Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 38: 705-725, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32340571

RESUMO

The discovery of CD4+ T cell subset-defining master transcription factors and framing of the Th1/Th2 paradigm ignited the CD4+ T cell field. Advances in in vivo experimental systems, however, have revealed that more complex lineage-defining transcriptional networks direct CD4+ T cell differentiation in the lymphoid organs and tissues. This review focuses on the layers of fate decisions that inform CD4+ T cell differentiation in vivo. Cytokine production by antigen-presenting cells and other innate cells influences the CD4+ T cell effector program [e.g., T helper type 1 (Th1), Th2, Th17]. Signals downstream of the T cell receptor influence whether individual clones bearing hallmarks of this effector program become T follicular helper cells, supporting development of B cells expressing specific antibody isotypes, or T effector cells, which activate microbicidal innate cells in tissues. These bifurcated, parallel axes allow CD4+ T cells to augment their particular effector program and prevent disease.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/citologia , Diferenciação Celular/genética , Citocinas/metabolismo , Humanos , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
2.
Cell ; 185(4): 603-613.e15, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35026152

RESUMO

SARS-CoV-2 mRNA vaccines induce robust anti-spike (S) antibody and CD4+ T cell responses. It is not yet clear whether vaccine-induced follicular helper CD4+ T (TFH) cell responses contribute to this outstanding immunogenicity. Using fine-needle aspiration of draining axillary lymph nodes from individuals who received the BNT162b2 mRNA vaccine, we evaluated the T cell receptor sequences and phenotype of lymph node TFH. Mining of the responding TFH T cell receptor repertoire revealed a strikingly immunodominant HLA-DPB1∗04-restricted response to S167-180 in individuals with this allele, which is among the most common HLA alleles in humans. Paired blood and lymph node specimens show that while circulating S-specific TFH cells peak one week after the second immunization, S-specific TFH persist at nearly constant frequencies for at least six months. Collectively, our results underscore the key role that robust TFH cell responses play in establishing long-term immunity by this efficacious human vaccine.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Imunidade/imunologia , SARS-CoV-2/imunologia , Células T Auxiliares Foliculares/imunologia , Vacinação , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia , Adulto , Linfócitos B/imunologia , Vacina BNT162/imunologia , COVID-19/sangue , Células Clonais , Estudos de Coortes , Citocinas/metabolismo , Feminino , Centro Germinativo/imunologia , Cadeias beta de HLA-DP/imunologia , Humanos , Epitopos Imunodominantes/imunologia , Células Jurkat , Linfonodos/metabolismo , Masculino , Pessoa de Meia-Idade , Peptídeos/química , Peptídeos/metabolismo , Multimerização Proteica , Receptores de Antígenos de Linfócitos T/metabolismo
3.
Cell ; 184(25): 6101-6118.e13, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34852236

RESUMO

CD4 T follicular helper (TFH) cells support B cells, which are critical for germinal center (GC) formation, but the importance of TFH-B cell interactions in cancer is unclear. We found enrichment of TFH cell transcriptional signature correlates with GC B cell signature and with prolonged survival in individuals with lung adenocarcinoma (LUAD). We further developed a murine LUAD model in which tumor cells express B cell- and T cell-recognized neoantigens. Interactions between tumor-specific TFH and GC B cells, as well as interleukin (IL)-21 primarily produced by TFH cells, are necessary for tumor control and effector CD8 T cell function. Development of TFH cells requires B cells and B cell-recognized neoantigens. Thus, tumor neoantigens can regulate the fate of tumor-specific CD4 T cells by facilitating their interactions with tumor-specific B cells, which in turn promote anti-tumor immunity by enhancing CD8 T cell effector functions.


Assuntos
Adenocarcinoma/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Interleucinas/imunologia , Neoplasias Pulmonares/imunologia , Animais , Linfócitos B/citologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Immunity ; 55(1): 115-128.e9, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021053

RESUMO

The immune checkpoint receptor PD-1 on T follicular helper (Tfh) cells promotes Tfh:B cell interactions and appropriate positioning within tissues. Here, we examined the impact of regulation of PD-1 expression by the genomic organizer SATB1 on Tfh cell differentiation. Vaccination of CD4CreSatb1f/f mice enriched for antigen-specific Tfh cells, and TGF-ß-mediated repression of SATB1 enhanced Tfh differentiation of human T cells. Mechanistically, high Icos expression in Satb1-/- CD4+ T cells promoted Tfh cell differentiation by preventing T follicular regulatory cell skewing and resulted in increased isotype-switched B cell responses in vivo. Ovarian tumors in CD4CreSatb1f/f mice accumulated tumor antigen-specific, LIGHT+CXCL13+IL-21+ Tfh cells and tertiary lymphoid structures (TLS). TLS formation decreased tumor growth in a CD4+ T cell and CXCL13-dependent manner. The transfer of Tfh cells, but not naive CD4+ T cells, induced TLS at tumor beds and decreased tumor growth. Thus, TGF-ß-mediated silencing of Satb1 licenses Tfh cell differentiation, providing insight into the genesis of TLS within tumors.


Assuntos
Centro Germinativo/imunologia , Linfócitos do Interstício Tumoral/imunologia , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Estruturas Linfoides Terciárias/imunologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Inativação Gênica , Genótipo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Fator de Crescimento Transformador beta/genética
5.
Immunity ; 54(12): 2740-2755.e6, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34644536

RESUMO

T follicular helper (Tfh) cells play essential roles in regulating humoral immunity, especially germinal center reactions. However, how CD4+ T cells integrate the antigenic and costimulatory signals in Tfh cell development is still poorly understood. Here, we found that phorbol 12-myristate 13-acetate (PMA) + ionomycin (P+I) stimulation, together with interleukin-6 (IL-6), potently induce Tfh cell-like transcriptomic programs in vitro. The ERK kinase pathway was attenuated under P+I stimulation; ERK2 inhibition enhanced Tfh cell development in vitro and in vivo. We observed that inducible T cell costimulator (ICOS), but not CD28, lacked the ability to activate ERK, which was important in sustaining Tfh cell development. The transcription factor Zfp831, whose expression was repressed by ERK, promoted Tfh cell differentiation by directly upregulating the expression of the transcription factors Bcl6 and Tcf7. We have hence identified an ERK-Zfp831 axis, regulated by costimulation signaling, in critical regulation of Tfh cell development.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Centro Germinativo/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Células T Auxiliares Foliculares/imunologia , Animais , Diferenciação Celular , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Imunidade Humoral , Interleucina-6/metabolismo , Ativação Linfocitária , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Transcriptoma
6.
Immunity ; 54(12): 2812-2824.e4, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34861182

RESUMO

The composition of the intestinal microbiota is associated with both the development of tumors and the efficacy of anti-tumor immunity. Here, we examined the impact of microbiota-specific T cells in anti-colorectal cancer (CRC) immunity. Introduction of Helicobacter hepaticus (Hhep) in a mouse model of CRC did not alter the microbial landscape but increased tumor infiltration by cytotoxic lymphocytes and inhibited tumor growth. Anti-tumor immunity was independent of CD8+ T cells but dependent upon CD4+ T cells, B cells, and natural killer (NK) cells. Hhep colonization induced Hhep-specific T follicular helper (Tfh) cells, increased the number of colon Tfh cells, and supported the maturation of Hhep+ tumor-adjacent tertiary lymphoid structures. Tfh cells were necessary for Hhep-mediated tumor control and immune infiltration, and adoptive transfer of Hhep-specific CD4+ T cells to Tfh cell-deficient Bcl6fl/flCd4Cre mice restored anti-tumor immunity. Thus, introduction of immunogenic intestinal bacteria can promote Tfh-associated anti-tumor immunity in the colon, suggesting therapeutic approaches for the treatment of CRC.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Colo/patologia , Neoplasias Colorretais/imunologia , Microbioma Gastrointestinal/imunologia , Infecções por Helicobacter/imunologia , Helicobacter hepaticus/fisiologia , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células T Auxiliares Foliculares/imunologia , Estruturas Linfoides Terciárias/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo
7.
Immunity ; 51(5): 826-839.e5, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31732165

RESUMO

T follicular helper (Tfh) cells provide essential help to B cells in germinal center (GC) reactions. Bcl6 is the obligatory lineage transcription factor in Tfh cells. Here, we examined the molecular pathways that induce Bcl6 gene expression and underscore Bcl6-dependent function during Tfh cell commitment. Integration of genome-wide Bcl6 occupancy in Tfh cells and differential gene expression analyses suggested an important role for the transcription factor Tox2 in Tfh cell differentiation. Ectopic expression of Tox2 was sufficient to drive Bcl6 expression and Tfh development. In genome-wide ChIP-seq analyses, Tox2-bound loci associated with Tfh cell differentiation and function, including Bcl6. Tox2 binding was associated with increased chromatin accessibility at these sites, as measured by ATAC-seq. Tox2-/- mice exhibited defective Tfh differentiation, and inhibition of both Tox2 and the related transcription factor Tox abolished Tfh differentiation. Thus, a Tox2-Bcl6 axis establishes a transcriptional feed-forward loop that promotes the Tfh program.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/genética , Cromatina/metabolismo , Proteínas de Homeodomínio/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Fatores de Transcrição/metabolismo
8.
Immunity ; 49(6): 1034-1048.e8, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30566881

RESUMO

Single-nucleotide polymorphisms in ETS1 are associated with systemic lupus erythematosus (SLE). Ets1-/- mice develop SLE-like symptoms, suggesting that dysregulation of this transcription factor is important to the onset or progression of SLE. We used conditional deletion approaches to examine the impact of Ets1 expression in different immune cell types. Ets1 deletion on CD4+ T cells, but not B cells or dendritic cells, resulted in the SLE autoimmunity, and this was associated with the spontaneous expansion of T follicular helper type 2 (Tfh2) cells. Ets1-/- Tfh2 cells exhibited increased expression of GATA-3 and interleukin-4 (IL-4), which induced IgE isotype switching in B cells. Neutralization of IL-4 reduced Tfh2 cell frequencies and ameliorated disease parameters. Mechanistically, Ets1 suppressed signature Tfh and Th2 cell genes, including Cxcr5, Bcl6, and Il4ra, thus curbing the terminal Tfh2 cell differentiation process. Tfh2 cell frequencies in SLE patients correlated with disease parameters, providing evidence for the relevance of these findings to human disease.


Assuntos
Diferenciação Celular/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Proteína Proto-Oncogênica c-ets-1/imunologia , Células Th2/imunologia , Animais , Autoimunidade/genética , Autoimunidade/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Células Th2/metabolismo
9.
Semin Immunol ; 69: 101797, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37343412

RESUMO

With the emergence and success of checkpoint blockade immunotherapy, immuno-oncology has primarily focused on CD8 T cells, whose cytotoxic programs directly target tumor cells. However, the limited response rate of current immunotherapy regimens has prompted investigation into other types of tumor-infiltrating immune cells, such as CD4 T cells and B cells, and how they interact with CD8 T cells in a coordinated network. Recent studies have demonstrated the potential therapeutic benefits of CD4 T follicular helper (TFH) cells and B cells in cancer, highlighting the important role of their crosstalk and interactions with other immune cell components in the tumor microenvironment. These interactions also occur in tumor-associated tertiary lymphoid structures (TLS), which resemble secondary lymphoid organs (SLOs) with orchestrated vascular, chemokine, and cellular infrastructures that support the developmental pathways of functional immune cells. In this review, we discuss recent breakthroughs on TFH biology and T cell-B cell interactions in tumor immunology, and their potential as novel therapeutic targets to advance cancer treatment.


Assuntos
Neoplasias , Estruturas Linfoides Terciárias , Humanos , Células T Auxiliares Foliculares/metabolismo , Células T Auxiliares Foliculares/patologia , Linfócitos B , Linfócitos T CD8-Positivos , Microambiente Tumoral
10.
Proc Natl Acad Sci U S A ; 120(36): e2218324120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639586

RESUMO

Following viral clearance, antigen-specific CD4+ T cells contract and form a pool of distinct Th1 and Tfh memory cells that possess unique epigenetic programs, allowing them to rapidly recall their specific effector functions upon rechallenge. DNA methylation programing mediated by the methylcytosine dioxygenase Tet2 contributes to balancing Th1 and Tfh cell differentiation during acute viral infection; however, the role of Tet2 in CD4+ T cell memory formation and recall is unclear. Using adoptive transfer models of antigen-specific wild type and Tet2 knockout CD4+ T cells, we find that Tet2 is required for full commitment of CD4+ T cells to the Th1 lineage and that in the absence of Tet2, memory cells preferentially recall a Tfh like phenotype with enhanced expansion upon secondary challenge. These findings demonstrate an important role for Tet2 in enforcing lineage commitment and programing proliferation potential, and highlight the potential of targeting epigenetic programing to enhance adaptive immune responses.


Assuntos
Linfócitos T CD4-Positivos , Células T Auxiliares Foliculares , Transferência Adotiva , Diferenciação Celular , Metilação de DNA
11.
J Pathol ; 262(2): 189-197, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37933684

RESUMO

Primary cutaneous CD4+ small or medium T-cell lymphoproliferative disorder (PCSM-LPD) is a clonal T-cell proliferation disease confined to the skin. PCSM-LPD shares expression of T follicular helper (Tfh) cell markers with various mature T-cell lymphomas. However, the benign presentation of PCSM-LPD contrasts the clinical behavior of other Tfh-lymphomas. The aim of our study was to delineate the molecular similarities and differences between PCSM-LPD and other Tfh-derived lymphomas to explain the clinical behavior and unravel possible pathological mechanisms. We performed targeted next-generation sequencing of 19 genes recurrently mutated in T-cell neoplasms in n = 17 PCSM-LPD with high and in n = 21 PCSM-LPD with low tumor cell content. Furthermore, gene expression profiling was used to identify genes potentially expressed in the PD1-positive (PD1+) neoplastic cells. Expression of some of these genes was confirmed in situ using multistain immunofluorescence. We found that PCSM-LPD rarely harbored mutations recurrently detected in other T-cell neoplasms. PCSM-LPD is characterized by the invariable expression of the T-cell-receptor-associated LCK protein. CD70 and its ligand CD27 are co-expressed on PD1+ PCSM-LPD cells, suggestive of autoactivation of the CD70 pathway. In conclusion, PCSM-LPD differs from disseminated lymphomas of Tfh origin by their mutation profile. Activation of CD70 signaling also found in cutaneous T-cell lymphoma represents a potential driver of neoplastic proliferation of this benign neoplasia of Tfh. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Linfoma Cutâneo de Células T , Transtornos Linfoproliferativos , Dermatopatias , Neoplasias Cutâneas , Humanos , Linfócitos T CD4-Positivos/patologia , Dermatopatias/patologia , Linfoma Cutâneo de Células T/genética , Linfoma Cutâneo de Células T/patologia , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Ligante CD27/genética
12.
J Infect Dis ; 230(1): 28-37, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052730

RESUMO

Regulatory T (Treg) cells are involved in the antiviral immune response in patients with coronavirus disease 2019 (COVID-19); however, whether Treg cells are involved in the neutralizing antibody (nAb) response remains unclear. Here, we found that individuals who recovered from mild but not severe COVID-19 had significantly greater frequencies of Treg cells and lower frequencies of CXCR3+ circulating T follicular helper (cTfh) cells than healthy controls. Furthermore, the frequencies of Treg and CXCR3+ cTfh cells were negatively and positively correlated with the nAb responses, respectively, and Treg cells was inversely associated with CXCR3+ cTfh cells in individuals who recovered from mild COVID-19 but not in those with severe disease. Mechanistically, Treg cells inhibited memory B-cell differentiation and antibody production by limiting the activation and proliferation of cTfh cells, especially CXCR3+ cTfh cells, and functional molecule expression. This study provides novel insight showing that mild COVID-19 elicits concerted nAb responses, which are shaped by both Treg and Tfh cells.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Receptores CXCR3 , Células T Auxiliares Foliculares , Linfócitos T Reguladores , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Células B de Memória/imunologia , Receptores CXCR3/metabolismo , Receptores CXCR3/imunologia , Células T Auxiliares Foliculares/imunologia , Linfócitos T Reguladores/imunologia
13.
J Viral Hepat ; 31(9): 557-564, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38771314

RESUMO

Chronic hepatitis B virus (HBV) infection is a significant global public health concern, and the clearance of HBV is closely linked to the activity of HBV-specific T cells, which is regulated by various co-suppressor molecules. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is among these co-suppressor molecules which induces T cell exhaustion by competitively inhibiting CD28 and dampening the function of HBV-specific T cells. CTLA-4 also plays a role in the regulation of T helper (Th) cell differentiation and influences cytokine release. In addition, CTLA-4 can impact glucose metabolism in hepatocellular carcinoma through its interaction with T regulatory (Treg) cells. This review aims to provide a comprehensive overview of the existing literature related to the role of CTLA-4 in HBV patients across different subsets of T cells. Additionally, we propose a discussion on the possible mechanisms through which CTLA-4 may contribute to HBV infection, as well as the development of HBV-induced cirrhosis and hepatocellular carcinoma.


Assuntos
Antígeno CTLA-4 , Carcinoma Hepatocelular , Vírus da Hepatite B , Hepatite B Crônica , Humanos , Antígeno CTLA-4/metabolismo , Hepatite B Crônica/imunologia , Hepatite B Crônica/complicações , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/fisiologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/virologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/virologia , Linfócitos T Reguladores/imunologia , Cirrose Hepática/imunologia , Cirrose Hepática/virologia
14.
Ann Hematol ; 103(7): 2429-2443, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38814447

RESUMO

This study aimed to determine the clinicopathological predictive factors of peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS), and nodal T-follicular helper cell lymphoma, angioimmunoblastic-type (nTFH, AI-type). In this single-centered, retrospective study, medical records of 59 patients who were diagnosed with PTCL, NOS, or nTFH, AI-type from March 2007 to September 2022 were reviewed. The clinicopathological variables, including immunohistochemistry(IHC) subgroups, distinguishing TBX21 from the GATA3 subgroups were analyzed. Overall, 28 patients (75.7%) in the TBX21 group were PTCL, NOS. There were 9 (24.3%) patients in the GATA3 group. In univariable analyses, lymphoma subtype, age, and performance status were associated with progression-free survival (PFS), and overall survival (OS). In multivariable analyses, lymphoma subtype, and performance status were related to PFS and OS (P = 0.012, P < 0.001, P = 0.006, and P < 0.001, respectively). The GATA3 subgroup tended to have a worse prognosis in univariable analyses; however, it became more insignificant in multivariable when lymphoma subtype and performance status were adjusted (P = 0.065, P = 0.180, P = 0.972, and P = 0.265, respectively). The double-positive group showed variable prognoses of better PFS and worse OS. PD-1 and PD-L1 were associated with the EBV in situ hybridization (P = 0.027, and P = 0.005), and PD-1 was associated with CD30 expression (P = 0.043). This study demonstrated the potential of IHC classification to predict prognosis for PTCL, NOS, as well as nTFH AI-type, although further validation is necessary. Treatments targeting CD30, PD-1, and PD-L1 appear promising for lymphoma treatment.


Assuntos
Linfadenopatia Imunoblástica , Imunofenotipagem , Linfoma de Células T Periférico , Humanos , Linfoma de Células T Periférico/classificação , Linfoma de Células T Periférico/mortalidade , Linfoma de Células T Periférico/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Adulto , Linfadenopatia Imunoblástica/patologia , Linfadenopatia Imunoblástica/diagnóstico , Linfadenopatia Imunoblástica/mortalidade , Linfadenopatia Imunoblástica/classificação , Prognóstico , Idoso de 80 Anos ou mais , Proteínas com Domínio T/análise , Proteínas com Domínio T/metabolismo , Fator de Transcrição GATA3/análise , Células T Auxiliares Foliculares/imunologia , Taxa de Sobrevida
15.
Pathol Int ; 74(6): 346-351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578156

RESUMO

Nodal T-follicular helper cell lymphoma (TFHL) is a subset of T-cell lymphoma and frequently co-occurs with Epstein-Barr virus (EBV)-positive B-cell lymphoma but not with T/NK-cell lymphoma. Recently, a new entity with a worse prognosis, called EBV-positive nodal T/NK-cell lymphoma (NTNKL) has been established. Here, we report an autopsy case of synchronous multiple lymphomas, including TFHL and NTNKL. The patient was a 78-year-old female admitted with pneumonia. Although pneumonic symptoms were improved, fever, pancytopenia, and disseminated intravascular coagulation emerged, implicating lymphoma. She died on the 21st hospital day without a definitive diagnosis. The autopsy revealed the enlargement of multiple lymph nodes throughout her body. Histological analysis revealed three distinct regions in the left inguinal lymph node. The first region consists of small-sized lymphocytes with T-follicular helper phenotype and extended follicular dendritic cell meshwork, indicating TFHL. The second region included EBV-positive large B cells. The third region comprised EBV-positive large cells with cytotoxic T/NK cell phenotype, indicating NTNKL. Clonality analysis of the first and the third regions showed different patterns. Since various hematopoietic malignancies progress from common clonal hematopoiesis according to existing literature, this case may help to understand TFHL and NTNKL.


Assuntos
Autopsia , Infecções por Vírus Epstein-Barr , Linfonodos , Humanos , Feminino , Idoso , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/patologia , Linfonodos/patologia , Linfonodos/virologia , Herpesvirus Humano 4/isolamento & purificação , Herpesvirus Humano 4/genética , Linfoma Extranodal de Células T-NK/patologia , Linfoma Extranodal de Células T-NK/virologia , Evolução Fatal
16.
Immunol Rev ; 296(1): 24-35, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32304104

RESUMO

B cells have been known for their ability to present antigens to T cells for almost 40 years. However, the precise roles of B cell antigen presentation in various immune responses are not completely understood. The term "professional" antigen-presenting cells (APCs) was proposed to distinguish APCs that are required for initiating the immune responses from those use antigen presentation to enhance their own effector functions. Unlike dendritic cells, which are defined as professional APCs for their well-established functions in activating naive T cells, B cells have been shown in the past to mostly present antigens to activated CD4+ T cells mainly to seek help from T helper cells. However, recent evidence suggested that B cells can act as professional APCs under infectious conditions or conditions mimicking viral infections. B cell antigen receptors (BCRs) and the innate receptor Toll-like receptors are activated synergistically in response to pathogens or virus-like particles, under which conditions B cells are not only potent but also the predominant APCs to turn naive CD4+ T cells into T follicular helper cells. The discovery of B cells as professional APCs to initiate CD4+ T cell response provides a new insight for both autoimmune diseases and vaccine development.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Ativação Linfocitária/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Autoimunidade , Comunicação Celular/imunologia , Suscetibilidade a Doenças , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
17.
Immunol Rev ; 296(1): 48-61, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32412663

RESUMO

Germinal centers (GCs) are confined anatomic regions where rapidly proliferating B cells undergo somatic mutation and selection and eventual differentiation into memory B cells or long-lived plasma cells. GCs are also the origin of malignancy, namely follicular lymphoma (FL), GC B cell-diffuse large B cell lymphoma (GCB-DLBCL), and Burkitt lymphoma (BL). GC B cell lymphomas maintain their GC transcriptional signatures and sustain many features of the GC microenvironment, including CD4+ T follicular helper (Tfh) cells. Tfh cells are essential for the formation and maintenance of GCs, providing critical helper signals such as CD40L. Large-scale sequencing efforts have led to new insights about the tightly regulated selection mechanisms that are commonly targeted during GC B cell lymphomagenesis. For instance, HVEM, a frequently mutated surface molecule in GC-derived lymphomas, engages the inhibitory receptor BTLA on Tfh cells and loss of HVEM leads to exaggerated T cell help. Here, we review current understanding of how Tfh cells contribute to the selection of GC B cells, with a particular emphasis on how Tfh cell signals may contribute to lymphomagenesis. The possibility of targeting Tfh cells for the treatment of GC-derived lymphomas is discussed.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Linfoma/etiologia , Linfoma/metabolismo , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/metabolismo , Animais , Biomarcadores Tumorais , Diferenciação Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Seleção Clonal Mediada por Antígeno , Gerenciamento Clínico , Suscetibilidade a Doenças , Predisposição Genética para Doença , Humanos , Linfoma/diagnóstico , Linfoma/terapia , Mutação
18.
J Infect Dis ; 227(3): 311-316, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36082999

RESUMO

Bacteriophage therapy is the use of viruses to kill bacteria for the treatment of antibiotic-resistant infections. Little is known about the human immune response following phage therapy. We report the development of phage-specific CD4 T cells alongside rising phage-specific immunoglobulin G and neutralizing antibodies in response to adjunctive bacteriophage therapy used to treat a multidrug-resistant Pseudomonas aeruginosa pneumonia in a lung transplant recipient. Clinically, treatment was considered a success despite the development phage-specific immune responses.


Assuntos
Bacteriófagos , Terapia por Fagos , Pneumonia , Infecções por Pseudomonas , Humanos , Bacteriófagos/fisiologia , Transplantados , Pulmão/microbiologia , Imunidade , Pseudomonas aeruginosa/fisiologia , Infecções por Pseudomonas/terapia , Infecções por Pseudomonas/microbiologia
19.
Immunology ; 168(3): 554-568, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36273262

RESUMO

The development of many systemic autoimmune diseases, including systemic lupus erythematosus, is associated with overactivation of the type I interferon (IFN) pathway, lymphopenia and increased follicular helper T (Tfh)-cell differentiation. However, the cellular and molecular mechanisms underlying these immunological perturbations remain incompletely understood. Here, we show that the mechanistic target of rapamycin complex 2 (mTORC2) promotes Tfh differentiation and disrupts Treg homeostasis. Inactivation of mTORC2 in total T cells, but not in Tregs, greatly ameliorated the immunopathology in a systemic autoimmunity mouse model. This was associated with reduced Tfh differentiation, B-cell activation, and reduced T-cell glucose metabolism. Finally, we show that type I IFN can synergize with TCR ligation to activate mTORC2 in T cells, which partially contributes to T-cell lymphopenia. These data indicate that mTORC2 may act as downstream of type I IFN, TCR and costimulatory receptor ICOS, to promote glucose metabolism, Tfh differentiation, and T-cell lymphopenia, but not to suppress Treg function in systemic autoimmunity. Our results suggest that mTORC2 might be a rational target for systemic autoimmunity treatment.


Assuntos
Autoimunidade , Lúpus Eritematoso Sistêmico , Camundongos , Animais , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Linfócitos T Auxiliares-Indutores , Diferenciação Celular , Receptores de Antígenos de Linfócitos T/metabolismo , Glucose/metabolismo
20.
J Allergy Clin Immunol ; 150(5): 981-989, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36336399

RESUMO

Antibodies are crucial in host defenses as well as in allergic diseases. T follicular helper (TFH) cells play essential roles in germinal center reactions by facilitating B-cell differentiation and immunoglobulin affinity maturation and isotype switching. Although TFH cells have a unique gene transcription program and regulatory network, recently there has been increasing evidence of TFH cell plasticity, with some TFH cells expressing genes typically related to other types of effector T cells associated with different types of Ig subclasses and in the context of different pathogen infections and health conditions. Here, we review the plasticity of TFH cells in various types of immune responses. We also point out the important implications of TFH plasticity in understanding and treating human diseases, including allergy.


Assuntos
Células T Auxiliares Foliculares , Linfócitos T Auxiliares-Indutores , Humanos , Linfócitos B , Diferenciação Celular , Centro Germinativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA