhimurium/genética , Regiões Promotoras Genéticas , Proteínas de Bactérias/genética , Inositol/metabolismo , Redes e Vias Metabólicas , Regulação Bacteriana da Expressão Gênica
4.
Elife ; 122023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37706506

RESUMO

The transcriptional regulator SsrB acts as a switch between virulent and biofilm lifestyles of non-typhoidal Salmonella enterica serovar Typhimurium. During infection, phosphorylated SsrB activates genes on Salmonella Pathogenicity Island-2 (SPI-2) essential for survival and replication within the macrophage. Low pH inside the vacuole is a key inducer of expression and SsrB activation. Previous studies demonstrated an increase in SsrB protein levels and DNA-binding affinity at low pH; the molecular basis was unknown (Liew et al., 2019). This study elucidates its underlying mechanism and in vivo significance. Employing single-molecule and transcriptional assays, we report that the SsrB DNA-binding domain alone (SsrBc) is insufficient to induce acid pH-sensitivity. Instead, His12, a conserved residue in the receiver domain confers pH sensitivity to SsrB allosterically. Acid-dependent DNA binding was highly cooperative, suggesting a new configuration of SsrB oligomers at SPI-2-dependent promoters. His12 also plays a role in SsrB phosphorylation; substituting His12 reduced phosphorylation at neutral pH and abolished pH-dependent differences. Failure to flip the switch in SsrB renders Salmonella avirulent and represents a potential means of controlling virulence.


Assuntos
Biofilmes , Salmonella typhimurium , Virulência , Salmonella typhimurium/genética , Bioensaio , DNA
5.
FEMS Microbiol Rev ; 45(2)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32970796

RESUMO

Recent advances in super-resolution imaging techniques, together with new fluorescent probes have enhanced our understanding of bacterial pathogenesis and their interplay within the host. In this review, we provide an overview of what these techniques have taught us about the bacterial lifestyle, the nucleoid organization, its complex protein secretion systems, as well as the secreted virulence factors.


Assuntos
Bactérias/ultraestrutura , Sistemas de Secreção Bacterianos/ultraestrutura , Técnicas Bacteriológicas , Corantes Fluorescentes/metabolismo , Imagem Óptica , Fatores de Virulência/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-31921700

RESUMO

Gram-positive and Gram-negative pathogens exist as planktonic cells only at limited times during their life cycle. In response to environmental signals such as temperature, pH, osmolality, and nutrient availability, pathogenic bacteria can adopt varied cellular fates, which involves the activation of virulence gene programs and/or the induction of a sessile lifestyle to form multicellular surface-attached communities. In Salmonella, SsrB is the response regulator which governs the lifestyle switch from an intracellular virulent state to form dormant biofilms in chronically infected hosts. Using the Salmonella lifestyle switch as a paradigm, we herein compare how other pathogens alter their lifestyles to enable survival, colonization and persistence in response to different environmental cues. It is evident that lifestyle switching often involves transcriptional regulators and their modification as highlighted here. Phenotypic heterogeneity resulting from stochastic cellular processes can also drive lifestyle variation among members of a population, although this subject is not considered in the present review.


Assuntos
Adaptação Biológica , Fenômenos Fisiológicos Bacterianos , Interações Hospedeiro-Patógeno , Animais , Biofilmes , Humanos , Estilo de Vida , Transdução de Sinais , Esporos Bacterianos
7.
Elife ; 82019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31033442

RESUMO

After Salmonella is phagocytosed, it resides in an acidic vacuole. Its cytoplasm acidifies to pH 5.6; acidification activates pathogenicity island 2 (SPI-2). SPI-2 encodes a type three secretion system whose effectors modify the vacuole, driving endosomal tubulation. Using super-resolution imaging in single bacterial cells, we show that low pH induces expression of the SPI-2 SsrA/B signaling system. Single particle tracking, atomic force microscopy, and single molecule unzipping assays identified pH-dependent stimulation of DNA binding by SsrB. A so-called phosphomimetic form (D56E) was unable to bind to DNA in live cells. Acid-dependent DNA binding was not intrinsic to regulators, as PhoP and OmpR binding was not pH-sensitive. The low level of SPI-2 injectisomes observed in single cells is not due to fluctuating SsrB levels. This work highlights the surprising role that acid pH plays in virulence and intracellular lifestyles of Salmonella; modifying acid survival pathways represents a target for inhibiting Salmonella.


Assuntos
Ácidos/farmacologia , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Membrana/metabolismo , Conformação Molecular/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/efeitos dos fármacos , Citoplasma , Proteínas de Ligação a DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/metabolismo , Proteínas de Membrana/efeitos dos fármacos , Regiões Promotoras Genéticas , Salmonella typhimurium/citologia , Salmonella typhimurium/genética , Transativadores/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Vacúolos/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA