Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255068

RESUMO

BACKGROUND: Blood biomarkers of neurological injury could provide a rapid diagnosis of central nervous system (CNS) injury caused by infections. An FDA-approved assay for mild traumatic brain injury (TBI) measures glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), which signal astrocyte and neuronal injury, respectively. Here, we assessed the applicability of this biomarker assay for determining infection-induced brain injury. METHODS: We measured serum levels of GFAP and UCH-L1 retrospectively in serum samples from three study populations: 1) human cases infected with Venezuelan equine encephalitis virus (VEEV) and Madariaga virus (MADV) (n = 73), 2) human sepsis patients who were severely ill or diagnosed with encephalitis (n = 66), and 3) sepsis cases that were subsequently evaluated for cognitive impairment (n = 64). RESULTS: In the virus infection group, we found elevated GFAP for VEEV (p = 0.014) and MADV (p = 0.011) infections, which correlated with seizures (p = 0.006). In the bacterial sepsis group, GFAP was elevated in cases diagnosed with encephalitis (p = 0.0007) and correlated with headaches (p = 0.0002). In the bacterial sepsis cases with a later cognitive assessment, elevated GFAP (p = 0.0057) at study enrollment was associated with cognitive impairment six months later with a positive prognostic capacity of 79% (CI: 66-95%; p = 0.0068). CONCLUSIONS: GFAP and UCH-L1 levels measured using an FDA-approved assay for TBI may indicate brain injury resulting from viral or bacterial infections and could predict the development of neurological sequelae.

2.
Int J Legal Med ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977505

RESUMO

OBJECTIVES: This study aimed to explore the potential of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) as biomarkers for diagnosis and prognosis in mild and severe TBI cases, including TBI-related deaths. METHODS: This prospective cohort study includes 40 cases each of mild, severe, fatal TBI cases, and 40 healthy controls. Serum samples were collected from live patients at 8 and 20 h post injury for UCH-L1 and GFAP respectively, and from deceased patients within 6 h of death. RESULTS: Elevated levels of both GFAP and UCH-L1 were observed in patients with severe and fatal TBI cases. These biomarkers exhibited promising potential for predicting various Glasgow Outcome Scale Extended (GOSE) categories. Combining GFAP and UCH-L1 yielded higher predictive accuracy both for diagnosis and prognosis in TBI cases. The study additionally established specific cut-off levels for GFAP and UCH-L1 stratified according to the severity and prognosis. CONCLUSION: GFAP and UCH-L1 individually demonstrated moderate to good discrimination capacity in predicting TBI severity and functional outcomes. However, combining these biomarkers is recommended for improved diagnostic and prognostic utility. This precision tool can enhance patient care, enabling tailored treatment plans, ultimately reducing morbidity and mortality rates in TBI cases.

3.
Clin Chem Lab Med ; 62(5): 891-899, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38033294

RESUMO

OBJECTIVES: To compare for the first time the performance of "GFAP and UCH-L1" vs. S100B in a cohort of patients managed for mild traumatic brain injury (mTBI) according to actualized French guidelines. METHODS: A prospective study was recently carried at the Emergency Department of Clermont-Ferrand University Hospital in France. Patients with mTBI presenting a medium risk of complications were enrolled. Blood S100B and "GFAP and UCHL-1" were sampled and measured according to French guidelines. S100B was measured in patients with samples within 3 h of trauma (Cobas®, Roche Diagnostics), while GFAP and UCHL-1 were measured in all patients (samples <3 h and 3-12 h) using another automated assay (i-STAT® Alinity, Abbott). RESULTS: For sampling <3 h, serum S100B correctly identifies intracranial lesions with a specificity of 25.7 % (95 % CI; 19.5-32.6 %), a sensitivity of 100 % (95 % CI; 66.4-100 %), and a negative predictive value of 100 % (95 % CI; 92.5-100 %). For sampling <12 h, plasma "GFAP and UCH-L1" levels correctly identify intracranial lesions with a specificity of 31.7 % (95 % CI; 25.7-38.2 %), a sensitivity of 100 % (95 % CI; 73.5-100 %), and a negative predictive value of 100 % (95 % CI; 95-100 %). Comparison of specificities (25.7 vs. 31.7 %) did not reveal a statistically significant difference (p=0.16). CONCLUSIONS: We highlight the usefulness of measuring plasma "GFAP and UCH-L1" levels to target mTBI patients (sampling within 12 h post-injury) and optimize the reduction of CT scans.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Humanos , Estudos Prospectivos , Proteína Glial Fibrilar Ácida , Tomografia Computadorizada por Raios X , Valor Preditivo dos Testes , Subunidade beta da Proteína Ligante de Cálcio S100 , Biomarcadores , Lesões Encefálicas Traumáticas/diagnóstico
4.
Clin Infect Dis ; 77(3): 472-479, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-36929815

RESUMO

BACKGROUND: Laboratory tests to diagnose neurosyphilis using cerebrospinal fluid (CSF) are currently disadvantageous as a lumbar puncture is required, which may result in patients with neurosyphilis missing an opportunity for early diagnosis. Thus, blood biomarker candidates that are more convenient and minimally invasive to collect for diagnosing neurosyphilis is urgently needed. METHODS: This observational study aimed to analyze serum ubiquitin C-terminal hydrolase-L1 (UCH-L1), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NF-L) levels in 153 patients without human immunodeficiency virus (HIV) and to evaluate their diagnostic performance in neurosyphilis compared with CSF. RESULTS: Serum UCH-L1, GFAP, and NF-L levels were significantly higher in patients with neurosyphilis compared with patients with uncomplicated syphilis or non-syphilis. For the diagnosis of neurosyphilis, serum UCH-L1, GFAP, and NF-L revealed sensitivities of 90.20%, 80.40%, and 88.24%, and specificities of 92.16%, 78.43%, and 80.39%, respectively, at cutoff levels of 814.50 pg/mL, 442.70 pg/mL, and 45.19 pg/mL, respectively. In patients with syphilis, serum UCH-L1, GFAP, and NF-L levels correlated strongly or moderately with those in the CSF, with similar or better diagnostic performance than those in the CSF. The testing algorithms' sensitivity and specificity increased to 98.04% and 96.08%, respectively, when subjected to parallel and combination testing, respectively. CONCLUSIONS: To avoid lumbar puncture, each serum UCH-L1, GFAP, and NF-L is a good entry point and biomarker candidate for the diagnosis of neurosyphilis among patients without HIV. These proteins used in concerto can further improve the diagnostic sensitivity and specificity.


Assuntos
Infecções por HIV , Neurossífilis , Humanos , Ubiquitina Tiolesterase , Proteína Glial Fibrilar Ácida , Punção Espinal , HIV , Filamentos Intermediários , Biomarcadores , Neurossífilis/diagnóstico , Infecções por HIV/complicações
5.
Exp Cell Res ; 419(2): 113321, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985499

RESUMO

Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) is a highly expressed protein in ß cells and has been implicated in ß cells' viability and function, however, the role of UCH-L1 in ß cells remains unclear. Herein, we examined the functions of UCH-L1 in ß cells by utilizing the Drosophila melanogaster model. Our results showed that specific knockdown of dUCH (D.melanogaster homolog of UCH-L1) in Drosophila Insulin-producing cells (D.melanogaster homolog of ß cells) induced mitochondria fusion, IPCs death/degeneration, interfered with DILP2 secretion, and triggered the rise of glycogen storage and body weight. Strikingly, the impairment in IPCs cellular activities can be rescued by vitamin C- a strong antioxidant compound, which suggested the relationship between knockdown dUCH and oxidative stress in IPCs; and the potential of this model in screening compounds for ß cells function moderation. Since carbohydrate metabolism is an important function of beta cells, we continued to examine the ability to regulate carbohydrate metabolism of knockdown dUCH flies. Our results showed that knockdown dUCH caused the decline of IPCs number under a high-sucrose diet, which finally led to metabolic and physiological disturbances, including total lipid rise, glycogen storage reduction, circulating carbohydrate increase, and weight loss. These symptoms could be early indications of metabolic disorders, particularly ß cell dysfunction-related diseases. Taken together, our results indicate that dUCH is essential in the viability and functions of IPCs through the regulation of carbohydrate metabolism in the Drosophila model.


Assuntos
Proteínas de Drosophila , Insulinas , Animais , Metabolismo dos Carboidratos , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Glicogênio/metabolismo , Insulinas/metabolismo , Ubiquitina Tiolesterase/metabolismo
6.
Nutr Neurosci ; : 1-16, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37647279

RESUMO

BACKGROUND: The neuroprotective potential of blueberry (BB) extracts against Alzheimer's disease (AD) has been previously hinted at, while its exact mechanism has remained largely enigmatic. OBJECTIVE: Our study endeavored to unravel the impacts and mechanisms by which BB extracts ameliorated the learning and memory prowess of AD-afflicted mice, with a specific focus on the MEK-ERK pathway. METHODS: We employed 3-month-old APP/PS1 transgenic mice and stratified them into three distinct groups: AD+BB, AD, and control (CT). The Morris Water Maze Test (MWMT) was then administered to gauge their learning and memory faculties. In vitro experiments were executed on Aß25-35-afflicted rat hippocampal neurons, which were subsequently treated with varying concentrations of BB extracts. We then assessed the expression levels of genes and proteins integral to the MEK-ERKBDNF/UCH-L1 pathway. RESULTS: The data showed that the AD mice demonstrated compromised learning and memory faculties in MWMT. However, the AD+BB cohort showcased marked improvements in performance. Furthermore, in the AD subset, significant elevations in the expressions of MEK2 and ERK1/2 were observed, both at the mRNA and protein levels. Conversely, UCH-L1 mRNA expressions exhibited a decline, while BDNF expressions surged significantly. However, post BB extract treatment, the expressions of MEK2 and ERK1/2 were subdued, with UCH-L1 and BDNF mRNA expressions reverting to control levels. CONCLUSIONS: Our findings propounded that BB extracts could offer therapeutic promise for AD by bolstering learning and memory capacities. The unwarranted activation of the MEK-ERK pathway, coupled with the aberrant expressions of BDNF and UCH-L1, might underpin AD's pathogenesis.

7.
Int J Mol Sci ; 24(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37569895

RESUMO

As per the latest ILAE definition, status epilepticus (SE) may lead to long-term irreversible consequences, such as neuronal death, neuronal injury, and alterations in neuronal networks. Consequently, there is growing interest in identifying biomarkers that can demonstrate and quantify the extent of neuronal and glial injury. Despite numerous studies conducted on animal models of status epilepticus, which clearly indicate seizure-induced neuronal and glial injury, as well as signs of atrophy and gliosis, evidence in humans remains limited to case reports and small case series. The implications of identifying such biomarkers in clinical practice are significant, including improved prognostic stratification of patients and the early identification of those at high risk of developing irreversible complications. Moreover, the clinical validation of these biomarkers could be crucial in promoting neuroprotective strategies in addition to antiseizure medications. In this study, we present a systematic review of research on biomarkers of neuro-glial injury in patients with status epilepticus.


Assuntos
Lesões Encefálicas , Estado Epiléptico , Animais , Humanos , Neuroglia , Neurônios , Biomarcadores , Proteína Glial Fibrilar Ácida , Ubiquitina Tiolesterase
8.
Crit Care ; 26(1): 369, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36447266

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) carries prognostic importance after traumatic brain injury (TBI), especially when computed tomography (CT) fails to fully explain the level of unconsciousness. However, in critically ill patients, the risk of deterioration during transfer needs to be balanced against the benefit of detecting prognostically relevant information on MRI. We therefore aimed to assess if day of injury serum protein biomarkers could identify critically ill TBI patients in whom the risks of transfer are compensated by the likelihood of detecting management-altering neuroimaging findings. METHODS: Data were obtained from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. Eligibility criteria included: TBI patients aged ≥ 16 years, Glasgow Coma Score (GCS) < 13 or patient intubated with unrecorded pre-intubation GCS, CT with Marshall score < 3, serum biomarkers (GFAP, NFL, NSE, S100B, Tau, UCH-L1) sampled ≤ 24 h of injury, MRI < 30 days of injury. The degree of axonal injury on MRI was graded using the Adams-Gentry classification. The association between serum concentrations of biomarkers and Adams-Gentry stage was assessed and the optimum threshold concentration identified, assuming different minimum sensitivities for the detection of brainstem injury (Adams-Gentry stage 3). A cost-benefit analysis for the USA and UK health care settings was also performed. RESULTS: Among 65 included patients (30 moderate-severe, 35 unrecorded) axonal injury was detected in 54 (83%) and brainstem involvement in 33 (51%). In patients with moderate-severe TBI, brainstem injury was associated with higher concentrations of NSE, Tau, UCH-L1 and GFAP. If the clinician did not want to miss any brainstem injury, NSE could have avoided MRI transfers in up to 20% of patients. If a 94% sensitivity was accepted considering potential transfer-related complications, GFAP could have avoided 30% of transfers. There was no added net cost, with savings up to £99 (UK) or $612 (US). No associations between proteins and axonal injury were found in intubated patients without a recorded pre-intubation GCS. CONCLUSIONS: Serum protein biomarkers show potential to safely reduce the number of transfers to MRI in critically ill patients with moderate-severe TBI at no added cost.


Assuntos
Lesões Encefálicas Traumáticas , Estado Terminal , Humanos , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Biomarcadores , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X
9.
Proc Natl Acad Sci U S A ; 116(16): 7963-7972, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30923110

RESUMO

Ubiquitin C-terminal hydrolase L1 (UCH-L1) is one of the most abundant and enigmatic enzymes of the CNS. Based on existing UCH-L1 knockout models, UCH-L1 is thought to be required for the maintenance of axonal integrity, but not for neuronal development despite its high expression in neurons. Several lines of evidence suggest a role for UCH-L1 in mUB homeostasis, although the specific in vivo substrate remains elusive. Since the precise mechanisms underlying UCH-L1-deficient neurodegeneration remain unclear, we generated a transgenic mouse model of UCH-L1 deficiency. By performing biochemical and behavioral analyses we can show that UCH-L1 deficiency causes an acceleration of sensorimotor reflex development in the first postnatal week followed by a degeneration of motor function starting at periadolescence in the setting of normal cerebral mUB levels. In the first postnatal weeks, neuronal protein synthesis and proteasomal protein degradation are enhanced, with endoplasmic reticulum stress, and energy depletion, leading to proteasomal impairment and an accumulation of nondegraded ubiquitinated protein. Increased protein turnover is associated with enhanced mTORC1 activity restricted to the postnatal period in UCH-L1-deficient brains. Inhibition of mTORC1 with rapamycin decreases protein synthesis and ubiquitin accumulation in UCH-L1-deficient neurons. Strikingly, rapamycin treatment in the first 8 postnatal days ameliorates the neurological phenotype of UCH-L1-deficient mice up to 16 weeks, suggesting that early control of protein homeostasis is imperative for long-term neuronal survival. In summary, we identified a critical presymptomatic period during which UCH-L1-dependent enhanced protein synthesis results in neuronal strain and progressive loss of neuronal function.


Assuntos
Doenças Neurodegenerativas , Ubiquitina Tiolesterase , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/fisiologia
10.
Brain Inj ; 36(8): 939-947, 2022 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-35904331

RESUMO

This prospective multicenter study evaluated differences in concussion severity and functional outcome using glial and neuronal biomarkers glial Fibrillary Acidic (GFAP) and Ubiquitin C-terminal Hydrolase (UCH-L1) in children and youth involved in non-sport related trauma, organized sports, and recreational activities. Children and youth presenting to three Level 1 trauma centersfollowing blunt head trauma with a GCS 15 with a verified diagnosis of a concussion were enrolled within 6 hours of injury. Traumatic intracranial lesions on CT scan and functional outcome within 3 months of injury were evaluated. 131 children and youth with concussion were enrolled, 81 in the no sports group, 22 in the organized sports group and 28 in the recreational activities group. Median GFAP levels were 0.18, 0.07, and 0.39 ng/mL in the respective groups (p = 0.014). Median UCH-L1 levels were 0.18, 0.27, and 0.32 ng/mL respectively (p = 0.025). A CT scan of the head was performed in 110 (84%) patients. CT was positive in 5 (7%), 4 (27%), and 5 (20%) patients, respectively. The AUC for GFAP for detecting +CT was 0.84 (95%CI 0.75-0.93) and for UCH-L1 was 0.82 (95%CI 0.71-0.94). In those without CT lesions, elevations in UCH-L1 were significantly associated with unfavorable 3-month outcome. Concussions in the 3 groups were of similar severity and functional outcome. GFAP and UCH-L1 were both associated with severity of concussion and intracranial lesions, with the most elevated concentrations in recreational activities .


Assuntos
Concussão Encefálica , Traumatismos Cranianos Fechados , Adolescente , Biomarcadores , Concussão Encefálica/diagnóstico por imagem , Criança , Proteína Glial Fibrilar Ácida , Humanos , Estudos Prospectivos
11.
J Biol Chem ; 295(27): 9105-9120, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32371398

RESUMO

Modification of the transforming growth factor ß (TGF-ß) signaling components by (de)ubiquitination is emerging as a key regulatory mechanism that controls cell signaling responses in health and disease. Here, we show that the deubiquitinating enzyme UBH-1 in Caenorhabditis elegans and its human homolog, ubiquitin C-terminal hydrolase-L1 (UCH-L1), stimulate DAF-7/TGF-ß signaling, suggesting that this mode of regulation of TGF-ß signaling is conserved across animal species. The dauer larva-constitutive C. elegans phenotype caused by defective DAF-7/TGF-ß signaling was enhanced and suppressed, respectively, by ubh-1 deletion and overexpression in the loss-of-function genetic backgrounds of daf7, daf-1/TGF-ßRI, and daf4/R-SMAD, but not of daf-8/R-SMAD. This suggested that UBH-1 may stimulate DAF-7/TGF-ß signaling via DAF-8/R-SMAD. Therefore, we investigated the effect of UCH-L1 on TGF-ß signaling via its intracellular effectors, i.e. SMAD2 and SMAD3, in mammalian cells. Overexpression of UCH-L1, but not of UCH-L3 (the other human homolog of UBH1) or of the catalytic mutant UCH-L1C90A, enhanced TGF-ß/SMAD-induced transcriptional activity, indicating that the deubiquitination activity of UCH-L1 is indispensable for enhancing TGF-ß/SMAD signaling. We also found that UCH-L1 interacts, deubiquitinates, and stabilizes SMAD2 and SMAD3. Under hypoxia, UCH-L1 expression increased and TGF-ß/SMAD signaling was potentiated in the A549 human lung adenocarcinoma cell line. Notably, UCH-L1-deficient A549 cells were impaired in tumorigenesis, and, unlike WT UCH-L1, a UCH-L1 variant lacking deubiquitinating activity was unable to restore tumorigenesis in these cells. These results indicate that UCH-L1 activity supports DAF-7/TGF-ß signaling and suggest that UCH-L1's deubiquitination activity is a potential therapeutic target for managing lung cancer.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Carcinogênese/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Caenorhabditis elegans , Transformação Celular Neoplásica , Enzimas Desubiquitinantes , Larva/metabolismo , Pulmão/metabolismo , Transdução de Sinais/genética , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Ubiquitina Tiolesterase/fisiologia , Ubiquitinação
12.
J Int Neuropsychol Soc ; 27(5): 508-514, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33161932

RESUMO

OBJECTIVE: This study examines the relationship of serum total tau, neurofilament light (NFL), ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1), and glial fibrillary acidic protein (GFAP) with neurocognitive performance in service members and veterans with a history of traumatic brain injury (TBI). METHOD: Service members (n = 488) with a history of uncomplicated mild (n = 172), complicated mild, moderate, severe, or penetrating TBI (sTBI; n = 126), injured controls (n = 116), and non-injured controls (n = 74) prospectively enrolled from Military Treatment Facilities. Participants completed a blood draw and neuropsychological assessment a year or more post-injury. Six neuropsychological composite scores and presence/absence of mild neurocognitive disorder (MNCD) were evaluated. Within each group, stepwise hierarchical regression models were conducted. RESULTS: Within the sTBI group, increased serum UCH-L1 was related to worse immediate memory and delayed memory (R2Δ = .065-.084, ps < .05) performance, while increased GFAP was related to worse perceptual reasoning (R2Δ = .030, p = .036). Unexpectedly, within injured controls, UCH-L1 and GFAP were inversely related to working memory (R2Δ = .052-.071, ps < .05), and NFL was related to executive functioning (R2Δ = .039, p = .021) and MNCD (Exp(B) = 1.119, p = .029). CONCLUSIONS: Results suggest GFAP and UCH-L1 could play a role in predicting poor cognitive outcome following complicated mild and more severe TBI. Further investigation of blood biomarkers and cognition is warranted.


Assuntos
Lesões Encefálicas Traumáticas , Cognição , Proteína Glial Fibrilar Ácida/sangue , Ubiquitina Tiolesterase/sangue , Biomarcadores/sangue , Lesões Encefálicas Traumáticas/complicações , Humanos , Proteínas de Neurofilamentos/sangue , Veteranos , Proteínas tau/sangue
13.
Childs Nerv Syst ; 37(3): 879-884, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33044615

RESUMO

BACKGROUND: Epilepsy is a common neurological disease that has a negative impact on physical, social, and cognitive function. Seizure-induced neuronal injury is one of the suggested mechanisms of epilepsy complications. We aimed to evaluate the circulating level of glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) as markers of neuronal damage in children with epilepsy and its relation to epilepsy characteristics. STUDY DESIGN: METHODS: This case control study included 30 children with epilepsy and 30 healthy children as a control group. Seizure severity was determined based on Chalfont score. Serum level of GFAP and UCH-L1were measured, and their associations with epilepsy characteristics were investigated. RESULTS: Circulating levels of GFAP and UCH-L1 were significantly higher in children with epilepsy than in controls (17.440 ± 6.74 and 5.700 ± 1.64 vs 7.06 ± 3.30 and 1.81 ± 0.23, respectively) especially in those with generalized and active seizures. GFAP and UCH-L1 were significantly correlated to the severity of seizures in the previous 6 months. Elevated GFAP level was a predictor for active seizures (OR 1.841, 95%CI 1.043-3.250, P = 0.035). CONCLUSION: Circulating GFAP and UCH-L1 expression is increased in children with epilepsy especially those with active seizures. SIGNIFICANCE: GFAP and UCH-L 1may serve as peripheral biomarkers for neuronal damage in children with epilepsy that can be used to monitor disease progression and severity for early identification of those with drug-resistant epilepsy and those who are in need for epilepsy surgery.


Assuntos
Epilepsia , Ubiquitina Tiolesterase , Biomarcadores , Estudos de Casos e Controles , Criança , Proteína Glial Fibrilar Ácida , Humanos , Convulsões
14.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921228

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes the papain-like protease (PLpro). The protein not only plays an essential role in viral replication but also cleaves ubiquitin and ubiquitin-like interferon-stimulated gene 15 protein (ISG15) from host proteins, making it an important target for developing new antiviral drugs. In this study, we searched for novel, noncovalent potential PLpro inhibitors by employing a multistep in silico screening of a 15 million compound library. The selectivity of the best-scored compounds was evaluated by checking their binding affinity to the human ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), which, as a deubiquitylating enzyme, exhibits structural and functional similarities to the PLpro. As a result, we identified 387 potential, selective PLpro inhibitors, from which we retrieved the 20 best compounds according to their IC50 values toward PLpro estimated by a multiple linear regression model. The selected candidates display potential activity against the protein with IC50 values in the nanomolar range from approximately 159 to 505 nM and mostly adopt a similar binding mode to the known, noncovalent SARS-CoV-2 PLpro inhibitors. We further propose the six most promising compounds for future in vitro evaluation. The results for the top potential PLpro inhibitors are deposited in the database prepared to facilitate research on anti-SARS-CoV-2 drugs.


Assuntos
Antivirais/química , Antivirais/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , SARS-CoV-2/enzimologia , Animais , Antivirais/toxicidade , Simulação por Computador , Cristalografia por Raios X , Bases de Dados de Compostos Químicos , Bases de Dados de Proteínas , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Dose Letal Mediana , Ligantes , Testes de Mutagenicidade , Inibidores de Proteases/toxicidade , Relação Quantitativa Estrutura-Atividade , Ratos , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismo
15.
Biochem Biophys Res Commun ; 529(1): 112-118, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32560811

RESUMO

UCH-L1 is a de-ubiquitination enzyme comprehensively distributed in neural cells and podocytes, which is involved in several kinds of nervous system and kidney related diseases. Our previous studies have demonstrated the aberrant up-regulation of UCH-L1 in podocytes of renal diseases, but how dose podocytes are injured by up-regulated UCH-L1 is waiting to be elucidated. Here, we observed the cytoskeleton rearrangement in podocytes with over-expression of UCH-L1, accompanied with a down-regulation of synaptopodin and RhoA, which are closely related to cytoskeletal stabilization. However, we did not see any alteration of RhoA ubiquitination level under the stimulation of UCH-L1 in podocytes. Subsequently, mass spectrum was applied in UCH-L1-flag immunoprecipitation and plakoglobin was screened out, which was among the UCH-L1-combined proteins and most likely related to cytoskeleton rearrangement. Our experiment demonstrates UCH-L1 may not injure podocytes cytoskeleton through a direct regulation on RhoA/Synaptopodin, but through the regulation of plakoglobin, which could be a promising target for treatment of renal disease in the future.


Assuntos
Podócitos/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Linhagem Celular , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Camundongos , Proteínas dos Microfilamentos/metabolismo , Podócitos/patologia , Ubiquitinação , gama Catenina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
16.
Acta Neurochir (Wien) ; 162(9): 2075-2086, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32588294

RESUMO

BACKGROUND: Years after a traumatic spinal cord injury (SCI), a subset of patients may develop progressive clinical deterioration due to intradural scar formation and spinal cord tethering, with or without an associated syringomyelia. Meningitis, intradural hemorrhages, or intradural tumor surgery may also trigger glial scar formation and spinal cord tethering, leading to neurological worsening. Surgery is the treatment of choice in these chronic SCI patients. OBJECTIVE: We hypothesized that cerebrospinal fluid (CSF) and plasma biomarkers could track ongoing neuronal loss and scar formation in patients with spinal cord tethering and are associated with clinical symptoms. METHODS: We prospectively enrolled 12 patients with spinal cord tethering and measured glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase L1 (UCH-L1), and phosphorylated Neurofilament-heavy (pNF-H) in CSF and blood. Seven patients with benign lumbar intradural tumors and 7 patients with cervical radiculopathy without spinal cord involvement served as controls. RESULTS: All evaluated biomarker levels were markedly higher in CSF than in plasma, without any correlation between the two compartments. When compared with radiculopathy controls, CSF GFAP and pNF-H levels were higher in patients with spinal cord tethering (p ≤ 0.05). In contrast, CSF UCH-L1 levels were not altered in chronic SCI patients when compared with either control groups. CONCLUSIONS: The present findings suggest that in patients with spinal cord tethering, CSF GFAP and pNF-H levels might reflect ongoing scar formation and neuronal injury potentially responsible for progressive neurological deterioration.


Assuntos
Proteína Glial Fibrilar Ácida/líquido cefalorraquidiano , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Traumatismos da Medula Espinal/líquido cefalorraquidiano , Adulto , Biomarcadores/líquido cefalorraquidiano , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Neurocrit Care ; 33(1): 39-48, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32096121

RESUMO

BACKGROUND: Biomarkers indicative of intracerebral hemorrhage (ICH) may help triage acute stroke patients in the pre-hospital phase. We hypothesized that serum concentration of glial fibrillary acidic protein (GFAP) in combination with ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), measured by a rapid bio-assay, could be used to distinguish ICH from ischemic stroke. METHODS: This prospective two-center study recruited patients with a clinical diagnosis of acute stroke both in the pre-hospital phase and at hospital admission (within 4 and 6 h after symptom onset, respectively). Blood samples were analyzed for concentrations of GFAP and UCH-L1 using ELISA techniques. The reference standard was the diagnosis of ICH, ischemic stroke, or stroke mimicking condition achieved after clinical workup including brain imaging. RESULTS: A total of 251 patients were included (mean age [± SD] 72 ± 15 years; 5 ICH, 23 ischemic strokes and 14 stroke mimics in the pre-hospital part; and 59 ICH, 148 ischemic strokes and 2 stroke mimics in the in-hospital part). Mean delay (± SD) from symptom onset to blood withdrawal was 130 ± 79 min for the pre-hospital patients and 136 ± 86 min for the in-hospital patients. Both GFAP and UCH-L1 serum concentrations were higher in patients having ICH as compared to other diagnoses (GFAP: median 330 ng/L [interquartile range 64-7060, range 8-56,100] vs. 27.5 ng/L [14-57.25, 0-781], p < 0.001; UCH-L1: 401 ng/L [265-764, 133-1812] vs. 338 ng/L [213-549.5, 0-2950], p = 0.025). Area-under-the-curve values were 0.866 (95% CI 0.809-0.924, p < 0.001) for GFAP, and 0.590 (0.511-0.670, p = 0.033) for UCH-L1. Regarding overall diagnostic accuracy, UCH-L1 did not add significantly to the performance of GFAP. CONCLUSIONS: GFAP may differentiate ICH from ischemic stroke and stroke mimics. A point-of-care test to distinguish between ischemic and hemorrhagic strokes might facilitate triage to different treatment pathways or locations, or be used to select patients for trials of ultra-early interventions.


Assuntos
Proteína Glial Fibrilar Ácida/sangue , Acidente Vascular Cerebral Hemorrágico/sangue , AVC Isquêmico/sangue , Ubiquitina Tiolesterase/sangue , Idoso , Idoso de 80 Anos ou mais , Diagnóstico Diferencial , Feminino , Acidente Vascular Cerebral Hemorrágico/diagnóstico , Humanos , AVC Isquêmico/diagnóstico , Masculino , Pessoa de Meia-Idade , Testes Imediatos
18.
J Cell Physiol ; 234(9): 16191-16204, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30805933

RESUMO

Lupus nephritis (LN), an autoimmune kidney disease caused by systemic lupus erythematosus (SLE), is the inflammation of the kidney. Although the treatment of LN is still a therapeutic challenge for many practitioners, the present study aims to provide a new insight for the treatment and management. The study aims to explore the effect of A20 on LN in relation to the nuclear factor-kappa B (NF-κB) signaling pathway. MRL/lpr mice were used as the LN mouse model. Next, A20, UCH-L1, and NF-κB expression in LN patients and MRL/lpr mice was determined. A20 was upregulated in podocytes to assess biological functions of A20 in LN. Furthermore, to further investigate the pivotal role of the NF-κB pathway in LN, the NF-κB pathway was blocked in podocytes. Next, UCH-L1 was downregulated in MRL/lpr mice to assess biological functions of UCH-L1 in LN. A20 was downregulated, whereas UCH-L1 was upregulated in LN. Overexpressed A20 declined NF-κB, UCH-L1 expression, and the extent of p65 phosphorylation. A20 overexpression or UCH-L1 inhibition increased expression of synaptoporin and nephrin but decreased desmin expression and ubiquitin accumulation level in podocytes. Moreover, A20 overexpression or UCH-L1 inhibition increased the podocyte number but decreased protein level of cleaved caspase-3, podocyte lesion improvement, decreased foot process width, glomerulus basement membrane, and foot process fusion rate. In addition, urine protein, blood urea nitrogen, serum creatinine, and ds-DNA antibody levels decreased with elevated A20 or depleted UCH-L1. Collectively, it could be concluded that A20 protects against podocyte injury in LN via UCH-L1 by inactivating the NF-κB signaling pathway.

19.
J Surg Res ; 244: 63-68, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31279265

RESUMO

BACKGROUND: Several serum biomarkers have been studied to diagnose incidence and severity of traumatic brain injury (TBI), but a reliable biomarker in TBI has yet to be identified. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) has been proposed as a biomarker in clinical and preclinical studies, largely in the setting of isolated TBI or concussion. The aim of this study was to evaluate the performance of UCH-L1 as a serum biomarker in the setting of polytrauma and TBI. METHODS: Multiple variations of murine TBI and polytrauma models were used to evaluate serum biomarkers. The different models included TBI with and without hemorrhagic shock and resuscitation, isolated extremity vascular ligation, extremity ischemia/reperfusion, and blunt tail injury. Blood was drawn at intervals after injury, and serum levels of neuron-specific enolase, UCH-L1, creatine kinase, and syndecan-1 were evaluated by enzyme-linked immunosorbent assay. RESULTS: UCH-L1 levels were not significantly different between TBI, tail injury, and sham TBI. By contrast, neuron-specific enolase levels were increased in TBI mice compared with tail injury and sham TBI mice. UCH-L1 levels increased regardless of TBI status at 30 min and 4 h after hemorrhagic shock and resuscitation. In mice that underwent femoral artery cannulation followed by hemorrhagic shock/resuscitation, UCH-L1 levels were significantly elevated compared with shock sham mice at 4 h (3158 ± 2168 pg/mL, 4 h shock versus 0 ± 0 pg/mL, 4 h shock sham; P < 0.01) and at 24 h (3253 ± 2954 pg/mL, 24 h shock versus 324 ± 482 pg/mL, 24 h shock sham; P = 0.03). No differences were observed in UCH-L1 levels between the sham shock and the arterial ligation, vein ligation, or extremity ischemia/reperfusion groups at any time point. Similar to UCH-L1, creatine kinase was elevated only after shock compared with sham mice at 4, 24, and 72 h after injury. CONCLUSIONS: Our study demonstrates that UCH-L1 is not a specific marker for TBI but is elevated in models that induce central and peripheral nerve ischemia. Given the increase in UCH-L1 levels observed after hemorrhagic shock, we propose that UCH-L1 may be a useful adjunct in quantifying severity of shock or global ischemia rather than as a specific marker of TBI.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico , Traumatismo Múltiplo/complicações , Choque Hemorrágico/diagnóstico , Ubiquitina Tiolesterase/sangue , Animais , Biomarcadores/sangue , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/etiologia , Modelos Animais de Doenças , Escala de Coma de Glasgow , Humanos , Masculino , Camundongos , Traumatismo Múltiplo/sangue , Índice de Gravidade de Doença , Choque Hemorrágico/sangue , Choque Hemorrágico/etiologia
20.
Ecotoxicol Environ Saf ; 180: 259-268, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31096129

RESUMO

Our study determined the toxic effects of zinc oxide (ZnO) particles with different diameters on dopaminergic (DA) neurons, the role of ubiquitin C-terminal hydrolase L1 (UCH-L1) for ZnO particles-induced neurotoxicity, and corresponding molecular mechanisms. We constructed an in vitro cell injury model for DA neurons to analyze the cytotoxicity of ZnO particles using SH-SY5Y cells. Following cell viability assays and flow cytometry, we found that the cytotoxicity of ZnO particles was affected by particle size, time, and dose of exposure. For example, the toxicity of ZnO particles with 50 nm or 100 nm diameter was stronger than that of ZnO particles with 1000 nm diameter. Furthermore, ZnO particles exposure resulted in a significant decrease in UCH-L1 expression in SH-SY5Y; whereas UCH-L1 overexpression led to a significant increase in cell viability and a sharp decrease in ROS level. Western blotting and adenovirus transfection found that exposure to ZnO particles with different diameters all activate the NF-κB signaling in SH-SY5Y cells; whereas UCH-L1 over-expression resulted in increased levels of IκBα, an endogenous inhibitor of NF-κB signaling pathway. ZnO particles with different diameters all induced cytotoxicity in DA neurons, which may be related to the free Zn2+ in the suspension. Regarding the neurotoxic effect of ZnO particles, UCH-L1 protects against and/or alleviates neuronal damage, possibly by deubiquitination of the endogenous inhibitor, IκBα, which leads to activation of NF-κB signaling. Therefore, one possible mechanism for ZnO particle-induced neurotoxicity may be mediated via the down-regulation of UCH-L1 expression in DA cells.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Ubiquitina Tiolesterase/metabolismo , Óxido de Zinco/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Regulação para Baixo , Humanos , Inibidor de NF-kappaB alfa/genética , Tamanho da Partícula , Transdução de Sinais/efeitos dos fármacos , Propriedades de Superfície , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA