Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Entropy (Basel) ; 25(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36981333

RESUMO

The geometric first-order integer-valued autoregressive process (GINAR(1)) can be particularly useful to model relevant discrete-valued time series, namely in statistical process control. We resort to stochastic ordering to prove that the GINAR(1) process is a discrete-time Markov chain governed by a totally positive order 2 (TP2) transition matrix.Stochastic ordering is also used to compare transition matrices referring to pairs of GINAR(1) processes with different values of the marginal mean. We assess and illustrate the implications of these two stochastic ordering results, namely on the properties of the run length of geometric charts for monitoring GINAR(1) counts.

2.
Parasitol Res ; 119(11): 3817-3828, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33009946

RESUMO

Buffalo-derived Theileria parva can 'break through' the immunity induced by the infection and treatment vaccination method (ITM) in cattle. However, no such 'breakthroughs' have been reported in northern Tanzania where there has been long and widespread ITM use in pastoralist cattle, and the Cape buffalo (Syncerus caffer) is also present. We studied the exposure of vaccinated and unvaccinated cattle in northern Tanzania to buffalo-derived T. parva using p67 gene polymorphisms and compared this to its distribution in vaccinated cattle exposed to buffalo-derived T. parva in central Kenya, where vaccine 'breakthroughs' have been reported. Additionally, we analysed the CD8+ T cell target antigen Tp2 for positive selection. Our results showed that 10% of the p67 sequences from Tanzanian cattle (n = 39) had a buffalo type p67 (allele 4), an allele that is rare among East African isolates studied so far. The percentage of buffalo-derived p67 alleles observed in Kenyan cattle comprised 19% of the parasites (n = 36), with two different p67 alleles (2 and 3) of presumptive buffalo origin. The Tp2 protein was generally conserved with only three Tp2 variants from Tanzania (n = 33) and five from Kenya (n = 40). Two Tanzanian Tp2 variants and two Kenyan Tp2 variants were identical to variants present in the trivalent Muguga vaccine. Tp2 evolutionary analysis did not show evidence for positive selection within previously mapped epitope coding sites. The p67 data indicates that some ITM-vaccinated cattle are protected against disease induced by a buffalo-derived T. parva challenge in northern Tanzania and suggests that the parasite genotype may represent one factor explaining this.


Assuntos
Antígenos de Superfície/genética , Búfalos/parasitologia , Theileria parva/genética , Theileriose/parasitologia , Alelos , Animais , Animais Selvagens/parasitologia , Bovinos , Genótipo , Especificidade de Hospedeiro , Quênia , Gado/parasitologia , Polimorfismo Genético/genética , Esporozoítos/genética , Tanzânia , Theileria parva/classificação , Theileriose/transmissão , Vacinação/veterinária
3.
J Lipid Res ; 56(3): 612-619, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25616437

RESUMO

We previously determined that hamster cholesteryl ester transfer protein (CETP), unlike human CETP, promotes a novel one-way transfer of TG from VLDL to HDL, causing HDL to gain lipid. We hypothesize that this nonreciprocal lipid transfer activity arises from the usually high TG/cholesteryl ester (CE) substrate preference of hamster CETP. Consistent with this, we report here that ∼25% of the total lipid transfer promoted by the human Q199A CETP mutant, which prefers TG as substrate, is nonreciprocal transfer. Other human CETP mutants with TG/CE substrate preferences higher or lower than wild-type also possess nonreciprocal lipid transfer activity. Mutants with high TG/CE substrate preference promote the nonreciprocal lipid transfer of TG from VLDL to HDL, but mutants with low TG/CE substrate preference promote the nonreciprocal lipid transfer of CE, not TG, and this lipid flow is in the reverse direction (from HDL to VLDL). Anti-CETP TP2 antibody alters the TG/CE substrate preference of CETP and also changes the extent of nonreciprocal lipid transfer, showing the potential for externally acting agents to modify the transfer properties of CETP. Overall, these data show that the lipid transfer properties of CETP can be manipulated. Function-altering pharmaceuticals may offer a novel approach to modify CETP activity and achieve specific modifications in lipoprotein metabolism.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/química , Ésteres do Colesterol/química , Desenho de Fármacos , Triglicerídeos/química , Substituição de Aminoácidos , Animais , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Ésteres do Colesterol/genética , Ésteres do Colesterol/metabolismo , Cricetinae , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Lipoproteínas VLDL/química , Lipoproteínas VLDL/genética , Lipoproteínas VLDL/metabolismo , Mutação de Sentido Incorreto , Relação Estrutura-Atividade , Especificidade por Substrato , Triglicerídeos/genética , Triglicerídeos/metabolismo
4.
J Lipid Res ; 55(2): 258-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24293641

RESUMO

Site-specific changes in the amino acid composition of human cholesteryl ester transfer protein (CETP) modify its preference for triglyceride (TG) versus cholesteryl ester (CE) as substrate. CETP homologs are found in many species but little is known about their activity. Here, we examined the lipid transfer properties of CETP species with 80-96% amino acid identity to human CETP. TG/CE transfer ratios for recombinant rabbit, monkey, and hamster CETPs were 1.40-, 1.44-, and 6.08-fold higher than human CETP, respectively. In transfer assays between VLDL and HDL, net transfers of CE into VLDL by human and monkey CETPs were offset by equimolar net transfers of TG toward HDL. For hamster CETP this process was not equimolar but resulted in a net flow of lipid (TG) into HDL. When assayed for the ability to transfer lipid to an acceptor particle lacking CE and TG, monkey and hamster CETPs were most effective, although all CETP species were able to promote this one-way movement of neutral lipid. We conclude that CETPs from human, monkey, rabbit, and hamster are not functionally equivalent. Most unique was hamster CETP, which strongly prefers TG as a substrate and promotes the net flow of lipid from VLDL to HDL.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Ésteres do Colesterol/metabolismo , Cricetinae , Células HEK293 , Haplorrinos , Humanos , Lipoproteínas/metabolismo , Coelhos , Especificidade da Espécie , Especificidade por Substrato , Triglicerídeos/metabolismo
5.
J Nutr Sci ; 12: e103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771507

RESUMO

This review discusses epigenetic mechanisms and the relationship of infertility in men and women in relation to parameters pertaining to nutrition. The prevalence of infertility worldwide is 8-12 %, and one out of every eight couples receives medical treatment. Epigenetic mechanisms, aging, environmental factors, dietary energy and nutrients and non-nutrient compounds; more or less energy intake, and methionine come into play in the occurrence of infertility. It also interacts with vitamins B12, D and B6, biotin, choline, selenium, zinc, folic acid, resveratrol, quercetin and similar factors. To understand the molecular mechanisms regulating the expression of genes that affect infertility, the environment, the role of genotype, age, health, nutrition and changes in the individual's epigenotype must first be considered. This will pave the way for the identification of the unknown causes of infertility. Insufficient or excessive intake of energy and certain macro and micronutrients may contribute to the occurrence of infertility as well. In addition, it is reported that 5-10 % of body weight loss, moderate physical activity and nutritional interventions for improvement in insulin sensitivity contribute to the development of fertility. Processes that pertain to epigenetics carry alterations which are inherited yet not encoded via the DNA sequence. Nutrition is believed to have an impact over the epigenetic mechanisms which are effective in the pathogenesis of several diseases like infertility. Epigenetic mechanisms of individuals with infertility are different from healthy individuals. Infertility is associated with epigenetic mechanisms, nutrients, bioactive components and numerous other factors.


Assuntos
Infertilidade Feminina , Humanos , Masculino , Feminino , Infertilidade Feminina/genética , Epigênese Genética , Genótipo
6.
Pathogens ; 11(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35215058

RESUMO

East Coast Fever (ECF), caused by Theileria parva, is a major constraint to improved livestock keeping in east and central Africa, including Zambia. To understand the dynamics and determine the candidates for immunization in Zambia's Chongwe and Chisamba districts, a combination of Tp1 and Tp2 gene sequencing and microsatellite analysis using nine markers was conducted from which an abundance of Muguga, Kiambu, Serengeti and Katete epitopes in the field samples was obtained. Phylogenetic analysis showed six (Tp1) and three (Tp2) clusters with an absence of geographical origin clustering. The majority of haplotypes were related to Muguga, Kiambu, Serengeti and Katete, and only a few were related to Chitongo. Both antigens showed purifying selection with an absence of positive selection sites. Furthermore, low to moderate genetic differentiation was observed among and within the populations, and when vaccine stocks were compared with field samples, Chongwe samples showed more similarity to Katete and less to Chitongo, while Chisamba samples showed similarity to both Katete and Chitongo and not to Muguga, Kiambu or Serengeti. We conclude that the use of Katete stock for immunization trials in both Chongwe and Chisamba districts might produce desirable protection against ECF.

7.
Front Pharmacol ; 11: 570476, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364945

RESUMO

The prominent human symbiont Bacteroides fragilis protects animals from intestinal diseases, such as ulcerative colitis, and its capsular polysaccharide plays a key role in reducing inflammation. B. fragilis strain ZY-312 was isolated from the feces of a healthy breast-fed infant, and the zwitterionic capsular polysaccharide zwitterionic polysaccharide, TP2, was extracted. In rats with 2,4-dinitrobenzenesulfonic acid (DNBS)-induced enteritis, TP2 at an optimal dose of 2.5 mg/kg could significantly alleviate enteritis and reduced the degree of intestinal adhesions, the intestinal ulcer area, and the incidence of ulcers in rats. To understand the underlying mechanism, TP2 was labeled with Fluorescein isothiocyanate and orally administered at a dose of 2.5 mg/kg in rats. TP2 was mainly distributed in the cecum and colorectum, but it was not detected in the blood and other organs except that a compound with a molecular weight greater than that of TP2-FITC was found in liver tissue. During the absorption, distribution, metabolism, and excretion, TP2 was indigestible. These results were further confirmed by investigation in the simulated gastric, intestinal fluid, and colonic fluid with fecal microbiota in vitro, where TP2 remained unaltered at different time points. Furthermore, flora composition was analyzed in simulated colonic fluid with TP2 added and it was found that TP2 increased the abundance of Faecalibacterium, Enterococcus romboutsia, and Ruminococcaceae, whereas the abundance of the phylum Proteobacteria represented by Sutterella, Desulfovibrio, and Enterobacteriaceae was decreased. However, the amount of short-chain fatty acids in the simulated colonic fluid was not changed by intestinal flora post-TP2 addition. In conclusion, these findings confirmed that TP2, a capsular polysaccharide of B. fragilis, protects against ulcerative colitis in an undegraded form.

8.
Front Cell Dev Biol ; 8: 580019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425888

RESUMO

GRTH/DDX25 is a member of the DEAD-box family of RNA helicases that play an essential role in spermatogenesis. GRTH knock-in (KI) mice with the human mutant GRTH gene (R242H) show loss of the phospho-species from cytoplasm with preservation of the non-phospho form in the cytoplasm and nucleus. GRTH KI mice are sterile and lack elongated spermatids and spermatozoa, with spermatogenic arrest at step 8 of round spermatids which contain chromatoid body (CB) markedly reduced in size. We observed an absence of phospho-GRTH in CB of GRTH KI mice. RNA-Seq analysis of mRNA isolated from CB revealed that 1,421 genes show differential abundance, of which 947 genes showed a decrease in abundance and 474 genes showed an increase in abundance in GRTH KI mice. The transcripts related to spermatid development, differentiation, and chromatin remodeling (Tnp1/2, Prm1/2/3, Spem1/2, Tssk 2/3/6, Grth, tAce, and Upf2) were reduced, and the transcripts encoding for factors involved in RNA transport, regulation, and surveillance and transcriptional and translational regulation (Eef1a1, Ppp1cc, Pabpc1, Ybx3, Tent5b, H2al1m, Dctn2, and Dync1h1) were increased in the CB of KI mice and were further validated by qPCR. In the round spermatids of wild-type mice, mRNAs of Tnp2, Prm2, and Grth were abundantly co-localized with MVH protein in the CB, while in GRTH KI mice these were minimally present. In addition, GRTH binding to Tnp1/2, Prm1/2, Grth, and Tssk6 mRNAs was found to be markedly decreased in KI. These results demonstrate the importance of phospho-GRTH in the maintenance of the structure of CB and its role in the storage and stability of germ cell-specific mRNAs during spermiogenesis.

9.
Parasit Vectors ; 13(1): 452, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894166

RESUMO

BACKGROUND: East Coast fever (ECF) caused by Theileria parva is endemic in Rwanda. In this study, the antigenic and genetic diversity of T. parva coupled with immunization and field challenge were undertaken to provide evidence for the introduction of ECF immunization in Rwanda. METHODS: Blood collected from cattle in the field was screened for T. parva using ELISA and PCR targeting the p104 gene. Tp1 and Tp2 gene sequences were generated from field samples and from Gikongoro and Nyakizu isolates. Furthermore, multilocus genotype data was generated using 5 satellite markers and an immunization challenge trial under field conditions using Muguga cocktail vaccine undertaken. RESULTS: Out of 120 samples, 44 and 20 were positive on ELISA and PCR, respectively. Antigenic diversity of the Tp1 and Tp2 gene sequences revealed an abundance of Muguga, Kiambu and Serengeti epitopes in the samples. A further three clusters were observed on both Tp1 and Tp2 phylogenetic trees; two clusters comprising of field samples and vaccine isolates and the third cluster comprising exclusively of Rwanda samples. Both antigens exhibited purifying selection with no positive selection sites. In addition, satellite marker analysis revealed that field samples possessed both shared alleles with Muguga cocktail on all loci and also a higher proportion of unique alleles. The Muguga cocktail (Muguga, Kiambu and Serengeti) genotype compared to other vaccine isolates, was the most represented in the field samples. Further low genetic sub-structuring (FST = 0.037) coupled with linkage disequilibrium between Muguga cocktail and the field samples was observed. Using the above data to guide a field immunization challenge trial comprising 41 immunized and 40 control animals resulted in 85% seroconversion in the immunized animals and an efficacy of vaccination of 81.7%, implying high protection against ECF. CONCLUSIONS: Antigenic and genetic diversity analysis of T. parva facilitated the use of Muguga cocktail vaccine in field conditions. A protection level of 81.7% was achieved, demonstrating the importance of combining molecular tools with field trials to establish the suitability of implementation of immunization campaigns. Based on the information in this study, Muguga cocktail immunization in Rwanda has a potential to produce desirable results.


Assuntos
Antígenos de Protozoários/imunologia , DNA Satélite/genética , Imunização/veterinária , Theileria parva , Theileriose , Animais , Variação Antigênica , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/prevenção & controle , Ensaio de Imunoadsorção Enzimática/veterinária , Genes de Protozoários , Marcadores Genéticos , Variação Genética , Filogenia , Reação em Cadeia da Polimerase/veterinária , Polimorfismo Genético , Vacinas Protozoárias/imunologia , Ruanda , Linfócitos T/imunologia , Theileria parva/genética , Theileria parva/imunologia , Theileriose/imunologia , Theileriose/prevenção & controle , Vacinação/veterinária
10.
Transbound Emerg Dis ; 67 Suppl 1: 99-107, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32174038

RESUMO

Theileria parva is a tick-transmitted apicomplexan protozoan parasite that infects lymphocytes of cattle and African Cape buffalo (Syncerus caffer), causing a frequently fatal disease of cattle in eastern, central and southern Africa. A live vaccination procedure, known as infection and treatment method (ITM), the most frequently used version of which comprises the Muguga, Serengeti-transformed and Kiambu 5 stocks of T. parva, delivered as a trivalent cocktail, is generally effective. However, it does not always induce 100% protection against heterologous parasite challenge. Knowledge of the genetic diversity of T. parva in target cattle populations is therefore important prior to extensive vaccine deployment. This study investigated the extent of genetic diversity within T. parva field isolates derived from Ankole (Bos taurus) cattle in south-western Uganda using 14 variable number tandem repeat (VNTR) satellite loci and the sequences of two antigen-encoding genes that are targets of CD8+T-cell responses induced by ITM, designated Tp1 and Tp2. The findings revealed a T. parva prevalence of 51% confirming endemicity of the parasite in south-western Uganda. Cattle-derived T. parva VNTR genotypes revealed a high degree of polymorphism. However, all of the T. parva Tp1 and Tp2 alleles identified in this study have been reported previously, indicating that they are widespread geographically in East Africa and highly conserved.


Assuntos
Antígenos de Protozoários/genética , Búfalos/parasitologia , Doenças dos Bovinos/parasitologia , Repetições Minissatélites/genética , Vacinas Protozoárias/imunologia , Theileria parva/genética , Theileriose/parasitologia , Alelos , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/parasitologia , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , Feminino , Variação Genética , Genótipo , Masculino , Polimorfismo Genético/genética , Theileria parva/imunologia , Theileriose/epidemiologia , Theileriose/prevenção & controle , Carrapatos/parasitologia , Uganda/epidemiologia , Vacinas Atenuadas/imunologia
11.
Parasit Vectors ; 12(1): 588, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842995

RESUMO

BACKGROUND: Theileria parva causes East Coast fever (ECF), one of the most economically important tick-borne diseases of cattle in sub-Saharan Africa. A live immunisation approach using the infection and treatment method (ITM) provides a strong long-term strain-restricted immunity. However, it typically induces a tick-transmissible carrier state in cattle and may lead to spread of antigenically distinct parasites. Thus, understanding the genetic composition of T. parva is needed prior to the use of the ITM vaccine in new areas. This study examined the sequence diversity and the evolutionary and biogeographical dynamics of T. parva within the African Great Lakes region to better understand the epidemiology of ECF and to assure vaccine safety. Genetic analyses were performed using sequences of two antigen-coding genes, Tp1 and Tp2, generated among 119 T. parva samples collected from cattle in four agro-ecological zones of DRC and Burundi. RESULTS: The results provided evidence of nucleotide and amino acid polymorphisms in both antigens, resulting in 11 and 10 distinct nucleotide alleles, that predicted 6 and 9 protein variants in Tp1 and Tp2, respectively. Theileria parva samples showed high variation within populations and a moderate biogeographical sub-structuring due to the widespread major genotypes. The diversity was greater in samples from lowlands and midlands areas compared to those from highlands and other African countries. The evolutionary dynamics modelling revealed a signal of selective evolution which was not preferentially detected within the epitope-coding regions, suggesting that the observed polymorphism could be more related to gene flow rather than recent host immune-based selection. Most alleles isolated in the Great Lakes region were closely related to the components of the trivalent Muguga vaccine. CONCLUSIONS: Our findings suggest that the extensive sequence diversity of T. parva and its biogeographical distribution mainly depend on host migration and agro-ecological conditions driving tick population dynamics. Such patterns are likely to contribute to the epidemic and unstable endemic situations of ECF in the region. However, the fact that ubiquitous alleles are genetically similar to the components of the Muguga vaccine together with the limited geographical clustering may justify testing the existing trivalent vaccine for cross-immunity in the region.


Assuntos
Variação Antigênica , Antígenos de Protozoários/genética , Theileria parva/genética , África Central , Antígenos de Protozoários/imunologia , Genótipo , Polimorfismo Genético , Análise de Sequência de DNA , Theileria parva/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA