Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Infect Immun ; 90(2): e0031321, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34898250

RESUMO

Bovine tuberculosis, caused by Mycobacterium tuberculosis var. bovis (M. bovis), is an important enzootic disease affecting mainly cattle, worldwide. Despite the implementation of national campaigns to eliminate the disease, bovine tuberculosis remains recalcitrant to eradication in several countries. Characterizing the host response to M. bovis infection is crucial for understanding the immunopathogenesis of the disease and for developing better control strategies. To profile the host responses to M. bovis infection, we analyzed the transcriptome of whole blood cells collected from experimentally infected calves with a virulent strain of M. bovis using RNA transcriptome sequencing (RNAseq). Comparative analysis of calf transcriptomes at early (8 weeks) versus late (20 weeks) aerosol infection with M. bovis revealed a divergent and unique profile for each stage of infection. Notably, at the early time point, transcriptional upregulation was observed among several of the top-ranking canonical pathways involved in T-cell chemotaxis. At the late time point, enrichment in the cell mediated cytotoxicity (e.g., Granzyme B) was the predominant host response. These results showed significant change in bovine transcriptional profiles and identified networks of chemokine receptors and monocyte chemoattractant protein (CCL) coregulated genes that underline the host-mycobacterial interactions during progression of bovine tuberculosis in cattle. Further analysis of the transcriptomic profiles identified potential biomarker targets for early and late phases of tuberculosis in cattle. Overall, the identified profiles better characterized identified novel immunomodulatory mechanisms and provided a list of targets for further development of potential diagnostics for tuberculosis in cattle.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose Bovina , Animais , Bovinos , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Análise de Sequência de RNA , Transcriptoma , Tuberculose Bovina/microbiologia
2.
FEMS Yeast Res ; 22(1)2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35932192

RESUMO

Zygosaccharomyces rouxii is an osmotolerant and halotolerant yeast that can participate in fermentation. To understand the mechanisms of salt and sugar tolerance, the transcription levels of Z. rouxii M 2013310 under 180 g/L NaCl stress and 600 g/L glucose stress were measured. The transcriptome analysis showed that 2227 differentially expressed genes (DEGs) were identified under 180 g/L NaCl stress, 1530 DEGs were identified under 600 g/L glucose stress, and 1278 DEGs were identified under both stress conditions. Then, KEGG enrichment analyses of these genes indicated that 53.3% of the upregulated genes were involved in the ergosterol synthesis pathway. Subsequently, quantitative PCR was used to verify the results, which showed that the genes of the ergosterol synthesis pathway were significantly upregulated under 180 g/L NaCl stress. Finally, further quantitative testing of ergosterol and spotting assays revealed that Z. rouxii M 2013310 increased the amount of ergosterol in response to high salt stress. These results highlighted the functional differences in ergosterol under sugar stress and salt stress, which contributes to our understanding of the tolerance mechanisms of salt and sugar in Z. rouxii.


Assuntos
Zygosaccharomyces , Ergosterol/metabolismo , Glucose/metabolismo , Saccharomyces cerevisiae/genética , Saccharomycetales , Cloreto de Sódio/metabolismo , Açúcares/metabolismo , Zygosaccharomyces/fisiologia
3.
Genome ; 64(11): 985-995, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34253086

RESUMO

Cotton (Gossypium L.) is the most important fiber crop worldwide. Here, transcriptome analysis was conducted on developing fibers of a G. mustelinum introgression line, IL9, and its recurrent parent, PD94042, at 17 and 21 days post-anthesis (dpa). Differentially expressed genes (DEGs) of PD94042 and IL9 were identified. Gene Ontology (GO) enrichment analysis showed that the annotated DEGs were rich in two main biological processes and two main molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis likewise showed that the annotated DEGs were mainly enriched in metabolic pathways and biosynthesis of secondary metabolites. In total, 52 DEGs were selected as candidate genes based on comparison of the DEGs and GO function annotation information. Quantitative real-time PCR (RT-qPCR) analysis results for 12 randomly selected DEGs were consistent with transcriptome analysis. SNP identification based on G. mustelinum chromatin segment introgression showed that 394 SNPs were identified in 268 DEGs, and two genes with known functions were identified within fiber strength quantitative trait loci (QTL) regions or near the confidence intervals. We identified 52 key genes potentially related to high fiber strength in a G. mustelinum introgression line and provided significant insights into the study of cotton fiber quality improvement.


Assuntos
Fibra de Algodão , Genes de Plantas , Gossypium , Perfilação da Expressão Gênica , Gossypium/genética , Locos de Características Quantitativas , Transcriptoma
4.
Brief Bioinform ; 18(5): 789-797, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27439532

RESUMO

RNA-seq technology offers the promise of rapid comprehensive discovery of long intervening noncoding RNAs (lincRNAs). Basic tools such as Tophat and Cufflinks have been widely used for RNA-seq assembly. However, advanced bioinformatics methodologies that allow in-depth analysis of lincRNAs are lacking. Here, we describe a computational protocol that is especially designed for the identification of novel lincRNAs and the prediction of the function. The protocol mainly includes two open-access tools, CNCI and ncFANs. CNCI allows users to distinguish noncoding from protein-coding transcripts and to retrieve novel lincRNAs. ncFANs integrates expression profiles of protein-coding and lincRNA genes to construct coexpression networks. Such networks are subsequently used to perform function predictions of unknown lincRNAs. This protocol will allow users to apply these procedures without the need of additional training. All the tools in current protocol are available http://www.bioinfo.org/np/.


Assuntos
RNA Longo não Codificante/genética , Biologia Computacional , Proteínas
5.
Crit Rev Biotechnol ; 39(5): 680-692, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31068014

RESUMO

Biotic stress is one of the key factors that restrict the growth and development of plants. Fruit crops are mostly perennial, so they are more seriously endangered by biotic stress. Plant responses to different types of biotic stresses such as pathogens and insects are controlled by a very complex regulatory and defense system. High-throughput sequencing (next-generation sequencing) has brought powerful research strategies and methods to the research fields of genomics and post-genomics. Functional genomics, transcriptomics, proteomics, metabolomics, and deep-sequencing of small RNAs provides a new path to better understand the complex regulatory and defense systems behind biotic stress in plants. In this review, we summarized recent progresses in research on fruit crops responses to biotic stress using genomics, transcriptomics, proteomics, metabolomics, and deep-sequencing approaches. This paper also summarized the information of SNP marker resources and the transcription factors that are involved in the regulation of biotic stress responses obtained from genome sequencing, and discusses the differential expression of related genes and proteins identified by transcriptome and proteome sequencing. At the same time, the roles of signaling pathways and metabolites involved in plant biotic stress revealed by the metabolome have also been discussed. In addition, the application of small RNA deep sequencing in the study of fruit crop response to biotic stress has also been included in this review. These omics and deep sequencing methods will greatly support the biotic resistance-resistant breeding of fruit crops.


Assuntos
Frutas/genética , Frutas/metabolismo , Genoma de Planta , Estresse Fisiológico , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Genômica , Metabolômica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
6.
Int J Mol Sci ; 20(3)2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30764507

RESUMO

The opaque2 (o2) mutation in maize is associated with high lysine content in endosperm and good nutritional value. To improve the nutritional quality of waxy maize, the o2 allele was introgressed into the wxwx line using marker-assisted backcrossing selection technology. The lysine content of o2o2wxwx lines was higher than that of the wxwx line. To reveal the mechanism of increasing lysine content through introgression of the o2 in waxy maize, the transcriptome on kernels (18th day after pollination) of the o2o2wxwx and parent lines was analyzed using RNA-sequencing (RNA-Seq). The RNA-Seq analysis revealed 49 differentially expressed genes (DEGs). Functional analysis showed that these DEGs were mostly related to the catalytic activity and metabolic processes. The O2 gene regulated multiple metabolic pathways related to biological processes (BP) and molecular function (MP) during waxy maize endosperm development. In particular, in the o2o2wxwx lines, the two genes that encode the EF-1α and LHT1 were up-regulated, but the gene that encodes sulfur-rich proteins was down-regulated, raising the grain lysine content. These findings are of great importance for understanding the molecular mechanism underlying the lysine content increase due to o2 allele introgression into waxy maize.


Assuntos
Proteínas de Ligação a DNA/genética , Lisina/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Zea mays/genética , Alelos , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Lisina/análise , Lisina/metabolismo , Redes e Vias Metabólicas , Mutação , Fenótipo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Zea mays/anatomia & histologia , Zea mays/metabolismo , Zea mays/ultraestrutura
7.
Stem Cells ; 35(3): 611-625, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27739137

RESUMO

In human embryonic stem cells (ESCs) the transcription factor Zeb2 regulates neuroectoderm versus mesendoderm formation, but it is unclear how Zeb2 affects the global transcriptional regulatory network in these cell-fate decisions. We generated Zeb2 knockout (KO) mouse ESCs, subjected them as embryoid bodies (EBs) to neural and general differentiation and carried out temporal RNA-sequencing (RNA-seq) and reduced representation bisulfite sequencing (RRBS) analysis in neural differentiation. This shows that Zeb2 acts preferentially as a transcriptional repressor associated with developmental progression and that Zeb2 KO ESCs can exit from their naïve state. However, most cells in these EBs stall in an early epiblast-like state and are impaired in both neural and mesendodermal differentiation. Genes involved in pluripotency, epithelial-to-mesenchymal transition (EMT), and DNA-(de)methylation, including Tet1, are deregulated in the absence of Zeb2. The observed elevated Tet1 levels in the mutant cells and the knowledge of previously mapped Tet1-binding sites correlate with loss-of-methylation in neural-stimulating conditions, however, after the cells initially acquired the correct DNA-methyl marks. Interestingly, cells from such Zeb2 KO EBs maintain the ability to re-adapt to 2i + LIF conditions even after prolonged differentiation, while knockdown of Tet1 partially rescues their impaired differentiation. Hence, in addition to its role in EMT, Zeb2 is critical in ESCs for exit from the epiblast state, and links the pluripotency network and DNA-methylation with irreversible commitment to differentiation. Stem Cells 2017;35:611-625.


Assuntos
Linhagem da Célula , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Diferenciação Celular , Metilação de DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/genética , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Camundongos , Camundongos Knockout , Neurônios/citologia , Fenótipo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Análise de Componente Principal , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Análise de Sequência de RNA , Transcrição Gênica
8.
Anim Genet ; 48(2): 151-165, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27642173

RESUMO

RNA-Seq technology is widely used in quantitative gene expression studies and identification of non-annotated transcripts. However this technology also can be used for polymorphism detection and RNA editing in transcribed regions in an efficient and cost-effective way. This study used SNP data from an RNA-Seq assay to identify genes and mutations underlying production trait variations in an experimental pig population. The hypothalamic and hepatic transcriptomes of nine extreme animals for growth and fatness from an (Iberian × Landrace) × Landrace backcross were analyzed by RNA-Seq methodology, and SNP calling was conducted. More than 125 000 single nucleotide variants (SNVs) were identified in each tissue, and 78% were considered to be potential SNPs, those SNVs segregating in the context of this study. Potential informative SNPs were detected by considering those showing a homozygous or heterozygous genotype in one extreme group and the alternative genotype in the other group. In this way, 4396 and 1862 informative SNPs were detected in hypothalamus and liver respectively. Out of the 32 SNPs selected for validation, 25 (80%) were confirmed as actual SNPs. Association analyses for growth, fatness and premium cut yields with 19 selected SNPs were carried out, and four potential causal genes (RETSAT, COPA, RNMT and PALMD) were identified. Interestingly, new RNA editing modifications were detected and validated for the NR3C1:g.102797 (ss1985401074) and ACSM2B:g.13374 (ss1985401075) positions and for the COG3:g3.4525 (ss1985401087) modification previously identified across vertebrates, which could lead to phenotypic variation and should be further investigated.


Assuntos
Carne , Polimorfismo de Nucleotídeo Único , Edição de RNA , Análise de Sequência de RNA/métodos , Sus scrofa/genética , Animais , Cruzamentos Genéticos , Feminino , Masculino , Sus scrofa/fisiologia
9.
Pathol Biol (Paris) ; 61(5): e89-95, 2013 Oct.
Artigo em Francês | MEDLINE | ID: mdl-23122513

RESUMO

BACKGROUND: In microarray data, wide-scale correlations are numerous and increase the number of genes correlated to a test condition (phenotype, mutation status, etc.) either positively or negatively. Several methods have been developed to limit the effect of such correlations on the false discovery rate, but these may reject too many genes that have a mild or indirect impact on the studied condition. We propose here a simple methodology to correct this spurious effect without eliminating weak but true correlations. RESULTS: This methodology was applied to a microarray dataset designed to distinguish heterozygous BRCA1 mutation carriers from non-carriers. As our samples were collected at different times in the morning, we evaluated the effect of correlations due to circadian rhythm. The circadian system is a well-known correlation network, regulated by a small number of period genes whose expression varies throughout the day in predictable ways. The downstream effects of this variation on the expression of other genes, however, are incompletely characterized. We used two different strategies to correct this correlation bias, by either dividing or multiplying the expression of correlated genes by the expression of the considered period gene according to the sign of the correlation between the period gene and correlated gene (respectively positive or negative). CONCLUSIONS: We observed a linear relationship between the number of false-positive/negative genes and the strength of the correlation of the candidate gene to the test condition. BRCA1 was highly correlated to the period gene Per1; our correction methodology enabled us to recover genes coding for BRCA1-interacting proteins which were not selected in the initial direct analysis. This methodology may be valuable for other studies and can be applied very easily in case of well-known correlation networks.


Assuntos
Ritmo Circadiano/genética , Regulação da Expressão Gênica , Genes BRCA1 , Proteínas Circadianas Period/genética , Carotenoides , Humanos , Mutação
10.
Front Oncol ; 12: 895555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568159

RESUMO

Prostate cancer (PC) is the fifth leading cause of death in men globally. Measurement of the blood PSA level is still considered the gold-standard biomarker test for PC despite its high rate of delivering false positives and negatives that result in an inappropriate medical response, including overtreatment. We collected extracellular vesicles (EVs) from the blood plasma of PC patients with organ-confined, extracapsular-invading, and seminal vesicle-invading tumors and from healthy subjects. We examined the protein, mRNA, and miRNA content of these EVs using mass spectrometry (MS), a human PC PCR array, and a miScript miRNA PCR array, respectively. The proteomic analysis showed distinct groups of proteins that are differently expressed in each group of patients, as well as in healthy subjects. Samples from healthy subjects and each tumor type were used for both mRNA and miRNA arrays. The mRNA analysis showed distinct groups of mRNAs that were overexpressed in healthy or in one of the three tumor types but not in the EVs of the other groups. The miRNA analysis showed distinct groups of miRNAs as well. The fold of regulation in the expression of the identified mRNA and miRNA of each stage of the disease from healthy subjects showed that various mRNAs and miRNAs could discriminate the disease stage. Overall, our data suggest many molecular marker candidates for distinguishing between healthy subjects and PC patients using the cargo of circulating vesicles, as well as markers to discriminate between the different tumor types. Once verified, these markers might have a diagnostic value for PC.

11.
Front Vet Sci ; 8: 663988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937385

RESUMO

The present study evaluated the effects of dietary supplementation of Enteromorpha polysaccharides (EP) on carcass traits of broilers and potential molecular mechanisms associated with it. This study used RNA-Sequencing (RNA-Seq) to detect modification in mRNA transcriptome and the cognate biological pathways affecting the carcass traits. A total of 396 one-day-old male broilers (Arbor Acres) were randomly assigned to one of six dietary treatments containing EP at 0 (CON), 1000 (EP_1000), 2500 (EP_2500), 4000 (EP_4000), 5500 (EP_5500), and 7000 (EP_7000) mg/kg levels for a 35-d feeding trial with 6 replicates/treatment. At the end of the feeding trial, six birds (one bird from each replicate cage) were randomly selected from each treatment and slaughtered for carcass traits analysis. The results showed that the dietary supplementation of EP_7000 improved the breast muscle yield (p < 0.05). Subsequently, six breast muscle samples from CON and EP_7000 groups (three samples from each group) were randomly selected for RNA-Seq analysis. Based on the RNA-Seq results, a total of 154 differentially expressed genes (DEGs) were identified (p < 0.05). Among the DEGs, 112 genes were significantly upregulated, whereas 42 genes were significantly down-regulated by EP_7000 supplementation. Gene Ontology enrichment analysis showed that the DEGs were mainly enriched in immune-related signaling pathways, macromolecule biosynthetic, DNA-templated, RNA biosynthetic, and metabolic process (p < 0.05). Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the DEGs were enriched in signaling pathways related to viral infectious diseases and cell adhesion molecules (p < 0.05). In conclusion, dietary inclusion of EP_7000 improves the breast muscle yield, which may be involved in improving the immunity and the cell differentiation of broilers, thus promoting the muscle growth of broilers. These findings could help understand the molecular mechanisms that enhance breast muscle yield by dietary supplementation of EP in broilers.

12.
Front Microbiol ; 12: 760627, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819924

RESUMO

Borrelia bavariensis can invade the central nervous system (CNS) by crossing the blood-brain barrier (BBB). It is predicted that B. bavariensis evokes numerous signaling cascades in the human brain microvascular endothelial cells (hBMECs) and exploits them to traverse across the BBB. The complete picture of signaling events in hBMECs induced by B. bavariensis remains uncovered. Using RNA sequencing, we mapped 11,398 genes and identified 295 differentially expressed genes (DEGs, 251 upregulated genes and 44 downregulated genes) in B. bavariensis challenged hBMECs. The results obtained from RNA-seq were validated with qPCR. Gene ontology analysis revealed the participation of DEGs in a number of biological processes like cell communication, organization of the extracellular matrix, vesicle-mediated transport, cell response triggered by pattern recognition receptors, antigen processing via MHC class I, cellular stress, metabolism, signal transduction, etc. The expression of several non-protein coding genes was also evoked. In this manuscript, we discuss in detail the correlation between several signaling cascades elicited and the translocation of BBB by B. bavariensis. The data revealed here may contribute to a better understanding of the mechanisms employed by B. bavariensis to cross the BBB.

13.
Plant Physiol Biochem ; 153: 40-52, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32474385

RESUMO

Deterioration during seed storage generally causes seed vigour declining. However, the mechanism of deterioration occurred still not clear. Seeds and embryos of oat (Avena sativa L.) were selected to analyze the relation of physiological and metabolic reactions with DEGs by using RNA-seq. Oat seed vigour declined during seeds aged 0 day (CK), 16 days (CD16) and 32 days (CD32). The changes of MDA and H2O2 contents, antioxidant enzymes activities of APX, DHAR, MDHAR and GR related with AsA-GSH cycle in embryos illustrated that seed vigour declined to the minimum at CD32. Transcriptomic analysis showed a total of 11335 and 8274 DEGs were identified at CD16 and CD32 compared with CK respectively, of which 4070 were overlapped. When seed vigour declined to the moderate level (CD16), the accumulation of H2O2 caused by the inhibition of complex I in ETC could be alleviated with AsA-GSH cycle. RNA-seq and qRT-PCR results both showed alternative oxidase in alternate respiratory pathway was upregulated which would maintain seed respiration. However, as seed vigour was at the lowest level (CD32), blocked ETC caused by down-regulation of complex III, including Ubiquinol-cytochrome C reductase complex 14kD subunit and Ubiquinol-cytochrome C reductase, UQCRX/QCR9 like, were more seriously and H2O2 scavenging was limited by the inactive AsA-GSH cycle. It could be suggested that the function of AsA-GSH would play a key role for regulating the physiological responses of ETC in embryos during seed ageing. These results would provide an insight into embryo for the transcriptomic information during oat seed ageing.


Assuntos
Avena/embriologia , Glutationa/metabolismo , Sementes/metabolismo , Transcriptoma , Antioxidantes/metabolismo , Ácido Ascórbico , Avena/metabolismo , Peróxido de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA