RESUMO
The investigation of water oxidation in photosynthesis has remained a central topic in biochemical research for the last few decades due to the importance of this catalytic process for technological applications. Significant progress has been made following the 2011 report of a high-resolution X-ray crystallographic structure resolving the site of catalysis, a protein-bound Mn4CaOx complex, which passes through ≥5 intermediate states in the water-splitting cycle. Spectroscopic techniques complemented by quantum chemical calculations aided in understanding the electronic structure of the cofactor in all (detectable) states of the enzymatic process. Together with isotope labeling, these techniques also revealed the binding of the two substrate water molecules to the cluster. These results are described in the context of recent progress using X-ray crystallography with free-electron lasers on these intermediates. The data are instrumental for developing a model for the biological water oxidation cycle.
Assuntos
Coenzimas/química , Manganês/química , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Água/química , Coenzimas/metabolismo , Cristalografia por Raios X , Expressão Gênica , Lasers , Manganês/metabolismo , Modelos Moleculares , Oxirredução , Oxigênio/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Teoria Quântica , Termodinâmica , Thermosynechococcus/química , Thermosynechococcus/enzimologia , Água/metabolismoRESUMO
Nickel-iron oxy/hydroxides (NiFeOxHy) emerge as an attractive type of electrocatalysts for alkaline water oxidation reaction (WOR), but which encounter a huge challenge in stability, especially at industrial-grade large current density due to uncontrollable Fe leakage. Here, we tailor the Fe coordination by a MXene-mediated reconfiguration strategy for the resultant NiFeOxHy catalyst to alleviate Fe leakage and thus reinforce the WOR stability. The introduction of ultrafine MXene with surface dangling bonds in the electrochemical reconfiguration over Ni-Fe Prussian blue analogue induces the covalent hybridization of NiFeOxHy/MXene, which not only accelerates WOR kinetics but also improves Fe oxidation resistance against segregation. As a result, the NiFeOxHy coupled with MXene exhibits an extraordinary durability at ampere-level current density over 1,000 h for alkaline WOR with an ultralow overpotential of only 307 mV. This work provides a broad avenue and mechanistic insights for the development of nickel-iron catalysts toward industrial applications.
RESUMO
Identifying the two substrate water sites of nature's water-splitting cofactor (Mn4CaO5 cluster) provides important information toward resolving the mechanism of O-O bond formation in Photosystem II (PSII). To this end, we have performed parallel substrate water exchange experiments in the S1 state of native Ca-PSII and biosynthetically substituted Sr-PSII employing Time-Resolved Membrane Inlet Mass Spectrometry (TR-MIMS) and a Time-Resolved 17O-Electron-electron Double resonance detected NMR (TR-17O-EDNMR) approach. TR-MIMS resolves the kinetics for incorporation of the oxygen-isotope label into the substrate sites after addition of H218O to the medium, while the magnetic resonance technique allows, in principle, the characterization of all exchangeable oxygen ligands of the Mn4CaO5 cofactor after mixing with H217O. This unique combination shows i) that the central oxygen bridge (O5) of Ca-PSII core complexes isolated from Thermosynechococcus vestitus has, within experimental conditions, the same rate of exchange as the slowly exchanging substrate water (WS) in the TR-MIMS experiments and ii) that the exchange rates of O5 and WS are both enhanced by Ca2+âSr2+ substitution in a similar manner. In the context of previous TR-MIMS results, this shows that only O5 fulfills all criteria for being WS. This strongly restricts options for the mechanism of water oxidation.
RESUMO
Fast transport of charge carriers in semiconductor photoelectrodes are a major determinant of the solar-to-hydrogen efficiency for photoelectrochemical (PEC) water slitting. While doping metal ions as single atoms/clusters in photoelectrodes has been popularly used to regulate their charge transport, PEC performances are often low due to the limited charge mobility and severe charge recombination. Here, we disperse Ru and P diatomic sites onto hematite (DASs Ru-P:Fe2O3) to construct an efficient photoelectrode inspired by the concept of correlated single-atom engineering. The resultant photoanode shows superior photocurrent densities of 4.55 and 6.5 mA cm-2 at 1.23 and 1.50 VRHE, a low-onset potential of 0.58 VRHE, and a high applied bias photon-to-current conversion efficiency of 1.00% under one sun illumination, which are much better than the pristine Fe2O3. A detailed dynamic analysis reveals that a remarkable synergetic ineraction of the reduced recombination by a low Ru doping concentration with substitution of Fe site as well as the construction of Ru-P bonds in the material increases the carrier separation and fast charge transportation dynamics. A systematic simulation study further proves the superiority of the Ru-P bonds compared to the Ru-O bonds, which allows more long-lived carriers to participate in the water oxidation reaction. This work offers an effective strategy for enhancing charge carrier transportation dynamics by constructing pair sites into semiconductors, which may be extended to other photoelectrodes for solar water splitting.
RESUMO
Photosystem II (PSII) enables global-scale, light-driven water oxidation. Genetic manipulation of PSII from the mesophilic cyanobacterium Synechocystis sp. PCC 6803 has provided insights into the mechanism of water oxidation; however, the lack of a high-resolution structure of oxygen-evolving PSII from this organism has limited the interpretation of biophysical data to models based on structures of thermophilic cyanobacterial PSII. Here, we report the cryo-electron microscopy structure of PSII from Synechocystis sp. PCC 6803 at 1.93-Å resolution. A number of differences are observed relative to thermophilic PSII structures, including the following: the extrinsic subunit PsbQ is maintained, the C terminus of the D1 subunit is flexible, some waters near the active site are partially occupied, and differences in the PsbV subunit block the Large (O1) water channel. These features strongly influence the structural picture of PSII, especially as it pertains to the mechanism of water oxidation.
Assuntos
Microscopia Crioeletrônica/métodos , Complexo de Proteína do Fotossistema II/ultraestrutura , Synechocystis/química , Proteínas de Bactérias/metabolismo , Conformação ProteicaRESUMO
The oxygen evolution reaction (OER) performance of ruthenium-based oxides strongly correlates with the electronic structures of Ru. However, the widely adopted monometal doping method unidirectionally regulates only the electronic structures, often failing to balance the activity and stability. Here, we propose an "elastic electron transfer" strategy to achieve bidirectional optimization of the electronic structures of Sr, Cr codoped RuO2 catalysts for acidic OER. The introduction of electron-withdrawing Sr intrinsically activates the Ru sites by increasing the oxidation state of Ru. Simultaneously, Cr acts as an electron buffer, donating electrons to Ru in the presence of Sr in the as-prepared catalysts and absorbing excess electrons from Sr leaching during the OER. Such a bidirectional regulation feature of Cr prevents overoxidation of Ru and maintains its high oxidation state during the OER. The optimal Ru3Cr1Sr0.175 catalyst exhibits a low overpotential (214 mV @ 10 mA cm-2) and excellent stability (over 300 h).
RESUMO
Green hydrogen is considered to be the key for solving the emerging energy and environmental issues. The photoelectrochemical (PEC) process for the production of green hydrogen has been widely investigated because solar power is clean and renewable. However, mass production in this way is still far away from reality. Here, a Si photoanode is reported with CoOx as co-catalyst for efficient water oxidation. It is found that a high photovoltage of 350 mV can be achieved in 1.0 m K3 BO3 . Importantly, the photovoltage can be further increased to 650 mV and the fill factor of 0.62 is obtained in 1.0 m K3 BO3 by incorporating Mo into CoOx . The Mo-incorporated photoanode is also highly stable. It is shown that the incorporation of Mo can reduce the particle size of co-catalyst on the Si surface, improve the particle-distribution uniformity, and increase the density of particles, which can effectively enhance the light absorption and the electrochemical active surface area. Importantly, the Mo-incorporation results in high energy barrier in the heterojunction. All of these factors are attributed to improved the PEC performance. These findings may provide new strategies to maximize the solar-to-fuel efficiency by tuning the co-catalysts on the Si surface.
RESUMO
Avoiding the stacking of active sites in catalyst structural design is a promising route for realizing active oxygen evolution reaction (OER). Herein, using a CoFe Prussian blue analoge cube with hollow structure (C-CoFe PBA) as a derived support, a highly effective Ni2P-FeP4-Co2P catalyst with a larger specific surface area is reported. Benefiting from the abundant active sites and fast charge transfer capability of the phosphide nanosheets, the Ni2P-FeP4-Co2P catalyst in 1 m KOH requires only overpotentials of 248 and 277 mV to reach current density of 10 and 50 mA cm-2 and outperforms the commercial catalyst RuO2 and most reported non-noble metal OER catalysts. In addition, the two-electrode system consisting of Ni2P-FeP4-Co2P and Pt/C is able to achieve a current density of 10 and 50 mA cm-2 at 1.529 and 1.65 V. This work provides more ideas and directions for synthesizing transition metal catalysts for efficient OER performance.
RESUMO
Photocatalytic water splitting using covalent organic frameworks (COFs) is a promising approach for harnessing solar energy. However, challenges such as slow kinetic dynamics in the photocatalytic oxygen evolution reaction (OER) and COFs' self-oxidation hinder its progress. In this study, an enamine-based COF coordinated is introduced with cobalt dichloride, CoCl2 (CoCl2-TpBPy). The coordination of cobalt ions with bipyridines in CoCl2-TpBPy enhances charge-carrier separation and migration, leading to effective photocatalytic OER. Under visible light irradiation, CoCl2-TpBPy achieves a notable OER rate of up to 1 mmol·g-1·h-1, surpassing the reported organic semiconductor analogs. Additionally, CoCl2-TpBPy shows minimal nitrogen evolution compared to TpBPy and ethanol-treated TpBPy (E-TpBPy), indicating cobalt plays a pivotal role in improving charge utilization and minimizing photo-oxidation. In situ X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) analyses revealed that Co(IV) species are key to the high OER efficiency. This work highlights Co(IV) species in the efficient OER and inhibiting photo-oxidation of CoCl2-TpBPy.
RESUMO
Electrocatalysts with high activity and durability for acidic oxygen evolution reaction (OER) play a crucial role in achieving cost-effective hydrogen production via proton exchange membrane water electrolysis. A novel electrocatalyst, Te-doped RuO2 (Te-RuO2) nanotubes, synthesized using a template-directed process, which significantly enhances the OER performance in acidic media is reported. The Te-RuO2 nanotubes exhibit remarkable OER activity in acidic media, requiring an overpotential of only 171 mV to achieve an anodic current density of 10 mA cm-2. Furthermore, they maintain stable chronopotentiometric performance under 10 mA cm-2 in acidic media for up to 50 h. Based on the experimental results and density functional calculations, this significant improvement in OER performance to the synergistic effect of large specific surface area and modulated electronic structure resulting from the doping of Te cations is attributed.
RESUMO
Light-induced water splitting (hν-WS) for the production of hydrogen as a solar fuel is considered a promising sustainable strategy for the replacement of fossil fuels. An efficient system for hν-WS involves a photoactive material that, upon shining light, is capable of separating and transferring charges to catalysts for the hydrogen and oxygen evolution processes. Covalent triazine-based frameworks (CTFs) represent an interesting class of 2D organic light-absorbing materials that have recently emerged thanks to their tunable structural, optical and morphological properties. Typically, catalysts (Cat) are metallic nanoparticles generated in situ after photoelectroreduction of metal precursors or directly drop-casted on top of the CTF material to generate Cat-CTF assemblies. In this work, the synthesis, characterization and photocatalytic performance of a novel hybrid material, Ru-CTF, is reported, based on a CTF structure featuring dangling pyridyl groups that allow the Ru-tda (tda is [2,2':6',2'"-terpyridine]-6,6'"-dicarboxylic acid) water oxidation catalyst (WOC) unit to coordinate via covalent bond. The Ru-CTF molecular hybrid material can carry out the light-induced water oxidation reaction efficiently at neutral pH, reaching values of maximum TOF of 17 h-1 and TONs in the range of 220 using sodium persulfate as a sacrificial electron acceptor.
RESUMO
The pursuit of highly-active and stable catalysts in anodic oxygen evolution reaction (OER) is desirable for high-current-density water electrolysis toward industrial hydrogen production. Herein, a straightforward yet feasible method to prepare WFeRu ternary alloying catalyst on nickel foam is demonstrated, whereby the foreign W, Fe, and Ru metal atoms diffuse into the Ni foam resulting in the formation of inner immobilized ternary alloy. Thanks to the synergistic impact of foreign metal atoms and structural robustness of inner immobilized alloying catalyst, the well-designed WFeRu@NF self-standing anode exhibits superior OER activities. It only requires overpotentials of 245 and 346 mV to attain current densities of 20 and 500 mA cm-2, respectively. Moreover, the as-prepared ternary alloying catalyst also exhibits a long-term stability at a high-current-density of 500 mA cm-2 for over 45 h, evidencing the inner-immobilization strategy is promising for the development of highly active and stable metal-based catalysts for high-density-current water oxidation process.
RESUMO
Atomically precise metal clusters serve as a unique model for unraveling the intricate mechanism of the catalytic reaction and exploring the complex relationship between structure and activity. Herein, three series of water-soluble heterometallic clusters LnCu6, abbreviated as LnCu6-AC (Ln = La, Nd, Gd, Er, Yb; HAC = acetic acid), LnCu6-IM (Ln = La and Nd; IM = Imidazole), and LnCu6-IDA (Ln = Nd; H2IDA = Iminodiacetic acid) are presented, each featuring a uniform metallic core stabilized by distinct protected ligands. Crystal structure analysis reveals a triangular prism topology formed by six Cu2+ ions around one Ln3+ ion in LnCu6, with variations in Cu···Cu distances attributed to different ligands. Electrocatalytic oxygen evolution reaction (OER) shows that these different LnCu6 clusters exhibit different OER activities with remarkable turnover frequency of 135 s-1 for NdCu6-AC, 79 s-1 for NdCu6-IM and 32 s-1 for NdCu6-IDA. Structural analysis and Density Functional Theory (DFT) calculations underscore the correlation between shorter Cu···Cu distances and improves OER catalytic activity, emphasizing the pivotal role of active-site distance in regulating electrocatalytic OER activities. These results provide valuable insights into the OER mechanism and contribute to the design of efficient homogeneous OER electrocatalysts.
RESUMO
Electrocatalytic activity of multi-valence metal oxides for oxygen evolution reaction (OER) arises from various interactions among the constituent metal elements. Although the high-valence metal ions attract recent attentions due to the interactions with their neighboring 3d transition metal catalytic center, atomic-scale explanations for the catalytic efficiencies are still lacking. Here, by employing density functional theory predictions and experimental verifications, unprecedented electronic isolation of the catalytic 3d center (M2+) induced by the surrounding high-valence ions such as W6+ is discovered in multivalent oxides MWO4 (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn). Due to W6+'s extremely high oxidation state with the minimum electron occupations (d0), the surrounding W6+ blocks electron transfer toward the catalytic M2+ ions and completely isolates the ions electronically. Now, the isolated M2+ ions solely perform OER without any assistant electron flow from the adjacent metal ions, and thus the original strong binding energies of Cr with OER intermediates are effectively moderated. Through exploiting "electron isolators" such as W6+ surrounding the catalytic ion, exploring can be done beyond the conventional materials such as Ni- or Co-oxides into new candidate groups such as Cr and Mn on the left side of the periodic table for ideal OER.
RESUMO
Quantum dots (QDs) colloidal nanocrystals are attracting enduring interest by scientific communities for solar energy conversion due to generic physicochemical merits including substantial light absorption coefficient, quantum confinement effect, enriched catalytically active sites, and tunable electronic structure. However, photo-induced charge carriers of QDs suffer from ultra-short charge lifespan and poor stability, rendering controllable vectorial charge modulation and customizing robust and stable QDs artificial photosystems challenging. Herein, tailor-made oppositely charged transition metal chalcogenides quantum dots (TMCs QDs) and MXene quantum dots (MQDs) are judiciously harnessed as the building blocks for electrostatic layer-by-layer assembly buildup on the metal oxides (MOs) framework. In these exquisitely designed LbL assembles MOs/(TMCs QDs/MQDs)n heterostructured photoanodes, TMCs QDs layer acts as light-harvesting antennas, and MQDs layer serves as electron-capturing mediator to relay cascade electrons from TMCs QDs to the MOs substrate, thereby yielding the spatially ordered tandem charge transport chain and contributing to the significantly boosted charge separation over TMCs QDs and solar water oxidation efficiency of MOs/(TMCs QDs/MQDs)n photoanodes. The relationship between interface configuration and charge transfer characteristics is unambiguously unlocked, by which photoelectrochemical mechanism is elucidated. This work would provide inspiring ideas for precisely mediating interfacial charge transfer pathways over QDs toward solar energy conversion.
RESUMO
Modulating the coordination environment of the metal active center is an effective method to boost the catalytic performances of metal-organic frameworks (MOFs) for oxygen evolution reaction (OER). However, little attention has been paid to the halogen effects on the ligands engineering. Herein, a series of MOFs XâFeNi-MOFs (X = Br, Cl, and F) is constructed with different coordination microenvironments to optimize OER activity. Theoretical calculations reveal that with the increase in electronegativity of halogen ions in terephthalic acid molecular (TPA), the Bader charge of Ni atoms gets larger and the Ni-3d band center and O-2p bands move closer to the Fermi level. This indicates that an increase in ligand negativity of halogen ions in TPA can promote the adsorption ability of catalytic sites to oxygen-containing intermediates and reduce the activation barrier for OER. Experimental also demonstrates that FâFeNi-MOFs exhibit the highest catalytic activity with an ultralow overpotential of 218 mV at 10 mA cm-2, outperforming most otate-of-the-art Fe/Co/Ni-based MOFs catalysts, and the enhanced mass activity by seven times compared with that for the sample before ligands engineering. This work opens a new avenue for the realization of the modulation of NiFeâO bonding by halogen ion in TPA and improves the OER performance of MOFs.
RESUMO
Hydrogen peroxide (H2O2) plays a pivotal role in advancing sustainable technologies due to its eco-friendly oxidizing capability. The electrochemical two-electron (2e-) oxygen reduction reaction and water oxidation reaction present an environmentally green method for H2O2 production. Over the past three years, significant progress is made in the field of carbon-based metal-free electrochemical catalysts (C-MFECs) for low-cost and efficient production of H2O2 (H2O2EP). This article offers a focused and comprehensive review of designing C-MFECs for H2O2EP, exploring the construction of dual-doping configurations, heteroatom-defect coupling sites, and strategic dopant positioning to enhance H2O2EP efficiency; innovative structural tuning that improves interfacial reactant concentration and promote the timely release of H2O2; modulation of electrolyte and electrode interfaces to support the 2e- pathways; and the application of C-MFECs in reactors and integrated energy systems. Finally, the current challenges and future directions in this burgeoning field are discussed.
RESUMO
Merely all transition-metal-based materials reconstruct into similar oxyhydroxides during the electrocatalytic oxygen evolution reaction (OER), severely limiting the options for a tailored OER catalyst design. In such reconstructions, initial constituent p-block elements take a sacrificial role and leach into the electrolyte as oxyanions, thereby losing the ability to tune the catalyst's properties systematically. From a thermodynamic point of view, indium is expected to behave differently and should remain in the solid phase under alkaline OER conditions. However, the structural behavior of transition metal indium phases during the OER remains unexplored. Herein, are synthesized intermetallic cobalt indium (CoIn3) nanoparticles and revealed by in situ X-ray absorption spectroscopy and scanning transmission microscopy that they undergo phase segregation to cobalt oxyhydroxide and indium hydroxide. The obtained cobalt oxyhydroxide outperforms a metallic-cobalt-derived one due to more accessible active sites. The observed phase segregation shows that indium behaves distinctively differently from most p-block elements and remains at the electrode surface, where it can form lasting interfaces with the active metal oxo phases.
RESUMO
Photosystem II (PSII) uses light energy to oxidize water and to reduce plastoquinone in the photosynthetic electron transport chain. O2 is produced as a byproduct. While most members of the PSII research community agree that O2 originates from water molecules, alternative hypotheses involving bicarbonate persist in the literature. In this perspective, we provide an overview of the important roles of bicarbonate in regulating PSII activity and assembly. Further, we emphasize that biochemistry, spectroscopy, and structural biology experiments have all failed to detect bicarbonate near the active site of O2 evolution. While thermodynamic arguments for oxygen-centered bicarbonate oxidation are valid, the claim that bicarbonate is a substrate for photosynthetic O2 evolution is challenged.
Assuntos
Bicarbonatos , Oxigênio , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Bicarbonatos/metabolismo , Oxigênio/metabolismo , Oxirredução , FotossínteseRESUMO
The green algal genus Picochlorum is of biotechnological interest because of its robust response to multiple environmental stresses. We compared the metabolic performance of P. SE3 and P. oklahomense to diverse microbial phototrophs and observed exceptional performance of photosystem II (PSII) in light energy conversion in both Picochlorum species. The quantum yield (QY) for O2 evolution is the highest of any phototroph yet observed, 32% (20%) by P. SE3 (P. okl) when normalized to total PSII subunit PsbA (D1) protein, and 80% (75%) normalized per active PSII, respectively. Three factors contribute: (1) an efficient water oxidizing complex (WOC) with the fewest photochemical misses of any organism; (2) faster reoxidation of reduced (PQH2)B in P. SE3 than in P. okl. (period-2 Fourier amplitude); and (3) rapid reoxidation of the plastoquinol pool by downstream electron carriers (Cyt b6f/PETC) that regenerates PQ faster in P. SE3. This performance gain is achieved without significant residue changes around the QB site and thus points to a pull mechanism involving faster PQH2 reoxidation by Cyt b6f/PETC that offsets charge recombination. This high flux in P. SE3 may be explained by genomically encoded plastoquinol terminal oxidases 1 and 2, whereas P. oklahomense has neither. Our results suggest two distinct types of PSII centers exist, one specializing in linear electron flow and the other in PSII-cyclic electron flow. Several amino acids within D1 differ from those in the low-light-descended D1 sequences conserved in Viridiplantae, and more closely match those in cyanobacterial high-light D1 isoforms, including changes near tyrosine Yz and a water/proton channel near the WOC. These residue changes may contribute to the exceptional performance of Picochlorum at high-light intensities by increasing the water oxidation efficiency and the electron/proton flux through the PSII acceptors (QAQB).