Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(45): e2314781120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903258

RESUMO

Recognition that common human amyloidoses are prion diseases makes the use of the Saccharomyces cerevisiae prion model systems to screen for possible anti-prion components of increasing importance. [PSI+] and [URE3] are amyloid-based prions of Sup35p and Ure2p, respectively. Yeast has at least six anti-prion systems that together cure nearly all [PSI+] and [URE3] prions arising in their absence. We made a GAL-promoted bank of 14,913 human open reading frames in a yeast shuttle plasmid and isolated 20 genes whose expression cures [PSI+] or [URE3]. PRPF19 is an E3 ubiquitin ligase that cures [URE3] if its U-box is intact. DNAJA1 is a J protein that cures [PSI+] unless its interaction with Hsp70s is defective. Human Bag5 efficiently cures [URE3] and [PSI+]. Bag family proteins share a 110 to 130 residue "BAG domain"; Bag 1, 2, 3, 4, and 6 each have one BAG domain while Bag5 has five BAG domains. Two BAG domains are necessary for curing [PSI+], but one can suffice to cure [URE3]. Although most Bag proteins affect autophagy in mammalian cells, mutations blocking autophagy in yeast do not affect Bag5 curing of [PSI+] or [URE3]. Curing by Bag proteins depends on their interaction with Hsp70s, impairing their role, with Hsp104 and Sis1, in the amyloid filament cleavage necessary for prion propagation. Since Bag5 curing is reduced by overproduction of Sis1, we propose that Bag5 cures prions by blocking Sis1 access to Hsp70s in its role with Hsp104 in filament cleavage.


Assuntos
Príons , Proteínas de Saccharomyces cerevisiae , Animais , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Príons/genética , Príons/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Mutação , Amiloide/genética , Amiloide/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Proteínas Fúngicas/metabolismo , Mamíferos/metabolismo , Fatores de Processamento de RNA/genética , Proteínas Nucleares/metabolismo , Enzimas Reparadoras do DNA/genética
2.
Eur Biophys J ; 52(8): 673-704, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37670150

RESUMO

The single-celled baker's yeast, Saccharomyces cerevisiae, can sustain a number of amyloid-based prions, the three most prominent examples being [URE3], [PSI+], and [PIN+]. In the laboratory, haploid S. cerevisiae cells of a single mating type can acquire an amyloid prion in one of two ways (i) spontaneous nucleation of the prion within the yeast cell, and (ii) receipt via mother-to-daughter transmission during the cell division cycle. Similarly, prions can be lost due to (i) dissolution of the prion amyloid by its breakage into non-amyloid monomeric units, or (ii) preferential donation/retention of prions between the mother and daughter during cell division. Here we present a computational tool (Monitoring Induction and Loss of prions in Cells; MIL-CELL) for modelling these four general processes using a multiscale approach describing both spatial and kinetic aspects of the yeast life cycle and the amyloid-prion behavior. We describe the workings of the model, assumptions upon which it is based and some interesting simulation results pertaining to the wave-like spread of the epigenetic prion elements through the yeast population. MIL-CELL is provided as a stand-alone GUI executable program for free download with the paper. MIL-CELL is equipped with a relational database allowing all simulated properties to be searched, collated and graphed. Its ability to incorporate variation in heritable properties means MIL-CELL is also capable of simulating loss of the isogenic nature of a cell population over time. The capability to monitor both chronological and reproductive age also makes MIL-CELL potentially useful in studies of cell aging.


Assuntos
Príons , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Príons/metabolismo , Amiloide/metabolismo
3.
J Biol Chem ; 294(5): 1729-1738, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30710020

RESUMO

Yeast prions have become important models for the study of the basic mechanisms underlying human amyloid diseases. Yeast prions are pathogenic (unlike the [Het-s] prion of Podospora anserina), and most are amyloid-based with the same in-register parallel ß-sheet architecture as most of the disease-causing human amyloids studied. Normal yeast cells eliminate the large majority of prion variants arising, and several anti-prion/anti-amyloid systems that eliminate them have been identified. It is likely that mammalian cells also have anti-amyloid systems, which may be useful in the same way humoral, cellular, and innate immune systems are used to treat or prevent bacterial and viral infections.


Assuntos
Príons/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Humanos
4.
J Mol Biol ; 433(13): 166976, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33811921

RESUMO

The cellular chaperone machinery plays key role in the de novo formation and propagation of yeast prions (infectious protein). Though the role of Hsp70s in the prion maintenance is well studied, how Hsp90 chaperone machinery affects yeast prions remains unclear. In the current study, we examined the role of Hsp90 and its co-chaperones on yeast prions [PSI+] and [URE3]. We show that the overproduction of Hsp90 co-chaperone Tah1, cures [URE3] which is a prion form of native protein Ure2 in yeast. The Hsp90 co-chaperone Tah1 is involved in the assembly of small nucleolar ribonucleoproteins (snoRNP) and chromatin remodelling complexes. We found that Tah1 deletion improves the frequency of de novo appearance of [URE3]. The Tah1 was found to interact with Hsp70. The lack of Tah1 not only represses antagonizing effect of Ssa1 Hsp70 on [URE3] but also improves the prion strength suggesting role of Tah1 in both fibril growth and replication. We show that the N-terminal tetratricopeptide repeat domain of Tah1 is indispensable for [URE3] curing. Tah1 interacts with Ure2, improves its solubility in [URE3] strains, and affects the kinetics of Ure2 fibrillation in vitro. Its inhibitory role on Ure2 fibrillation is proposed to influence [URE3] propagation. The present study shows a novel role of Tah1 in yeast prion propagation, and that Hsp90 not only promotes its role in ribosomal RNA processing but also in the prion maintenance. SUMMARY: Prions are self-perpetuating infectious proteins. What initiates the misfolding of a protein into its prion form is still not clear. The understanding of cellular factors that facilitate or antagonize prions is crucial to gain insight into the mechanism of prion formation and propagation. In the current study, we reveal that Tah1 is a novel modulator of yeast prion [URE3]. The Hsp90 co-chaperone Tah1, is required for the formation of small nucleolar ribonucleoprotein complex. We show that the absence of Tah1 improves the induction of [URE3] prion. The overexpressed Tah1 cures [URE3], and this function is promoted by Hsp90 chaperones. The current study thus provides a novel cellular factor and the underlying mechanism, involved in the prion formation and propagation.


Assuntos
Glutationa Peroxidase/metabolismo , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Príons/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Deleção de Genes , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/química , Agregados Proteicos , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Proteínas de Saccharomyces cerevisiae/química
5.
Genetics ; 218(1)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33742650

RESUMO

[URE3] is a prion of the nitrogen catabolism controller, Ure2p, and [PSI+] is a prion of the translation termination factor Sup35p in S. cerevisiae. Btn2p cures [URE3] by sequestration of Ure2p amyloid filaments. Cur1p, paralogous to Btn2p, also cures [URE3], but by a different (unknown) mechanism. We find that an array of mutations impairing proteasome assembly or MG132 inhibition of proteasome activity result in loss of [URE3]. In proportion to their prion-curing effects, each mutation affecting proteasomes elevates the cellular concentration of the anti-prion proteins Btn2 and Cur1. Of >4,600 proteins detected by SILAC, Btn2p was easily the most overexpressed in a pre9Δ (α3 core subunit) strain. Indeed, deletion of BTN2 and CUR1 prevents the prion-curing effects of proteasome impairment. Surprisingly, the 15 most unstable yeast proteins are not increased in pre9Δ cells suggesting altered proteasome specificity rather than simple inactivation. Hsp42, a chaperone that cooperates with Btn2 and Cur1 in curing [URE3], is also necessary for the curing produced by proteasome defects, although Hsp42p levels are not substantially altered by a proteasome defect. We find that pre9Δ and proteasome chaperone mutants that most efficiently lose [URE3], do not destabilize [PSI+] or alter cellular levels of Sup35p. A tof2 mutation or deletion likewise destabilizes [URE3], and elevates Btn2p, suggesting that Tof2p deficiency inactivates proteasomes. We suggest that when proteasomes are saturated with denatured/misfolded proteins, their reduced degradation of Btn2p and Cur1p automatically upregulates these aggregate-handling systems to assist in the clean-up.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Glutationa Peroxidase/metabolismo , Chaperonas Moleculares/metabolismo , Príons/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Amiloide/metabolismo , Citoplasma/metabolismo , Proteínas Fúngicas/metabolismo , Glutationa Peroxidase/genética , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Proteínas Priônicas/metabolismo , Príons/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Viruses ; 11(3)2019 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-30857327

RESUMO

The known amyloid-based prions of Saccharomyces cerevisiae each have multiple heritable forms, called "prion variants" or "prion strains". These variants, all based on the same prion protein sequence, differ in their biological properties and their detailed amyloid structures, although each of the few examined to date have an in-register parallel folded ß sheet architecture. Here, we review the range of biological properties of yeast prion variants, factors affecting their generation and propagation, the interaction of prion variants with each other, the mutability of prions, and their segregation during mitotic growth. After early differentiation between strong and weak stable and unstable variants, the parameters distinguishing the variants has dramatically increased, only occasionally correlating with the strong/weak paradigm. A sensitivity to inter- and intraspecies barriers, anti-prion systems, and chaperone deficiencies or excesses and other factors all have dramatic selective effects on prion variants. Recent studies of anti-prion systems, which cure prions in wild strains, have revealed an enormous array of new variants, normally eliminated as they arise and so not previously studied. This work suggests that defects in the anti-prion systems, analogous to immune deficiencies, may be at the root of some human amyloidoses.


Assuntos
Variação Genética , Chaperonas Moleculares , Príons/genética , Príons/patogenicidade , Saccharomyces cerevisiae/genética , Amiloide/química , Amiloide/genética , Mutação , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/genética
7.
Cell Stress Chaperones ; 23(4): 581-594, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29214607

RESUMO

In this study, we studied the effect of 2.0 GHz radio frequency electromagnetic field (RF-EMF) and 50 Hz extremely low frequency electromagnetic field (ELF-EMF) exposure on prion generation and propagation using two budding yeast strains, NT64C and SB34, as model organisms. Under exposure to RF-EMF or ELF-EMF, the de novo generation and propagation of yeast prions [URE3] were elevated in both strains. The elevation increased over time, and the effects of ELF-EMF occurred in a dose-dependent manner. The transcription and expression levels of the molecular chaperones Hsp104, Hsp70-Ssa1/2, and Hsp40-Ydj1 were not statistically significantly changed after exposure. Furthermore, the levels of ROS, as well as the activities of superoxide dismutase (SOD) and catalase (CAT), were significantly elevated after short-term, but not long-term exposure. This work demonstrated for the first time that EMF exposure could elevate the de novo generation and propagation of yeast prions and supports the hypothesis that ROS may play a role in the effects of EMF on protein misfolding. The effects of EMF on protein folding and ROS levels may mediate the broad effects of EMF on cell function.


Assuntos
Campos Eletromagnéticos , Glutationa Peroxidase/metabolismo , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Catalase/metabolismo , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Ondas de Rádio , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
8.
Prion ; 12(3-4): 234-244, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30165789

RESUMO

One of the major medical challenges of the twenty-first century is the treatment of incurable and fatal neurodegenerative disorders caused by misfolded prion proteins. Since the discovery of these diseases a number of studies have been conducted to identify small molecules for their treatment, however to date no curative treatment is available. These studies can be highly expensive and time consuming, but more recent experimental approaches indicate a significant application for yeast prions in these studies. We therefore used yeast prions to optimize previous high-throughput methods for the cheaper, easier and more rapid screening of natural extracts. Through this approach we aimed to identify natural yeast-prion inhibitors that could be useful in the development of novel treatment strategies for neurodegenerative disorders. We screened 500 marine invertebrate extracts from temperate waters in Australia allowing the identification of yeast-prion inhibiting extracts. Through the bioassay-driven chemical investigation of an active Suberites sponge extract, a group of bromotyrosine derivatives were identified as potent yeast-prion inhibitors. This study outlines the importance of natural products and yeast prions as a first-stage screen for the identification of new chemically diverse and bioactive compounds.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/farmacologia , Poríferos/química , Príons/antagonistas & inibidores , Animais , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Genetics ; 209(3): 789-800, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29769283

RESUMO

[URE3] is an amyloid-based prion of Ure2p, a regulator of nitrogen catabolism. While most "variants" of the [URE3] prion are toxic, mild variants that only slightly slow growth are more widely studied. The existence of several antiprion systems suggests that some components may be protecting cells from potential detrimental effects of mild [URE3] variants. Our extensive Hermes transposon mutagenesis showed that disruption of YLR352W dramatically slows the growth of [URE3-1] strains. Ylr352wp is an F-box protein, directing selection of substrates for ubiquitination by a "cullin"-containing E3 ligase. For efficient ubiquitylation, cullin-dependent E3 ubiquitin ligases must be NEDDylated, modified by a ubiquitin-related peptide called NEDD8 (Rub1p in yeast). Indeed, we find that disruption of NEDDylation-related genes RUB1, ULA1, UBA3, and UBC12 is also counterselected in our screen. We find that like ylr352wΔ [URE3] strains, ylr352wΔ ure2Δ strains do not grow on nonfermentable carbon sources. Overexpression of Hap4p, a transcription factor stimulating expression of mitochondrial proteins, or mutation of GLN1, encoding glutamine synthetase, allows growth of ylr352w∆ [URE3] strains on glycerol media. Supplying proline as a nitrogen source shuts off the nitrogen catabolite repression (NCR) function of Ure2p, but does not slow growth of ylr352wΔ strains, suggesting a distinct function of Ure2p in carbon catabolism. Also, gln1 mutations impair NCR, but actually relieve the growth defect of ylr352wΔ [URE3] and ylr352wΔ ure2Δ strains, again showing that loss of NCR is not producing the growth defect and suggesting that Ure2p has another function. YLR352W largely protects cells from the deleterious effects of otherwise mild [URE3] variants or of a ure2 mutation (the latter a rarer event), and we name it LUG1 (lets [URE3]/ure2 grow).


Assuntos
Carbono/metabolismo , Proteínas de Drosophila/genética , Glutationa Peroxidase/metabolismo , Nitrogênio/metabolismo , Príons/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Elementos de DNA Transponíveis , Proteínas F-Box/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Fúngica da Expressão Gênica , Glutationa Peroxidase/genética , Mutação , Príons/genética , Receptor Cross-Talk , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação
10.
Int Rev Cell Mol Biol ; 329: 227-276, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28109329

RESUMO

While philosophers in ancient times had many ideas for the cause of contagion, the modern study of infective agents began with Fracastoro's 1546 proposal that invisible "spores" spread infectious disease. However, firm categorization of the pathogens of the natural world would need to await a mature germ theory that would not arise for 300 years. In the 19th century, the earliest pathogens described were bacteria and other cellular microbes. By the close of that century, the work of Ivanovsky and Beijerinck introduced the concept of a virus, an infective particle smaller than any known cell. Extending into the early-mid-20th century there was an explosive growth in pathogenic microbiology, with a cellular or viral cause identified for nearly every transmissible disease. A few occult pathogens remained to be discovered, including the infectious proteins (prions) proposed by Prusiner in 1982. This review discusses the prions identified in mammals, yeasts, and other organisms, focusing on the amyloid-based prions. I discuss the essential biochemical properties of these agents and the application of this knowledge to diseases of protein misfolding and aggregation, as well as the utility of yeast as a model organism to study prion and amyloid proteins that affect human and animal health. Further, I summarize the ideas emerging out of these studies that the prion concept may go beyond proteinaceous infectious particles and that prions may be a subset of proteins having general nucleating or seeding functions involved in noninfectious as well as infectious pathogenic protein aggregation.


Assuntos
Príons/metabolismo , Leveduras/metabolismo , Animais , Doença , Humanos , Mamíferos , Modelos Biológicos , Príons/química
11.
Adv Genet ; 93: 191-236, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26915272

RESUMO

Yeast prions (infectious proteins) were discovered by their outré genetic properties and have become important models for an array of human prion and amyloid diseases. A single prion protein can become any of many distinct amyloid forms (called prion variants or strains), each of which is self-propagating, but with different biological properties (eg, lethal vs mild). The folded in-register parallel ß sheet architecture of the yeast prion amyloids naturally suggests a mechanism by which prion variant information can be faithfully transmitted for many generations. The yeast prions rely on cellular chaperones for their propagation, but can be cured by various chaperone imbalances. The Btn2/Cur1 system normally cures most variants of the [URE3] prion that arise. Although most variants of the [PSI+] and [URE3] prions are toxic or lethal, some are mild in their effects. Even the most mild forms of these prions are rare in the wild, indicating that they too are detrimental to yeast. The beneficial [Het-s] prion of Podospora anserina poses an important contrast in its structure, biology, and evolution to the yeast prions characterized thus far.


Assuntos
Amiloide , Amiloidose/metabolismo , Proteínas Fúngicas , Doenças Priônicas/metabolismo , Príons , Leveduras/metabolismo , Sequência de Aminoácidos , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Modelos Químicos , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Doenças Priônicas/transmissão , Príons/química , Príons/genética , Príons/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA