Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 614
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Brain ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436939

RESUMO

The subthalamic nucleus (STN) of the basal ganglia is key to the inhibitory control of movement. Consequently, it is a primary target for the neurosurgical treatment of movement disorders like Parkinson's Disease, where modulating the STN via deep-brain stimulation (DBS) can release excess inhibition of thalamo-cortical motor circuits. However, the STN is also anatomically connected to other thalamo-cortical circuits, including those underlying cognitive processes like attention. Notably, STN-DBS can also affect these processes. This suggests that the STN may also contribute to the inhibition of non-motor activity, and that STN-DBS may cause changes to this inhibition. We here tested this hypothesis in humans. We used a novel, wireless outpatient method to record intracranial local field potentials (LFP) from STN DBS implants during a visual attention task (Experiment 1, N=12). These outpatient measurements allowed the simultaneous recording of high-density EEG, which we used to derive the steady-state visual evoked potential (SSVEP), a well-established neural index of visual attentional engagement. By relating STN activity to this neural marker of attention (instead of overt behavior), we avoided possible confounds resulting from STN's motor role. We aimed to test whether the STN contributes to the momentary inhibition of the SSVEP caused by unexpected, distracting sounds. Furthermore, we causally tested this association in a second experiment, where we modulated STN via DBS across two sessions of the task, spaced at least one week apart (N=21, no sample overlap with Experiment 1). The LFP recordings in Experiment 1 showed that reductions of the SSVEP after distracting sounds were preceded by sound-related γ-frequency (>60Hz) activity in the STN. Trial-to-trial modeling further showed that this STN activity statistically mediated the sounds' suppressive effect on the SSVEP. In Experiment 2, modulating STN activity via DBS significantly reduced these sound-related SSVEP reductions. This provides causal evidence for the role of the STN in the surprise-related inhibition of attention. These findings suggest that the human STN contributes to the inhibition of attention, a non-motor process. This supports a domain-general view of the inhibitory role of the STN. Furthermore, these findings also suggest a potential mechanism underlying some of the known cognitive side-effects of STN-DBS treatment, especially on attentional processes. Finally, our newly-established outpatient LFP recording technique facilitates the testing of the role of subcortical nuclei in complex cognitive tasks, alongside recordings from the rest of the brain, and in much shorter time than perisurgical recordings.

2.
BMC Bioinformatics ; 25(1): 227, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956454

RESUMO

BACKGROUND: Multivariate synchronization index (MSI) has been successfully applied for frequency detection in steady state visual evoked potential (SSVEP) based brain-computer interface (BCI) systems. However, the standard MSI algorithm and its variants cannot simultaneously take full advantage of the time-local structure and the harmonic components in SSVEP signals, which are both crucial for frequency detection performance. To overcome the limitation, we propose a novel filter bank temporally local MSI (FBTMSI) algorithm to further improve SSVEP frequency detection accuracy. The method explicitly utilizes the temporal information of signal for covariance matrix estimation and employs filter bank decomposition to exploits SSVEP-related harmonic components. RESULTS: We employed the cross-validation strategy on the public Benchmark dataset to optimize the parameters and evaluate the performance of the FBTMSI algorithm. Experimental results show that FBTMSI outperforms the standard MSI, temporally local MSI (TMSI) and filter bank driven MSI (FBMSI) algorithms across multiple experimental settings. In the case of data length of one second, the average accuracy of FBTMSI is 9.85% and 3.15% higher than that of the FBMSI and the TMSI, respectively. CONCLUSIONS: The promising results demonstrate the effectiveness of the FBTMSI algorithm for frequency recognition and show its potential in SSVEP-based BCI applications.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Eletroencefalografia , Potenciais Evocados Visuais , Humanos , Potenciais Evocados Visuais/fisiologia , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador
3.
Glia ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829008

RESUMO

As one of the top causes of blindness worldwide, glaucoma leads to diverse optic neuropathies such as degeneration of retinal ganglion cells (RGCs). It is widely accepted that the level of intraocular pressure (IOP) is a major risk factor in human glaucoma, and reduction of IOP level is the principally most well-known method to prevent cell death of RGCs. However, clinical studies show that lowering IOP fails to prevent RGC degeneration in the progression of glaucoma. Thus, a comprehensive understanding of glaucoma pathological process is required for developing new therapeutic strategies. In this study, we provide functional and histological evidence showing that optic nerve defects occurred before retina damage in an ocular hypertension glaucoma mouse model, in which oligodendroglial lineage cells were responsible for the subsequent neuropathology. By treatment with clemastine, an Food and Drug Administration (FDA)-approved first-generation antihistamine medicine, we demonstrate that the optic nerve and retina damages were attenuated via promoting oligodendrocyte precursor cell (OPC) differentiation and enhancing remyelination. Taken together, our results reveal the timeline of the optic neuropathies in glaucoma and highlight the potential role of oligodendroglial lineage cells playing in its treatment. Clemastine may be used in future clinical applications for demyelination-associated glaucoma.

4.
J Neurophysiol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985934

RESUMO

Efficient communication and regulation are crucial for advancing brain-computer interfaces (BCIs), with the steady-state visual evoked potential (SSVEP) paradigm demonstrating high accuracy and information transfer rates. However, the conventional SSVEP paradigm encounters challenges related to visual occlusion and fatigue. In this study, we propose an improved SSVEP paradigm that addresses these issues by lowering the contrast of visual stimuli. visual stimulation. The improved paradigms outperform the traditional paradigm in the experiments, significantly reducing the visual stimulation of the SSVEP paradigm. Furthermore, we apply this enhanced paradigm to a BCI navigation system, enabling two-dimensional navigation of Unmanned Aerial Vehicles (UAVs) through a first-person perspective. Experimental results indicate the enhanced SSVEP-based BCI system's accuracy in performing navigation and search tasks. Our findings highlight the feasibility of the enhanced SSVEP paradigm in mitigating visual occlusion and fatigue issues, presenting a more intuitive and natural approach for BCIs to control external equipment.

5.
Doc Ophthalmol ; 148(3): 155-166, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38622306

RESUMO

PURPOSE: The aim of this neurophysiological study was to retrospectively analyze visual evoked potentials (VEPs) acquired during an examination for diagnosing optic nerve involvement in patients with Lyme neuroborreliosis (LNB). Attention was focused on LNB patients with peripheral facial palsy (PFP) and optic nerve involvement. METHODS: A total of 241 Czech patients were classified as having probable/definite LNB (193/48); of these, 57 were younger than 40 years, with a median age of 26.3 years, and 184 were older than 40 years, with a median age of 58.8 years. All patients underwent pattern-reversal (PVEP) and motion-onset (MVEP) VEP examinations. RESULTS: Abnormal VEP results were observed in 150/241 patients and were noted more often in patients over 40 years (p = 0.008). Muscle/joint problems and paresthesia were observed to be significantly more common in patients older than 40 years (p = 0.002, p = 0.030), in contrast to headache and decreased visual acuity, which were seen more often in patients younger than 40 years (p = 0.001, p = 0.033). Peripheral facial palsy was diagnosed in 26/241 LNB patients. Among patients with PFP, VEP peak times above the laboratory limit was observed in 22 (84.6%) individuals. Monitoring of patients with PFP and pathological VEP showed that the adjustment of visual system function occurred in half of the patients in one to more years, in contrast to faster recovery from peripheral facial palsy within months in most patients. CONCLUSION: In LNB patients, VEP helps to increase sensitivity of an early diagnostic process.


Assuntos
Potenciais Evocados Visuais , Neuroborreliose de Lyme , Doenças do Nervo Óptico , Humanos , Neuroborreliose de Lyme/fisiopatologia , Neuroborreliose de Lyme/diagnóstico , Neuroborreliose de Lyme/complicações , Pessoa de Meia-Idade , Adulto , Potenciais Evocados Visuais/fisiologia , Estudos Retrospectivos , Masculino , Feminino , Doenças do Nervo Óptico/fisiopatologia , Doenças do Nervo Óptico/diagnóstico , Idoso , Adulto Jovem , Adolescente , Paralisia Facial/fisiopatologia , Paralisia Facial/diagnóstico , Criança , Idoso de 80 Anos ou mais , Acuidade Visual/fisiologia , Nervo Óptico/fisiopatologia
6.
Doc Ophthalmol ; 149(1): 23-45, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955958

RESUMO

PURPOSE: Multiple sclerosis (MS) is a neuro-inflammatory disease affecting the central nervous system (CNS), where the immune system targets and damages the protective myelin sheath surrounding nerve fibers, inhibiting axonal signal transmission. Demyelinating optic neuritis (ON), a common MS symptom, involves optic nerve damage. We've developed NeuroVEP, a portable, wireless diagnostic system that delivers visual stimuli through a smartphone in a headset and measures evoked potentials at the visual cortex from the scalp using custom electroencephalography electrodes. METHODS: Subject vision is evaluated using a short 2.5-min full-field visual evoked potentials (ffVEP) test, followed by a 12.5-min multifocal VEP (mfVEP) test. The ffVEP evaluates the integrity of the visual pathway by analyzing the P100 component from each eye, while the mfVEP evaluates 36 individual regions of the visual field for abnormalities. Extensive signal processing, feature extraction methods, and machine learning algorithms were explored for analyzing the mfVEPs. Key metrics from patients' ffVEP results were statistically evaluated against data collected from a group of subjects with normal vision. Custom visual stimuli with simulated defects were used to validate the mfVEP results which yielded 91% accuracy of classification. RESULTS: 20 subjects, 10 controls and 10 with MS and/or ON were tested with the NeuroVEP device and a standard-of-care (SOC) VEP testing device which delivers only ffVEP stimuli. In 91% of the cases, the ffVEP results agreed between NeuroVEP and SOC device. Where available, the NeuroVEP mfVEP results were in good agreement with Humphrey Automated Perimetry visual field analysis. The lesion locations deduced from the mfVEP data were consistent with Magnetic Resonance Imaging and Optical Coherence Tomography findings. CONCLUSION: This pilot study indicates that NeuroVEP has the potential to be a reliable, portable, and objective diagnostic device for electrophysiology and visual field analysis for neuro-visual disorders.


Assuntos
Potenciais Evocados Visuais , Esclerose Múltipla , Neurite Óptica , Humanos , Potenciais Evocados Visuais/fisiologia , Neurite Óptica/diagnóstico , Neurite Óptica/fisiopatologia , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/fisiopatologia , Feminino , Masculino , Adulto , Campos Visuais/fisiologia , Córtex Visual/fisiopatologia , Eletroencefalografia/instrumentação , Pessoa de Meia-Idade , Projetos Piloto , Estimulação Luminosa
7.
Doc Ophthalmol ; 148(2): 75-85, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488946

RESUMO

The pattern electroretinogram (PERG) is a localized retinal response evoked by a contrast-reversing pattern, usually a black and white checkerboard, which provides information about macular and retinal ganglion cell function. This document, from the International Society for Clinical Electrophysiology of Vision (ISCEV; www.iscev.org ) presents an updated and revised Standard for clinical PERG testing. This replaces the 2013 and all earlier versions. Minimum protocols for basic PERG stimuli, recording methods and reporting are specified, to promote consistency of methods for diagnosis and monitoring purposes, while responding to evolving clinical practices and technology. The main changes in the updated ISCEV Standard for clinical PERG include expanded guidance about large stimulus fields, stimulus parameters for simultaneous PERG and pattern visual evoked potential recording, baseline drift correction, and use of consistent ambient room lighting. These changes aim to provide a clinically relevant document about current practice which will facilitate good quality recordings and inter-laboratory comparisons.


Assuntos
Eletrorretinografia , Potenciais Evocados Visuais , Eletrorretinografia/métodos , Retina , Visão Ocular , Células Ganglionares da Retina
8.
Artigo em Inglês | MEDLINE | ID: mdl-38441681

RESUMO

BACKGROUND: This study aims to assess the effectiveness of the preoperative flash visual evoked potential (VEP) test in predicting postoperative visual acuity for monocular mature cataract cases when compared to the contralateral normal eye. METHODS: The study included 60 patients, each with a monocular mature cataract diagnosis, who underwent preoperative flash VEP testing showing no pattern VEP response. Subsequently, phacoemulsification was performed. The relationship between the flash VEP test latency values (P1, N2, P2) and amplitude value (N2-P2), and the degree of visual acuity recovery 3 months post-cataract surgery, was evaluated using the LogMAR scale. Furthermore, a linear regression analysis was conducted to explore the connection between preoperative flash VEP components and postoperative visual acuity. RESULTS: The average age of the patients was 65.4 ± 13.6 years, with a range of 43 to 87 years. The study included 36 males and 24 females. A significant disparity in visual acuity was observed between the preoperative and 3-month postoperative stages (p < 0.001). The preoperative flash VEP test for mature cataracts revealed significant delays in P1, N2, and P2 latency, as well as a reduction in N2-P2 amplitude potential when compared to the contralateral normal eye (p < 0.001). Notably, delayed P2 latency and reduced N2-P2 amplitude potential were particularly indicative of poor visual acuity prognosis after cataract surgery in the multiple regression analysis (p < 0.05). The N2-P2 amplitude potential was the important value that exhibited statistically significant results, with an area under the curve (AUC) of 80% sensitivity and 88% specificity, using a cutoff value of 6.07 µV. CONCLUSIONS: In cases of monocular mature cataract, a reduction in N2-P2 amplitude potential compared to the contralateral normal eye emerged as the most reliable predictor of postoperative visual prognosis following cataract surgery.

9.
BMC Anesthesiol ; 24(1): 85, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424486

RESUMO

BACKGROUND: Flash visual evoked potential (FVEP) is a critical method for monitoring intraoperative visual function during neurosurgery. A new benzodiazepine drug called remimazolam has recently been used for general anesthesia. However, the impact of remimazolam on FVEP remains unclear. Therefore, we aimed to investigate how remimazolam, in comparison to propofol, when combined with 0.6% sevoflurane anesthesia, affects the FVEP waveform during pituitary adenoma resection. METHODS: Overall, 36 patients undergoing pituitary adenoma resection under general anesthesia were randomly assigned to either the remimazolam group (Group R) or the propofol group (Group P) in a prospective, randomized, controlled, non-inferiority trial. For anesthesia induction, a bolus of 0.2 mg/kg remimazolam or 2 mg/kg propofol was intravenously infused for approximately one minute. The anesthesia was maintained by continuous infusion of either remimazolam (0.7-1.0 mg/kg/h) or propofol (4-6 mg/kg/h), in combination with 0.6% sevoflurane, aimed at sustaining the bispectral index (BIS) within the range of 40-60. The primary outcome was the N75-P100 amplitude of FVEP recorded at approximately 20 min after intubation (T0). 10% of the amplitude at T0 in group P was defined as the non-inferiority margin (δ). Confidence interval testing was used to evaluate the non-inferiority hypothesis. The secondary outcomes covered the P100 latency of FVEP, electroretinogram (ERG) b wave amplitude, demographic characteristics, hemodynamics, and occurrence of adverse events. RESULTS: The BIS index during anesthesia was comparable between the groups at the same measured time points (P > 0.05). The N75-P100 amplitude at T0 in group R was 7.64 ± 1.36 µV, while it was 6.96 ± 0.95 µV in group P (P = 0.09), with a mean difference of 0.68 µV (95% CI, -0.11 µV to 1.48 µV). The δ was set at 0.7 and the lower limit of the 95% CI exceeded the -δ. Both remimazolam and propofol had little effect on ERG b-wave amplitudes. At the designated time points, FVEP amplitude and P100 latency displayed no appreciable variation between the two groups (P > 0.05). Furthermore, there were no significant differences in the incidence of adverse events related to anesthesia, needle electrodes, or surgery between the two groups (P > 0.05). CONCLUSION: Our findings suggest that remimazolam-0.6% sevoflurane is non-inferior to propofol-0.6% sevoflurane for general anesthesia, based on the FVEP N75-P100 amplitude. The electrophysiological data obtained in both groups indicate that reproducible and stable FVEP and ERG waveforms can be acquired at set time points. Therefore, for reliable FVEP monitoring, remimazolam-0.6% sevoflurane appears to be a safe and effective protocol in general anesthesia. TRIALS REGISTRATION: This study was registered on chictr.org.cn (ChiCTR2200056803, 17/02/2022).


Assuntos
Neoplasias Hipofisárias , Propofol , Humanos , Anestesia Geral , Benzodiazepinas , Potenciais Evocados Visuais , Neoplasias Hipofisárias/cirurgia , Propofol/farmacologia , Estudos Prospectivos , Sevoflurano
10.
BMC Pediatr ; 24(1): 92, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308211

RESUMO

BACKGROUND: The application of evoked potentials (EPs) to the diagnosis of acute disseminated encephalomyelitis (ADEM ) has not been investigated in detail. The aim of this study, therefore, was to analyze the value of multimodal EPs in the early diagnosis of pediatric ADEM. METHODS: This was a retrospective study in which we enrolled pediatric ADEM patients and controls (Cs) from neurology units between 2017 and 2021. We measured indices in patients using brainstem auditory evoked potentials (BAEPs), visual evoked potentials (VEPs) and somatosensory evoked potentials (SEPs), and then we analyzed their early diagnostic value in ADEM patients. RESULTS: The mean age of the ADEM group was 6.15 ± 3.28 years (range,1-12 years) and the male/female ratio was 2.1:1 The mean age of the Cs was 5.97 ± 3.40 years (range,1-12 years) and the male/female ratio was 1.3:1. As we used magnetic resonance imaging (MRI) as the diagnostic criterion, the sensitivity, specificity, and accuracy (κ was 0.88) of multimodal EPs were highly consistent with those of MRI; and the validity could be ranked in the following order with respect to the diagnosis of ADEM: multimodal Eps > single SEP > single VEP > single BAEP. Of 34 patients with ADEM, abnormalities in multimodal EPs were 94.12%, while abnormalities in single VEPs, BAEPs and SEPs were 70.59%,64.71%and 85.3%, respectively. We noted significant differences between single VEP/BAEPs and multimodal EPs (χ2 = 6.476/8.995,P = 0.011/0.003). CONCLUSIONS: The combined application of multimodal EPs was superior to BAEPs, VEPs, or SEPs alone in detecting the existence of central nerve demyelination, and we hypothesize that these modalities will be applicable in the early diagnosis of ADEM.


Assuntos
Encefalomielite Aguda Disseminada , Potenciais Evocados Visuais , Humanos , Criança , Feminino , Masculino , Lactente , Pré-Escolar , Encefalomielite Aguda Disseminada/diagnóstico , Estudos Retrospectivos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia
11.
Childs Nerv Syst ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842548

RESUMO

Visual evoked potential (VEP) is an established modality that allows safe brain tumor resection and preservation of optical function. We herein present a case of a pediatric craniopharyngioma with significant improvement in the VEP amplitude detected during endoscopic transsphenoidal surgery (ETS) and obvious postoperative improvement in visual acuity. A 13-year-old boy presented with visual acuity disturbance in his right eye and was followed up for 5 months by an ophthalmologist. His visual acuity rapidly worsened, and a suprasellar lesion with calcification was found on brain computed tomography. The patient underwent tumor resection during ETS with intraoperative transcranial VEP monitoring. Gross total tumor resection was achieved without injury to the perforators, including the superior hypophyseal arteries. The VEP amplitude was unstable, and significant waves were not detectable before tumor resection; however, a positive wave was detected after removing most of the tumor and exposing the bilateral optic nerves and optic chiasm. Subsequently, negative and positive VEP waves were continuously detected. Visual acuity improved remarkably on postoperative day 10. This case demonstrated both a significant increase in the intraoperative VEP amplitude and rapid postoperative improvement in visual acuity. We surmised that the preoperative rapid worsening of visual dysfunction, intraoperative increase in the VEP amplitude, and significant postoperative improvement in visual acuity were associated with the compression of the optic nerves by the internal carotid artery, anterior cerebral artery, and tumor.

12.
J Integr Neurosci ; 23(4): 73, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38682224

RESUMO

BACKGROUND: To enhance the information transfer rate (ITR) of a steady-state visual evoked potential (SSVEP)-based speller, more characters with flickering symbols should be used. Increasing the number of symbols might reduce the classification accuracy. A hybrid brain-computer interface (BCI) improves the overall performance of a BCI system by taking advantage of two or more control signals. In a simultaneous hybrid BCI, various modalities work with each other simultaneously, which enhances the ITR. METHODS: In our proposed speller, simultaneous combination of electromyogram (EMG) and SSVEP was applied to increase the ITR. To achieve 36 characters, only nine stimulus symbols were used. Each symbol allowed the selection of four characters based on four states of muscle activity. The SSVEP detected which symbol the subject was focusing on and the EMG determined the target character out of the four characters dedicated to that symbol. The frequency rate for character encoding was applied in the EMG modality and latency was considered in the SSVEP modality. Online experiments were carried out on 10 healthy subjects. RESULTS: The average ITR of this hybrid system was 96.1 bit/min with an accuracy of 91.2%. The speller speed was 20.9 char/min. Different subjects had various latency values. We used an average latency of 0.2 s across all subjects. Evaluation of each modality showed that the SSVEP classification accuracy varied for different subjects, ranging from 80% to 100%, while the EMG classification accuracy was approximately 100% for all subjects. CONCLUSIONS: Our proposed hybrid BCI speller showed improved system speed compared with state-of-the-art systems based on SSVEP or SSVEP-EMG, and can provide a user-friendly, practical system for speller applications.


Assuntos
Interfaces Cérebro-Computador , Eletromiografia , Potenciais Evocados Visuais , Processamento de Texto , Humanos , Processamento de Texto/métodos
13.
Sensors (Basel) ; 24(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38894311

RESUMO

In recent years, there has been a considerable amount of research on visual evoked potential (VEP)-based brain-computer interfaces (BCIs). However, it remains a big challenge to detect VEPs elicited by small visual stimuli. To address this challenge, this study employed a 256-electrode high-density electroencephalogram (EEG) cap with 66 electrodes in the parietal and occipital lobes to record EEG signals. An online BCI system based on code-modulated VEP (C-VEP) was designed and implemented with thirty targets modulated by a time-shifted binary pseudo-random sequence. A task-discriminant component analysis (TDCA) algorithm was employed for feature extraction and classification. The offline and online experiments were designed to assess EEG responses and classification performance for comparison across four different stimulus sizes at visual angles of 0.5°, 1°, 2°, and 3°. By optimizing the data length for each subject in the online experiment, information transfer rates (ITRs) of 126.48 ± 14.14 bits/min, 221.73 ± 15.69 bits/min, 258.39 ± 9.28 bits/min, and 266.40 ± 6.52 bits/min were achieved for 0.5°, 1°, 2°, and 3°, respectively. This study further compared the EEG features and classification performance of the 66-electrode layout from the 256-electrode EEG cap, the 32-electrode layout from the 128-electrode EEG cap, and the 21-electrode layout from the 64-electrode EEG cap, elucidating the pivotal importance of a higher electrode density in enhancing the performance of C-VEP BCI systems using small stimuli.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Eletroencefalografia , Potenciais Evocados Visuais , Humanos , Potenciais Evocados Visuais/fisiologia , Eletroencefalografia/métodos , Masculino , Adulto , Feminino , Adulto Jovem , Estimulação Luminosa , Eletrodos , Processamento de Sinais Assistido por Computador
14.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257638

RESUMO

Controlling the in-car environment, including temperature and ventilation, is necessary for a comfortable driving experience. However, it often distracts the driver's attention, potentially causing critical car accidents. In the present study, we implemented an in-car environment control system utilizing a brain-computer interface (BCI) based on steady-state visual evoked potential (SSVEP). In the experiment, four visual stimuli were displayed on a laboratory-made head-up display (HUD). This allowed the participants to control the in-car environment by simply staring at a target visual stimulus, i.e., without pressing a button or averting their eyes from the front. The driving performances in two realistic driving tests-obstacle avoidance and car-following tests-were then compared between the manual control condition and SSVEP-BCI control condition using a driving simulator. In the obstacle avoidance driving test, where participants needed to stop the car when obstacles suddenly appeared, the participants showed significantly shorter response time (1.42 ± 0.26 s) in the SSVEP-BCI control condition than in the manual control condition (1.79 ± 0.27 s). No-response rate, defined as the ratio of obstacles that the participants did not react to, was also significantly lower in the SSVEP-BCI control condition (4.6 ± 14.7%) than in the manual control condition (20.5 ± 25.2%). In the car-following driving test, where the participants were instructed to follow a preceding car that runs at a sinusoidally changing speed, the participants showed significantly lower speed difference with the preceding car in the SSVEP-BCI control condition (15.65 ± 7.04 km/h) than in the manual control condition (19.54 ± 11.51 km/h). The in-car environment control system using SSVEP-based BCI showed a possibility that might contribute to safer driving by keeping the driver's focus on the front and thereby enhancing the overall driving performance.


Assuntos
Interfaces Cérebro-Computador , Humanos , Automóveis , Potenciais Evocados Visuais , Olho , Laboratórios
15.
Int Ophthalmol ; 44(1): 265, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913194

RESUMO

BACKGROUND/AIM: Congenital color vision deficiency (CCVD) is an eye disease characterized by abnormalities in the cone cells in the photoreceptor layer. Visual evoked potentials (VEPs) are electrophysiological tests that physiologically examine the optic nerve, other visual pathways, and the visual cortex. The aim of this research was to determine whether there are VEP abnormalities in CCVD patients. METHODS: Patients with CCVD and healthy individuals were included in this prospective case-control study. Participants with eye disease or neurodegenerative disease were excluded from the study. Pattern reversal VEP (PVEP), flash VEP (FVEP), and optical coherence tomography were performed on all participants. RESULTS: Twenty healthy individuals (15 male) and 21 patients with CCVD (18 male) were included in the study. The mean ages of healthy individuals and patients with CCVD were 29.8 ± 9.6 and 31.1 ± 10.9 years (p = 0.804). Retinal nerve fiber layer thickness and central macular thickness values did not differ between the two groups. In PVEP, Right P100, Left N75, P100, N135 values were delayed in CCVD patients compared to healthy individuals (p = 0.001, p = 0.032, p = 0.003, p = 0.032). At least one PVEP and FVEP abnormality was present in nine (42.9%) and six (28.6%) of the patients, respectively. PVEP or FVEP abnormalities were found in 13 (61.9%) of the patients. CONCLUSION: This study indicated that there may be PVEP and FVEP abnormalities in patients with CCVD.


Assuntos
Defeitos da Visão Cromática , Potenciais Evocados Visuais , Tomografia de Coerência Óptica , Humanos , Potenciais Evocados Visuais/fisiologia , Masculino , Feminino , Defeitos da Visão Cromática/fisiopatologia , Defeitos da Visão Cromática/diagnóstico , Defeitos da Visão Cromática/congênito , Estudos Prospectivos , Adulto , Tomografia de Coerência Óptica/métodos , Estudos de Casos e Controles , Adulto Jovem , Pessoa de Meia-Idade , Adolescente , Acuidade Visual/fisiologia
16.
J Physiol ; 601(10): 1869-1880, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36708225

RESUMO

The pattern-reversal visual evoked potential (prVEP) is an established routine clinical test. Its objectivity is particularly valuable for assessing visual pathway function in children. International standards specify at a minimum that an active electrode is placed on the occiput at Oz, but we find an additional inferior electrode at the inion (Iz) provides larger and more sensitive prVEPs in young persons. This study assesses the significance and age-dependence of these observations. PrVEPs were recorded from 1487 patients considered ophthalmologically normal aged <20 years old, to a range of check widths including International Society for Clinical Electrophysiology of Vision (ISCEV) standard large (50') and small (12.5') check widths. P100 peak-time and amplitude from both electrode sites were analysed. A subset of 256 children were studied longitudinally by fitting logistic regression models including a random effect on subjects. PrVEPs were largest over the Iz electrode for the majority of infants and children. This transitioned with age to become equal or smaller at Oz as a function of check width. For ISCEV standard large and small check widths, transition periods were ∼8 and ∼12 years of age, respectively. We estimated abnormal result classifications of 3.7% with use of an Oz electrode alone, which decreases to 0.0-0.5% when adding or using an Iz electrode. The inferior dominance of prVEP topography in children may be explained by age-related anatomical changes altering the cortical dipole, combined with physiological maturation of the neural generators of the prVEP. We recommend the Iz electrode is used routinely in recording of prVEPs in children. KEY POINTS: Pattern visual evoked potentials (PVEPs) are an established clinical test which provide objective assessment of visual pathway function. These are particularly valuable in providing objective information of vision in children. International standards specify the active recording electrode should be placed at the mid-occiput (Oz), but we find that pattern-reversal visual evoked potential amplitudes are larger for a lower placed electrode (Iz) in young persons. This was assessed in 1487 patients who had simultaneous PVEP recording at both electrode positions, and it was found that the majority of PVEPs in children were larger over the Iz electrode. The developmental differences in PVEP distribution transitioned to be equal between Iz and Oz with increasing age as a function of check width, at ∼8 and ∼12 years old for large and small check widths, respectively. These differences will improve diagnostic accuracy of paediatric PVEPs. We hypothesise these changes reflect developmental anatomical and neurophysiological changes altering the PVEP dipole.


Assuntos
Potenciais Evocados Visuais , Lactente , Humanos , Criança , Adulto Jovem , Adulto , Tempo de Reação/fisiologia
17.
J Neurophysiol ; 130(3): 557-568, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37492903

RESUMO

Steady-state visual-evoked potentials (SSVEPs) are widely used in human neuroscience studies and applications such as brain-computer interfaces (BCIs). Surprisingly, no previous study has systematically evaluated different reference methods for SSVEP analysis, despite that signal reference is crucial for the proper assessment of neural activities. In the present study, using four datasets from our previous SSVEP studies (Chen J, Valsecchi M, Gegenfurtner KR. J Neurophysiol 118: 749-754, 2017; Chen J, Valsecchi M, Gegenfurtner KR. Neuropsychologia 102: 206-216, 2017; Chen J, McManus M, Valsecchi M, Harris LR, Gegenfurtner KR. J Vis 19: 8, 2019) and three public datasets from other studies (Baker DH, Vilidaite G, Wade AR. PLoS Comput Biol 17: e1009507, 2021; Lygo FA, Richard B, Wade AR, Morland AB, Baker DH. NeuroImage 230: 117780, 2021; Vilidaite G, Norcia AM, West RJH, Elliott CJH, Pei F, Wade AR, Baker DH. Proc R Soc B 285: 20182255, 2018), we compared four reference methods: monopolar reference, common average reference, averaged-mastoids reference, and Laplacian reference. The quality of the resulting SSVEP signals was compared in terms of both signal-to-noise ratios (SNRs) and reliability. The results showed that Laplacian reference, which uses signals at the maximally activated electrode after subtracting the average of the nearby electrodes to reduce common noise, gave rise to the highest SNRs. Furthermore, the Laplacian reference resulted in SSVEP signals that were highly reliable across recording sessions or trials. These results suggest that Laplacian reference is optimal for SSVEP studies and applications. Laplacian reference is especially advantageous for SSVEP experiments where short preparation time is preferred as it requires only data from the maximally activated electrode and a few surrounding electrodes.NEW & NOTEWORTHY The present study provides a comprehensive evaluation of the use of different reference methods for steady-state visual-evoked potentials (SSVEPs) and has found that Laplacian reference increases signal-to-noise ratios (SNRs) and enhances reliabilities of SSVEP signals. Thus, the results suggest that Laplacian reference is optimal for SSVEP analysis.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Reprodutibilidade dos Testes , Potenciais Evocados Visuais , Razão Sinal-Ruído , Estimulação Luminosa/métodos , Algoritmos
18.
Eur J Neurosci ; 58(6): 3518-3530, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37560804

RESUMO

Prior work in selective attention research has shown that colour-selective attention enhances neural activity in visuocortical areas sensitive to the attended colour while suppressing activity in areas sensitive to ignored colours. However, it is currently unclear whether this effect is limited to attending to specific colour hues or extends to chromatic information more broadly. To investigate this question, we used steady-state visual evoked potentials (ssVEPs) frequency tagging to quantify participants' visuocortical responses to specific elements embedded in arrays of flickering, randomly moving mid-complex patterns. Participants were instructed to attend to either coloured or greyscale patterns while ignoring the others. We found that attending to either coloured or greyscale patterns produced robust increases in ssVEP amplitudes both compared to ignored stimuli and to baseline. There was however no evidence of suppressed responses to ignored patterns. These findings demonstrate that attentional selection based on the presence or absence of chromatic information prompts selectively enhanced visuocortical processing but this selective amplification is not accompanied by suppression of unattended stimuli. Findings are consistent with theoretical notions that predict strong competition between specific exemplars within a given feature dimension, such as red or green, but weak competition between broadly defined stimulus categories, such as chromatic versus non-chromatic.


Assuntos
Eletroencefalografia , Potenciais Evocados Visuais , Humanos , Eletroencefalografia/métodos , Estimulação Luminosa
19.
BMC Neurol ; 23(1): 345, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784047

RESUMO

BACKGROUND: Patients with cognitive dysfunction may present with significantly prolonged the P2 wave latency of flash visual evoked potential. However, no studies have been reported on whether the P2 wave latency of flash visual evoked potential is prolonged in patients with subcortical arteriosclerotic encephalopathy (SAE). OBJECTIVE: To examine the relationship between flash visual evoked potential P2 wave latency (FVEP-P2 wave latency) and cognitive impairment in patients with SAE. METHODS: Overall, we recruited 38 SAE patients as the observation cohort (OC) and 34 healthy volunteers as the control cohort (CC). We measured the FVEP-P2 wave latency for both groups. The SAE patients' cognitive abilities were evaluated via mini-mental state examination (MMSE) and the association between the latency of FVEP-P2 and MMSE score was explored by Pearsons´s correlation test. RESULTS: There is no significant difference between OC (21 males and 17 females; 68.6 ± 6.7 years of age and 9.6 ± 2.8 years of education) and CC (19 males and 15 females; 65.3 ± 5.9 years of age and 10.1 ± 2.6 years of education) in gender and age composition and education level. The FVEP-P2 wave latency of the CC group was (108.80 ± 16.70) ms and the OC FVEP-P2 wave latency was (152.31 ± 20.70) ms. The OC FVEP-P2 wave latency was significantly longer than the CC (P < 0.05). In terms of MMSE scores, the MMSE scores of CC was (28.41 ± 2.34), and that of OC was (9.08 ± 4.39). Compared to the CC, the OC MMSE score was significantly lower (P < 0.05). In addition, the FVEP-P2 wave latency was inversely related to the MMSE (r = -0.4465, P < 0.05) in SAE patients. CONCLUSION: The FVEP-P2 wave latency wave latency was significantly prolonged in SAE patients and strongly associated with the degree of cognitive dysfunction.


Assuntos
Disfunção Cognitiva , Demência Vascular , Masculino , Feminino , Humanos , Potenciais Evocados Visuais , Disfunção Cognitiva/diagnóstico , Cognição , Escolaridade
20.
Brain ; 145(11): 3943-3952, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35678509

RESUMO

Many biomarkers in clinical neuroscience lack pathological certification. This issue is potentially a significant contributor to the limited success of neuroprotective and neurorestorative therapies for human neurological disease-and is evident even in areas with therapeutic promise such as myelin repair. Despite the identification of promising remyelinating candidates, biologically validated methods to demonstrate therapeutic efficacy or provide robust preclinical evidence of remyelination in the CNS are lacking. Therapies with potential to remyelinate the CNS constitute one of the most promising and highly anticipated therapeutic developments in the pipeline to treat multiple sclerosis and other demyelinating diseases. The optic nerve has been proposed as an informative pathway to monitor remyelination in animals and human subjects. Recent clinical trials using visual evoked potential have had promising results, but without unequivocal evidence about the cellular and molecular basis for signal changes on visual evoked potential, the interpretation of these trials is constrained. The visual evoked potential was originally developed and used in the clinic as a diagnostic tool but its use as a quantitative method for assessing therapeutic response requires certification of its biological specificity. Here, using the tools of experimental pathology we demonstrate that quantitative measurements of myelination using both histopathological measures of nodal structure and ultrastructural assessments correspond to visual evoked potential latency in both inflammatory and chemical models of demyelination. Visual evoked potential latency improves after treatment with a tool remyelinating compound (clemastine), mirroring both quantitative and qualitative myelin assessment. Furthermore, clemastine does not improve visual evoked potential latency following demyelinating injury when administered to a transgenic animal incapable of forming new myelin. Therefore, using the capacity for therapeutic enhancement and biological loss of function we demonstrate conclusively that visual evoked potential measures myelin status and is thereby a validated tool for preclinical verification of remyelination.


Assuntos
Esclerose Múltipla , Remielinização , Humanos , Animais , Potenciais Evocados Visuais , Clemastina/uso terapêutico , Bainha de Mielina/metabolismo , Esclerose Múltipla/patologia , Biomarcadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA