Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Senses ; 492024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695158

RESUMO

Gymnema sylvestre (GS) is a traditional medicinal plant known for its hypoglycemic and hypolipidemic effects. Gurmarin (hereafter Gur-1) is the only known active peptide in GS. Gur-1 has a suppressive sweet taste effect in rodents but no or only a very weak effect in humans. Here, 8 gurmarin-like peptides (Gur-2 to Gur-9) and their isoforms are reported in the GS transcriptome. The molecular mechanism of sweet taste suppression by Gur-1 is still largely unknown. Therefore, the complete architecture of human and mouse sweet taste receptors T1R2/T1R3 and their interaction with Gur-1 to Gur-9 were predicted by AlphaFold-Multimer (AF-M) and validated. Only Gur-1 and Gur-2 interact with the T1R2/T1R3 receptor. Indeed, Gur-1 and Gur-2 bind to the region of the cysteine-rich domain (CRD) and the transmembrane domain (TMD) of the mouse T1R2 subunit. In contrast, only Gur-2 binds to the TMD of the human T1R2 subunit. This result suggests that Gur-2 may have a suppressive sweet taste effect in humans. Furthermore, AF-M predicted that Gα-gustducin, a protein involved in sweet taste transduction, interacts with the intracellular domain of the T1R2 subunit. These results highlight an unexpected diversity of gurmarin-like peptides in GS and provide the complete predicted architecture of the human and mouse sweet taste receptor with the putative binding sites of Gur-1, Gur-2, and Gα-gustducin. In addition, gurmarin-like peptides may serve as promising drug scaffolds for the development of antidiabetic molecules.


Assuntos
Gymnema sylvestre , Receptores Acoplados a Proteínas G , Humanos , Gymnema sylvestre/metabolismo , Gymnema sylvestre/química , Animais , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Paladar/fisiologia , Ligação Proteica , Sequência de Aminoácidos , Células HEK293
2.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000505

RESUMO

The oral detection of sugars relies on two types of receptor systems. The first is the G-protein-coupled receptor TAS1R2/TAS1R3. When activated, this receptor triggers a downstream signaling cascade involving gustducin, phospholipase Cß2 (PLCß2), and transient receptor potential channel M5 (TRPM5). The second type of receptor is the glucose transporter. When glucose enters the cell via this transporter, it is metabolized to produce ATP. This ATP inhibits the opening of KATP channels, leading to cell depolarization. Beside these receptor systems, sweet-sensitive taste cells have mechanisms to regulate their sensitivity to sweet substances based on internal and external states of the body. Sweet taste receptors are not limited to the oral cavity; they are also present in extraoral organs such as the gastrointestinal tract, pancreas, and brain. These extraoral sweet receptors are involved in various functions, including glucose absorption, insulin release, sugar preference, and food intake, contributing to the maintenance of energy homeostasis. Additionally, sweet receptors may have unique roles in certain organs like the trachea and bone. This review summarizes past and recent studies on sweet receptor systems, exploring the molecular mechanisms and physiological functions of sweet (sugar) detection in both oral and extraoral organs.


Assuntos
Receptores Acoplados a Proteínas G , Humanos , Animais , Receptores Acoplados a Proteínas G/metabolismo , Paladar/fisiologia , Papilas Gustativas/metabolismo , Boca/metabolismo , Trato Gastrointestinal/metabolismo , Transdução de Sinais , Canais de Cátion TRPM/metabolismo , Glucose/metabolismo , Pâncreas/metabolismo , Encéfalo/metabolismo
3.
J Sci Food Agric ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39299925

RESUMO

BACKGROUND: Cyclocarya paliurus, as a new food resource, is utilized extensively in human and animal diets due to its bioactive compounds, health benefits, and its highly prized sweet flavor. This study aimed to investigate the sweet-taste ingredient of C. paliurus leaves. RESULTS: Five new dammarane triterpenoid glycosides were isolated and identified as qingqianliutianosides A-E (1-5) by comprehensive spectroscopic data analysis and a single crystal X-ray diffraction experiment. Qingqianliutianoside A (1) and qingqianliutianoside C (3), present in relatively high quantities in the plant, were shown to exhibit sweetness by sensory evaluation and electronic tongue analysis. Further monitoring was conducted on the content changes in 3 in leaves at different growth stages, indicating that 3 reached its peak content in April and then showed a decreasing trend. Molecular docking studies revealed that T1R2/T1R3 receptors Ser212, Ser105, Thr239, Asn380, Thr305, and Val381 may play critical roles, demonstrating that hydrogen bonding and hydrophobic interactions were the dominant interaction forces between all of the identified compounds and the active sites in the Venus flytrap module of the T1R2/T1R3 receptors. CONCLUSION: Qingqianliutianosides A-E are promising natural source sugar substitutes for use in functional foods and beverages. © 2024 Society of Chemical Industry.

4.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589415

RESUMO

Deuterium oxide (D2O) is water in which the heavier and rare isotope deuterium replaces both hydrogens. We have previously shown that D2O has a distinctly sweet taste, mediated by the T1R2/T1R3 sweet taste receptor. Here, we explore the effect of heavy water on T1R2 and T1R3 subunits. We show that D2O activates T1R3-transfected HEK293T cells similarly to T1R2/T1R3-transfected cells. The response to glucose dissolved in D2O is higher than in water. Mutations of phenylalanine at position 7305.40 in the transmembrane domain of T1R3 to alanine, leucine, or tyrosine impair or diminish activation by D2O, suggesting a critical role for T1R3 TMD domain in relaying the heavy water signal.


Assuntos
Papilas Gustativas , Paladar , Humanos , Óxido de Deutério , Células HEK293 , Glucose/farmacologia
5.
Crit Rev Food Sci Nutr ; 62(25): 7015-7024, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33998842

RESUMO

Due to unique characteristics, umami substances have gained much attention in the food industry during the past decade as potential replacers to sodium or fat to increase food palatability. Umami is not only known to increase appetite, but also to increase satiety, and hence could be used to control food intake. Therefore, it is important to understand the mechanism(s) involved in umami taste perception. This review discusses current knowledge of the mechanism(s) of umami perception from receptor level to human brain imaging. New findings regarding the molecular mechanisms for detecting umami tastes and their pathway(s), and the peripheral and central coding to umami taste are reviewed. The representation of umami in the human brain and the individual variation in detecting umami taste and associations with genotype are discussed. The presence of umami taste receptors in the gastrointestinal tract, and the interactions between the brain and gut are highlighted. The review concludes that more research is required into umami taste perception to include not only oral umami taste perception, but also the wider "whole body" signaling mechanisms, to explore the interaction between the brain and gut in response to umami perception and ingestion.


Assuntos
Percepção Gustatória , Paladar , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Neuroimagem , Receptores Acoplados a Proteínas G/fisiologia , Paladar/fisiologia
6.
Endocr J ; 69(5): 487-493, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34803124

RESUMO

T1R3 is a class C G protein-coupled receptor family member that forms heterodimeric umami and sweet taste receptors with T1R1 and T1R2, respectively, in the taste cells of taste buds. T1R3 is expressed in 3T3-L1 cells in homomeric form and negatively regulates adipogenesis in a Gαs-dependent but cAMP-independent manner. Although T1R3 expression is markedly upregulated during adipogenesis, its physiological role in mature adipocytes remains obscure. Here, we show that stimulation of T1R3 with sucralose or saccharin induces microtubule disassembly in differentiated 3T3-L1 adipocytes. The effect was reproduced by treatment with cholera toxin or isoproterenol but not with forskolin. Treatment with sucralose or saccharin for 3 h inhibited insulin-stimulated glucose uptake by 32% and 45% in differentiated adipocytes, respectively, similar to the inhibitory effect of nocodazole (by 33%). Isoproterenol treatment inhibited insulin-stimulated glucose transport by 26%, whereas sucralose did not affect the intrinsic activity of the glucose transporter, indicating that it inhibited insulin-induced GLUT4 translocation to the plasma membrane. Immunostaining analysis showed that insulin-stimulated GLUT4 accumulation on the plasma membrane was abrogated in sucralose-treated cells, in association with depolymerization of microtubules. Sucralose-mediated inhibition of GLUT4 translocation was reversed by the overexpression of dominant-negative Gαs (Gαs-G226A) or knockdown of Gαs. Additionally, membrane fractionation analysis showed that sucralose treatment reduced GLUT4 levels in the plasma membrane fraction from insulin-stimulated adipocytes. We have identified a novel non-gustatory role for homomeric T1R3 in adipocytes, and activation of the T1R3 receptor negatively regulates insulin action of glucose transport via Gαs-dependent microtubule disassembly.


Assuntos
Papilas Gustativas , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Camundongos , Microtúbulos/metabolismo , Sacarina/metabolismo , Paladar , Papilas Gustativas/metabolismo
7.
Biochem Biophys Res Commun ; 542: 54-58, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33486192

RESUMO

The perception of sweet is mediated by the sweet taste receptor T1R2-T1R3 expressed in taste cells of the lingual epithelium. This receptor is also expressed in intestinal enteroendocrine cells and is required for sensing luminal sugars and sweeteners to regulate expression of intestinal Na+-glucose cotransporter 1 (SGLT1). There are some notable differences amongst species in the ability to detect certain non-nutritive (artificial) sweeteners. Amino acid substitutions and pseudogenization of taste receptor genes are responsible for these disparities. Using heterologous expression, we demonstrate that the commonly used non-nutritive sweeteners sucralose, saccharin and acesulfame K activate pig T1R2-T1R3, but that aspartame and cyclamate do not. Furthermore, we show that in vitro sweetener activation of pig T1R2-T1R3 mirrors the sweetener stimulation of the gut-expressed receptor in vivo. Considering that sweeteners are included in animal feed worldwide, determination of taste receptor specificities in different species is essential for the development of scientifically-based dietary formulations.

8.
Bioorg Med Chem Lett ; 30(8): 127000, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32063432

RESUMO

The sweet receptor T1R2/T1R3 is a member of G protein-coupled receptor family and recognizes diverse natural and synthetic sweeteners. Previously, we reported a novel class of positive allosteric modulators (PAMs) of T1R2/T1R3 comprising an unnatural tripeptide structure. We classified the structure of these PAMs into three parts: "head", "linker" and "tail". Here, we report the design, synthesis and evaluation of various tail structures to obtain highly active unnatural peptide structure of PAM. In conclusion, we discovered the novel unnatural tetrapeptide with highly potent PAM activity on T1R2/T1R3 in a cell-based assay system.


Assuntos
Desenho de Fármacos , Peptídeos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Regulação Alostérica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Relação Estrutura-Atividade
9.
J Sci Food Agric ; 100(13): 4818-4825, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32478409

RESUMO

BACKGROUND: It is known that cholecystokinin (CCK) plays an essential role in reducing food intake and driving weight loss. Previous studies demonstrated that amino acids were capable of triggering CCK release through G protein-coupled receptors, but the sensing mechanism remains obscure, especially the intracellular signaling pathway. RESULTS: l-Glu, rather than its d-isomer, robustly stimulated CCK secretion in a porcine duodenal model, and the secretory response was augmented by incubation with the allosteric ligand of T1R1, while T1R3 antagonist attenuated it. Upon inhibiting phospholipase C (PLC) or transient receptor potential M5 (TRPM5) activity, l-Glu failed to increase CCK release. Oral administration of monosodium glutamate in rats also suppressed food intake and increased plasma CCK levels, accompanied by elevated expression of T1R1, PLCß2 and TRPM5 in the duodenum. CONCLUSION: These data demonstrated that l-Glu stimulated CCK secretion through the activation of T1R1/T1R3 in a PLC/TRPM5-dependent manner. © 2020 Society of Chemical Industry.


Assuntos
Colecistocinina/metabolismo , Duodeno/metabolismo , Ácido Glutâmico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canais de Cátion TRPM/metabolismo , Fosfolipases Tipo C/metabolismo , Animais , Ligantes , Transdução de Sinais , Suínos
10.
Eur J Immunol ; 48(12): 2031-2041, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30259960

RESUMO

Natural Killer (NK) cell-based immunotherapy is a promising approach to treat hepatocellular carcinoma (HCC). The mechanisms underlying the regulation of NK cell activity are not completely understood. In this research, we identified the expression of taste receptor type 1 member 1 (T1R1) and taste receptor type 1 member 3 (T1R3) in a subset of hepatic NK cells in a mouse HCC model. T1R1 and T1R3 were selectively expressed in CD49a+ CD49b- NK cells in livers with HCC. In the in vitro cytotoxicity assay, amino acids promoted the tumoricidal effect of CD49a+ CD49b- NK cells through increasing the production of perforin, granzyme B and IFN-γ. Furthermore, using a lentivirus to induce the expression of exogenous T1R1 and T1R3 in normal hepatic NK cells, we found that amino acids enhanced NK cell-mediated cytotoxicity on tumor cells through the T1R1/T1R3 receptor, as demonstrated by more tumor cell lysis, up-regulation of perforin and granzyme B in comparison with control NK cells. In addition, amino acids activated Akt and mechanistic target of rapamycin complex 1 (mTORC1) signaling in NK cells through T1R1/T1R3 receptor. T-bet expression in NK cells was also increased by amino acid treatment. Therefore, T1R1/T1R3 receptor promotes the tumoricidal activity of hepatic CD49a+ CD49b- NK cells.


Assuntos
Carcinoma Hepatocelular/imunologia , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Neoplasias Hepáticas/imunologia , Fígado/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Aminoácidos/metabolismo , Animais , Tetracloreto de Carbono , Carcinoma Hepatocelular/terapia , Células Cultivadas , Citotoxicidade Imunológica , Modelos Animais de Doenças , Humanos , Integrina alfa1/metabolismo , Integrina alfa2/metabolismo , Células Matadoras Naturais/transplante , Neoplasias Hepáticas/terapia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Oncogênica v-akt/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
11.
Biochem Biophys Res Commun ; 514(3): 967-973, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31092329

RESUMO

Taste receptor T1R1-T1R3 can be activated by binding to several natural ligands, e.g., l-glutamate and 5'-ribonucleotides etc., thereby stimulating the umami taste. The molecular mechanism of umami recognition at atomic details, however, remains elusive. Here, using homology modeling, molecular docking and molecular dynamics (MD) simulations, we investigate the effects of five natural umami ligands on the structural dynamics of T1R1-T1R3. Our work identifies the key residues that are directly involved in recognizing the binding ligands. In addition, two adjacent binding sites in T1R1 are determined for substrate binding, and depending on the molecular size and chemical properties of the incoming ligand, one or both binding sites can be occupied. More interestingly, the ligand binding can modulate the pocket size, which is likely correlated with the closing and opening motions of T1R1. We then classify these five ligands into two groups according to their different binding effects on T1R1, which likely associate with the distinct umami signals stimulated by various ligands. This work warrants new experimental assays to further validate the theoretical model and provides guidance to design more effective umami ligands.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Sítios de Ligação , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Receptores Acoplados a Proteínas G/química
12.
Chem Senses ; 44(8): 571-582, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31424498

RESUMO

The chemical senses and pharmaceuticals fundamentally depend on similar biological processes, but novel molecule discovery has classically been approached from vastly different vantage points. From the perspective of ingredient and flavor companies, there are countless ingredients that act via largely unknown mechanisms, whereas the pharmaceutical industry has numerous mechanisms in search of novel compounds. Mixtures of agonists can result in synergistic (superadditive) responses, which can be quantified via isobole analysis, a well-proven clinical approach in pharmacology. For the food and beverage industries, bulk (caloric) sweeteners like sugars are a key ingredient in sweetened foods and beverages, but consumers also desire products with fewer calories, which has led to the development of sweet enhancers and sweetener blends intended to achieve synergy or superadditivity. Synergistic mixtures are highly attractive targets commercially as they enable lower usage levels and enhanced efficacy. Although the psychophysical literature contains numerous prior reports of sweetener synergy, others have also noted that classical additive models fail to account for nonlinear dose-response functions. To address this shortcoming, here we systematically apply the isobole method from pharmacology to quantify the presence or absence of psychophysical synergy for binary pairs of sweeteners in a series of 15 separate experiments, each with ~100 adult volunteers (total n = 1576). Generally, these data support the hypothesis that structurally similar sweeteners acting as agonists will not synergize, whereas structurally dissimilar sweeteners binding to overlapping or distal sites can act as allosteric agonists or agonist-antagonists, respectively.


Assuntos
Adoçantes não Calóricos/farmacologia , Adoçantes Calóricos/farmacologia , Receptores Acoplados a Proteínas G/química , Percepção Gustatória/efeitos dos fármacos , Paladar/efeitos dos fármacos , Adolescente , Adulto , Sítios de Ligação , Sinergismo Farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Adoçantes não Calóricos/química , Adoçantes Calóricos/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade , Paladar/fisiologia , Percepção Gustatória/fisiologia , Termodinâmica
13.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L165-L176, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28971978

RESUMO

A hallmark of acute respiratory distress syndrome (ARDS) is pulmonary vascular permeability. In these settings, loss of barrier integrity is mediated by cell-contact disassembly and actin remodeling. Studies into molecular mechanisms responsible for improving microvascular barrier function are therefore vital in the development of therapeutic targets for reducing vascular permeability in ARDS. The sweet taste receptor T1R3 is a G protein-coupled receptor, activated following exposure to sweet molecules, to trigger a gustducin-dependent signal cascade. In recent years, extraoral locations for T1R3 have been identified; however, no studies have focused on T1R3 within the vasculature. We hypothesize that activation of T1R3, in the pulmonary vasculature, plays a role in regulating endothelial barrier function in settings of ARDS. Our study demonstrated expression of T1R3 within the pulmonary vasculature, with a drop in expression levels following exposure to barrier-disruptive agents. Exposure of lung microvascular endothelial cells to the intensely sweet molecule sucralose attenuated LPS- and thrombin-induced endothelial barrier dysfunction. Likewise, sucralose exposure attenuated bacteria-induced lung edema formation in vivo. Inhibition of sweet taste signaling, through zinc sulfate, T1R3, or G-protein siRNA, blunted the protective effects of sucralose on the endothelium. Sucralose significantly reduced LPS-induced increased expression or phosphorylation of the key signaling molecules Src, p21-activated kinase (PAK), myosin light chain-2 (MLC2), heat shock protein 27 (HSP27), and p110α phosphatidylinositol 3-kinase (p110αPI3K). Activation of T1R3 by sucralose protects the pulmonary endothelium from edemagenic agent-induced barrier disruption, potentially through abrogation of Src/PAK/p110αPI3K-mediated cell-contact disassembly and Src/MLC2/HSP27-mediated actin remodeling. Identification of sweet taste sensing in the pulmonary vasculature may represent a novel therapeutic target to protect the endothelium in settings of ARDS.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Infecções por Pseudomonas/microbiologia , Receptores Acoplados a Proteínas G/metabolismo , Sacarose/análogos & derivados , Edulcorantes/farmacologia , Paladar/efeitos dos fármacos , Animais , Permeabilidade Capilar , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Pseudomonas aeruginosa/isolamento & purificação , Transdução de Sinais , Sacarose/farmacologia
14.
J Neurosci ; 36(1): 113-24, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26740654

RESUMO

By conventional behavioral measures, rodents respond to natural sugars, such as glucose and fructose, as though they elicit an identical perceptual taste quality. Beyond that, the metabolic and sensory effects of these two sugars are quite different. Considering the capacity to immediately respond to the more metabolically expedient sugar, glucose, would seem advantageous for energy intake, the present experiment assessed whether experience consuming these two sugars would modify taste-guided ingestive responses to their yet unknown distinguishing orosensory properties. One group (GvF) had randomized access to three concentrations of glucose and fructose (0.316, 0.56, 1.1 m) in separate 30-min single access training sessions, whereas control groups received equivalent exposure to the three glucose or fructose concentrations only, or remained sugar naive. Comparison of the microstructural licking patterns for the two sugars revealed that GvF responded more positively to glucose (increased total intake, increased burst size, decreased number of pauses), relative to fructose, across training. As training progressed, GvF rats began to respond more positively to glucose in the first minute of the session when intake is principally taste-driven. During post-training brief-access taste tests, GvF rats licked more for glucose than for fructose, whereas the other training groups did not respond differentially to the two sugars. Additional brief access testing showed that this did not generalize to Na-saccharin or galactose. Thus, in addition to eliciting a common taste signal, glucose and fructose produce distinct signals that are apparently rendered behaviorally relevant and hedonically distinct through experience. The taste pathway(s) underlying this remain to be identified. SIGNIFICANCE STATEMENT: The T1R2+T1R3 heterodimer is thought by many to be the only taste receptor for sugars. Although most sugars have been conventionally shown to correspondingly produce a unitary taste percept (sweet), there is reason to question this model. Here, we demonstrate that rats that repeatedly consumed two metabolically distinct sugars (glucose and fructose), and thus have had the opportunity to associate the tastes of these sugars with their differential postoral consequences, initially respond identically to the orosensory properties of the two sugars but eventually respond more positively to glucose. Thus, in addition to the previously identified common taste pathway, glucose and fructose must engage distinct orosensory pathways, the underlying molecular and neural mechanisms of which now await discovery.


Assuntos
Sacarose Alimentar/metabolismo , Preferências Alimentares/fisiologia , Frutose/metabolismo , Glucose/metabolismo , Transdução de Sinais/fisiologia , Paladar/fisiologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley
15.
Eur J Nutr ; 56(8): 2467-2474, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27539583

RESUMO

PURPOSE: The mechanism of dietary amino acids in regulating milk protein synthesis at the translational level is not well understood. Numerous studies have shown that the amino acid signal is transferred through the mammalian target of rapamycin (mTOR) pathway; however, the extracellular amino acid-sensing mechanism that activates mTOR complex 1 is unknown. We tested the hypotheses that the T1R1/T1R3 heterodimer functions as a direct sensor of the fed state and amino acid availability preceding the mTOR pathway and affects milk protein synthesis in mammary epithelial cells. METHODS: The expression of T1R1 was repressed by T1R1 siRNA in mouse mammary epithelial cells model (HC11). Western blot was used to analyze activity of the mTOR pathway and ß-casein expression, and quantitative real-time RT-PCR was used to analyze the change in mRNA abundance of amino acid transporters. RESULTS: The transcripts and proteins of T1R1 and T1R3 were detected in HC11 cells and mouse mammary gland tissue. siRNA silencing of T1R1 repressed ß-casein synthesis in HC11 cells both with and without essential amino acids present in the culture medium. The phosphorylation of mTOR, S6K, and 4EBP1 in T1R1 knockdown HC11 cells declined to 25, 50, and 30 %, indicating T1R1 knockdown repressed the activity of the mTOR pathway. T1R1 knockdown increased the mRNAs coding three important amino acid transporters (SLC1A5 and SLC3A2/SLC7A5). Activation of the mTOR pathway was partially repressed by T1R1 siRNA or SLC7A5/SLC3A2 inhibitor (BCH, 10 mM), and the combination of these two treatments further repressed the activity of this pathway. CONCLUSION: T1R1/T1R3 serves as sensor of extracellular amino acids in mouse mammary epithelial cells and involved in milk protein synthesis regulation.


Assuntos
Aminoácidos/farmacologia , Células Epiteliais/metabolismo , Proteínas do Leite/biossíntese , Receptores Acoplados a Proteínas G/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Aminoácidos Cíclicos/farmacologia , Animais , Caseínas/genética , Caseínas/metabolismo , Linhagem Celular , Feminino , Cadeia Pesada da Proteína-1 Reguladora de Fusão/antagonistas & inibidores , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Inativação Gênica , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Camundongos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Fosforilação , Biossíntese de Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/genética , Serina-Treonina Quinases TOR/genética
16.
Molecules ; 22(3)2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294983

RESUMO

The special sense of taste guides and guards food intake and is essential for body maintenance. Salty and sour tastes are sensed via ion channels or gated ion channels while G protein-coupled receptors (GPCRs) of the taste receptor type 1 (T1R) family sense sweet and umami tastes and GPCRs of the taste receptor type 2 (T2R) family sense bitter tastes. T1R and T2R receptors share similar downstream signaling pathways that result in the stimulation of phospholipase-C-ß2. The T1R family includes three members that form heterodimeric complexes to recognize either amino acids or sweet molecules such as glucose. Although these functions were originally described in gustatory tissue, T1R family members are expressed in numerous non-gustatory tissues and are now viewed as nutrient sensors that play important roles in monitoring global glucose and amino acid status. Here, we highlight emerging evidence detailing the function of T1R family members in the musculoskeletal system and review these findings in the context of the musculoskeletal diseases sarcopenia and osteoporosis, which are major public health problems among the elderly that affect locomotion, activities of daily living, and quality of life. These studies raise the possibility that T1R family member function may be modulated for therapeutic benefit.


Assuntos
Remodelação Óssea , Fenômenos Fisiológicos Musculoesqueléticos , Receptores Acoplados a Proteínas G/metabolismo , Aminoácidos/metabolismo , Animais , Glucose/metabolismo , Humanos , Osteoporose/genética , Receptores Acoplados a Proteínas G/genética , Sarcopenia/genética , Transdução de Sinais
17.
Int J Mol Sci ; 17(10)2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27727170

RESUMO

The mammalian target of rapamycin complex 1 (mTORC1) integrates amino acid (AA) availability to support protein synthesis and cell growth. Taste receptor type 1 member (T1R) is a G protein-coupled receptor that functions as a direct sensor of extracellular AA availability to regulate mTORC1 through Ca2+ stimulation and extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation. However, the roles of specific AAs in T1R1/T1R3-regulated mTORC1 are poorly defined. In this study, T1R1 and T1R3 subunits were expressed in C2C12 myotubes, and l-AA sensing was accomplished by T1R1/T1R3 to activate mTORC1. In response to l-AAs, such as serine (Ser), arginine (Arg), threonine (Thr), alanine (Ala), methionine (Met), glutamine (Gln), and glycine (Gly), Met induced mTORC1 activation and promoted protein synthesis. Met also regulated mTORC1 via T1R1/T1R3-PLCß-Ca2+-ERK1/2 signal transduction. Results revealed a new role for Met-regulated mTORC1 via an AA receptor. Further studies should be performed to determine the role of T1R1/T1R3 in mediating extracellular AA to regulate mTOR signaling and to reveal its mechanism.


Assuntos
Metionina/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Reação em Cadeia da Polimerase
18.
J Biol Chem ; 289(37): 25711-20, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25056955

RESUMO

Gymnemic acids are triterpene glycosides that selectively suppress taste responses to various sweet substances in humans but not in mice. This sweet-suppressing effect of gymnemic acids is diminished by rinsing the tongue with γ-cyclodextrin (γ-CD). However, little is known about the molecular mechanisms underlying the sweet-suppressing effect of gymnemic acids and the interaction between gymnemic acids versus sweet taste receptor and/or γ-CD. To investigate whether gymnemic acids directly interact with human (h) sweet receptor hT1R2 + hT1R3, we used the sweet receptor T1R2 + T1R3 assay in transiently transfected HEK293 cells. Similar to previous studies in humans and mice, gymnemic acids (100 µg/ml) inhibited the [Ca(2+)]i responses to sweet compounds in HEK293 cells heterologously expressing hT1R2 + hT1R3 but not in those expressing the mouse (m) sweet receptor mT1R2 + mT1R3. The effect of gymnemic acids rapidly disappeared after rinsing the HEK293 cells with γ-CD. Using mixed species pairings of human and mouse sweet receptor subunits and chimeras, we determined that the transmembrane domain of hT1R3 was mainly required for the sweet-suppressing effect of gymnemic acids. Directed mutagenesis in the transmembrane domain of hT1R3 revealed that the interaction site for gymnemic acids shared the amino acid residues that determined the sensitivity to another sweet antagonist, lactisole. Glucuronic acid, which is the common structure of gymnemic acids, also reduced sensitivity to sweet compounds. In our models, gymnemic acids were predicted to dock to a binding pocket within the transmembrane domain of hT1R3.


Assuntos
Saponinas/administração & dosagem , Edulcorantes/administração & dosagem , Papilas Gustativas/efeitos dos fármacos , Paladar/genética , Triterpenos/administração & dosagem , Sequência de Aminoácidos , Animais , Derivados de Benzeno/administração & dosagem , Sítios de Ligação , Células HEK293 , Humanos , Camundongos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Paladar/efeitos dos fármacos , Papilas Gustativas/metabolismo
19.
Biochem Biophys Res Commun ; 466(3): 346-9, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26361143

RESUMO

Umami taste is one of the five basic taste qualities, along with sweet, bitter, sour, and salty, and is elicited by some l-amino acids and their salts, including monopotassium l-glutamate (MPG). The unique characteristic of umami taste is that it is synergistically enhanced by 5'-ribonucleotides such as inosine 5'-monophosphate (IMP). Unlike the other four basic taste qualities, the presence of umami taste sense in avian species is not fully understood. In this study, we demonstrated the expression of multiple umami taste receptor candidates in oral and gastrointestinal tract tissues in chickens using RT-PCR analysis. We first showed the metabotropic glutamate receptors (mGluRs) expressed in these tissues. Furthermore, we examined the preference for umami taste in chickens, focusing on the synergistic effect of umami taste as determined by the two-feed choice test. We concluded that chickens preferred feed containing both added MPG and added IMP over feeds containing either added MPG or added IMP alone and over the control feed. These results suggest that the umami taste sense and synergism are conserved in chickens.


Assuntos
Trato Gastrointestinal/metabolismo , Mucosa Intestinal/metabolismo , Boca/metabolismo , Papilas Gustativas/metabolismo , Percepção Gustatória , Animais , Animais Recém-Nascidos , Galinhas , Regulação da Expressão Gênica , Moela das Aves , Receptores de Superfície Celular/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Paladar , Distribuição Tecidual
20.
Am J Physiol Regul Integr Comp Physiol ; 309(5): R552-60, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26157055

RESUMO

Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar.


Assuntos
Carboidratos/administração & dosagem , Insulina/sangue , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais/efeitos dos fármacos , Edulcorantes/administração & dosagem , Paladar/efeitos dos fármacos , Administração Oral , Animais , Comportamento Animal/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Carboidratos/sangue , Nervo da Corda do Tímpano/efeitos dos fármacos , Nervo da Corda do Tímpano/metabolismo , Preferências Alimentares/efeitos dos fármacos , Frutose/administração & dosagem , Genótipo , Glucose/administração & dosagem , Teste de Tolerância a Glucose , Injeções , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sacarose/administração & dosagem , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA