Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.794
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2319390121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437562

RESUMO

Water-energy sustainability will depend upon the rapid development of advanced pressure-driven separation membranes. Although energy-efficient, water-treatment membranes are constrained by ubiquitous fouling, which may be alleviated by engineering self-cleaning membrane interfaces. In this study, a metal-polyphenol network was designed to direct the armorization of catalytic nanofilms (ca. 18 nm) on inert polymeric membranes. The chelation-directed mineralized coating exhibits high polarity, superhydrophilicity, and ultralow adhesion to crude oil, enabling cyclable crude oil-in-water emulsion separation. The in-place flux recovery rate exceeded 99.9%, alleviating the need for traditional ex situ cleaning. The chelation-directed nanoarmored membrane exhibited 48-fold and 6.8-fold figures of merit for in-place self-cleaning regeneration compared to the control membrane and simple hydraulic cleaning, respectively. Precursor interaction mechanisms were identified by density functional theory calculations. Chelation-directed armorization offers promise for sustainable applications in catalysis, biomedicine, environmental remediation, and beyond.

2.
Proc Natl Acad Sci U S A ; 119(30): e2202682119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858430

RESUMO

Heterogeneous peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) have shown a great potential for pollutant degradation, but their feasibility for large-scale water treatment application has not been demonstrated. Herein, we develop a facile coprecipitation method for the scalable production (∼10 kg) of the Cu-Fe-Mn spinel oxide (CuFeMnO). Such a catalyst has rich oxygen vacancies and symmetry-breaking sites, which endorse it with a superior PMS-catalytic capacity. We find that the working reactive species and their contributions are highly dependent on the properties of target organic pollutants. For the organics with electron-donating group (e.g., -OH), high-valent metal species are mainly responsible for the pollutant degradation, whereas for the organics with electron-withdrawing group (e.g., -COOH and -NO2), hydroxyl radical (•OH) as the secondary oxidant also plays an important role. We demonstrate that the CuFeMnO-PMS system is able to achieve efficient and stable removal of the pollutants in the secondary effluent from a municipal wastewater plant at both bench and pilot scales. Moreover, we explore the application prospect of this PMS-based AOP process for large-scale wastewater treatment. This work describes an opportunity to scalably prepare robust spinel oxide catalysts for water purification and is beneficial to the practical applications of the heterogeneous PMS-AOPs.


Assuntos
Óxido de Alumínio , Óxido de Magnésio , Peróxidos , Poluentes da Água , Purificação da Água , Óxido de Alumínio/química , Catálise , Óxido de Magnésio/química , Peróxidos/química , Poluentes da Água/química , Purificação da Água/métodos
3.
Adv Funct Mater ; 34(11)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-39071947

RESUMO

Woven covalent organic frameworks (COF) possess three dimensional frameworks with spatially isolated Cu(I) centers and have promising optoelectronic properties because of metal to ligand charge transfer (MLCT). However, despite their potential, woven COFs have not yet been investigated as photocatalysts. In this study, we developed a new woven COF, Cu-PhenBDA-COF, functionalized with diacetylene bonds. Cu-PhenBDA-COF was fully characterized, and the optoelectronic and photocatalytic properties were compared to previously reported Cu-COF-505. The diacetylene bonds of the linker positively impacted the optoelectronic properties of Cu-PhenBDA-COF and resulted in a narrower band gap and better charge separation efficiency. When the Cu(I) center was removed from both woven COFs, the absorption edge was blue shifted, resulting in a wider band gap, and there was a considerable decrease in the charge separation efficiency, underscoring the pivotal role of MLCT. This trend was reflected in the photocatalytic activity of the woven COFs toward the degradation of sulfamethoxazole in water, where the highest reaction rate constant (k app ) was recorded for the metallated diacetylene functionalized woven COF, Cu-PhenBDA-COF.

4.
Small ; : e2402525, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801302

RESUMO

Persistent organic pollutants (POPs), including xenoestrogens and polyfluoroalkyl substances (PFAS), demand urgent global intervention. Fenton oxidation, catalyzed by iron ions, offers a cost-effective means to degrade POPs. However, numerous challenges like acid dependency, catalyst loss, and toxic waste generation hinder practical application. Efforts to create long-lasting heterogeneous Fenton catalysts, capable of simultaneously eliminating acid requirements, sustaining rapid kinetics, and retaining iron efficiently, have been unsuccessful. This study introduces an innovative heterogeneous zwitterionic hydrogel-based Fenton catalyst, surmounting these challenges in a cost-effective and scalable manner. The hydrogel, hosting individually complexed iron ions in a porous scaffold, exhibits substantial effective surface area and kinetics akin to homogeneous Fenton reactions. Complexed ions within the hydrogel can initiate Fenton degradation at neutral pH, eliminating acid additions. Simultaneously, the zwitterionic hydrogel scaffold, chosen for its resistance to Fenton oxidation, forms strong bonds with iron ions, enabling prolonged reuse. Diverging from existing designs, the catalyst proves compatible with UV-Fenton processes and achieves rapid self-regeneration during operation, offering a promising solution for the efficient and scalable degradation of POPs. The study underscores the efficacy of the approach by demonstrating the swift degradation of three significant contaminants-xenoestrogens, pesticides, and PFAS-across multiple cycles at trace concentrations.

5.
Small ; : e2403221, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012064

RESUMO

Solar interfacial evaporation strategy (SIES) has shown great potential to deal with water scarcity and energy crisis. Biobased hydrogel derived interfacial evaporator can realize efficient evaporation due to the unique structure- properties relationship. As such, increasing studies have focused on water treatment or even potential accompanying advanced energy storage applications with respect of efficiency and mechanism of bio-based hydrogel derived interfacial evaporation from microscale to molecular scale. In this review, the interrelationship between efficient interfacial evaporator and bio-based hydrogel is first presented. Then, special attention is paid on the inherent molecular characteristics of the biopolymer related to the up-to-date studies of promising biopolymers derived interfacial evaporator with the objective to showcase the unique superiority of biopolymer. In addition, the applications of the bio-based hydrogels are highlighted concerning the aspects including water desalination, water decontamination atmospheric water harvesting, energy storage and conversion. Finally, the challenges and future perspectives are given to unveil the bottleneck of the biobased hydrogel derived SIES in sustainable water and other energy storage applications.

6.
Small ; 20(22): e2310597, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38143296

RESUMO

The electrochemical denitrification of nitrate (NO3 -) in actual wastewater to nitrogen (N2) is an effective approach to reversing the current imbalance of the nitrogen cycle and the eutrophication of water. However, electrostatic repulsion between NO3 - and the cathode results in the low efficiency of NO3 - reduction reaction (NO3RR). Here, density functional theory (DFT) calculations are used as a theoretical guide to design a Pd cluster-loaded multivalent Cu foam (Pd/Cu2O-CF) electrocatalyst, which achieves a splendid 97.8% NO3 - removal rate, 97.9% N2 selectivity, 695.5 mg N g-1 Pd h-1 reduction efficiency, and 60.0% Faradaic efficiency at -1.3 V versus SCE. The projected density of states (pDOS) indicates that NO3 - and Pd/Cu2O-CF are bonded via strong complexation between the O 2p (in NO3 -) and Cu 3d (in Cu2O) with the input of voltage, which reduces the electrostatic repulsion and enhances the enrichment of NO3 - on the cathode. In-situ characterizations demonstrate that Pd[H] can reduce Cu2O to Cu, and subsequently Cu reduces NO3 - to nitrite (NO2 -) accompanied by in situ reconfiguration of multivalent Cu foam. NO2 - is then transferred to the surface of Pd clusters by the cascade catalysis and accelerates the breaking of N─O bonds to form Pd─N, and eventually achieves the N≡N bond formation.

7.
Small ; : e2401939, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924354

RESUMO

3D carbon-based porous sponges are recognized for significant potential in oil absorption and electromagnetic interference (EMI). However, their widespread application is hindered by a common compromise between high performance and affordability of mass production. Herein, a novel approach is introduced that involves laser-assisted micro-zone heating melt-blown spinning (LMHMS) to address this challenge by creating pitch-based submicron carbon fibers (PSCFs) sponge with 3D interconnected structures. These structures bestow the resulting sponge exceptional characteristics including low density (≈20 mg cm-3), high porosity (≈99%), remarkable compressibility (80% maximum strain), and superior conductivity (≈628 S m-1). The resultant PSCF sponges realize an oil/organic solvent sorption capacity over 56 g/g and possess remarkable regenerated ability. In addition to their effectiveness in cleaning up oil/organic solvent spills, they also demonstrated strong electromagnetic shielding capabilities, with a total shielding effectiveness (SE) exceeding 60 dB across the X-band GHz range. In virtue of extreme lightweight of ≈20 mg cm-3, the specific SE of the PSCF sponge reaches as high as ≈1466 dB cm3 g-1, surpassing the performance of numerous carbon-based porous structures. Thus, the unique blend of properties renders these sponges promising for transforming strategies in addressing oil/organic solvent contaminations and providing effective protection against EMI.

8.
Small ; : e2405204, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109570

RESUMO

Recent trends in addressing the impending water crisis focus on the development of innovative water treatment methods. This work utilizes pollen as a core template to synthesize highly efficient onion-like photocatalysts for pollutant mineralization. The study showcases a novel electrochemical synthesis method that maintains the structural integrity of pollen, resulting in increased surface area and enhanced photocatalytic activity. After 90-min of visible light irradiation, over 99% mineralization is achieved. These hybrid photocatalysts demonstrate exceptional stability and efficacy in degrading pollutants. The used photocatalysts can be recycled into biopellets with an ash content of less than 7% (weight), moisture content of less than 8% (weight), and a calorific value of ≈22.1 ± 0.3 MJ kg-1. Additionally, the resulting ashes serve as effective peroxymonosulphate activators for pollutant mineralization. This process offers sustainable waste management while minimizing waste production, providing a practical solution for water purification. The efficacy of this approach in pollutant removal is underscored by mineralization rates exceeding 99%.

9.
Small ; 20(32): e2311642, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38497490

RESUMO

Singlet oxygen (1O2) species generated in peroxymonosulfate (PMS)-based advanced oxidation processes offer opportunities to overcome the low efficiency and secondary pollution limitations of existing AOPs, but efficient production of 1O2 via tuning the coordination environment of metal active sites remains challenging due to insufficient understanding of their catalytic mechanisms. Herein, an asymmetrical configuration characterized by a manganese single atom coordinated is established with one S atom and three N atoms (denoted as Mn-S1N3), which offer a strong local electric field to promote the cleavage of O─H and S─O bonds, serving as the crucial driver of its high 1O2 production. Strikingly, an enhanced the local electric field caused by the dynamic inter-transformation of the Mn coordination structure (Mn-S1N3 ↔ Mn-N3) can further downshift the 1O2 production energy barrier. Mn-S1N3 demonstrates 100% selective product 1O2 by activation of PMS at unprecedented utilization efficiency, and efficiently oxidize electron-rich pollutants. This work provides an atomic-level understanding of the catalytic selectivity and is expected to guide the design of smart 1O2-AOPs catalysts for more selective and efficient decontamination applications.

10.
Small ; 20(31): e2311984, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38461526

RESUMO

A major issue with Fenton-like reaction is the excessive consumption of H2O2 caused by the sluggish regeneration rate of low-valent metal, and how to improve the activation efficiency of H2O2 has become a key in current research. Herein, a nano-heterostructure catalyst (1.0-MnCu/C) based on nano-interface engineering is constructed by supporting Cu and MnO on carbon skeleton, and its kinetic rate for the degradation of tetracycline hydrochloride is 0.0436 min-1, which is 2.9 times higher than that of Cu/C system (0.0151 min-1). The enhancement of removal rate results from the introduced Mn species can aggregate and transfer electrons to Cu sites through the electron bridge Mn-N/O-Cu, thus preventing Cu2+ from oxidizing H2O2 to form O2 •-, and facilitating the reduction of Cu2+ and generating more reactive oxygen species (1O2 and ·OH) with stronger oxidation ability, resulting in H2O2 utilization efficiency is 1.9 times as much as that of Cu/C. Additionally, the good and stable practical application capacity in different bodies demonstrates that it has great potential for practical environmental remediation.

11.
Arch Microbiol ; 206(8): 348, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990418

RESUMO

Anatoxin-a (ATX-a) is a neurotoxin produced by some species of cyanobacteria. Due to its water solubility and stability in natural water, it could pose health risks to human, animals, and plants. Conventional water treatment techniques are not only insufficient for the removal of ATX-a, but they also result in cell lysis and toxin release. The elimination of this toxin through biodegradation may be a promising strategy. This study examines for the first time the biodegradation of ATX-a to a non-toxic metabolite (Epoxy-ATX-a) by a strain of Bacillus that has a history of dealing with toxic cyanobacteria in a eutrophic lake. The Bacillus strain AMRI-03 thrived without lag phase in a lake water containing ATX-a. The strain displayed fast degradation of ATX-a, depending on initial toxin concentration. At the highest initial concentrations (50 & 100 µg L- 1), total ATX-a degradation took place in 4 days, but it took 6 & 7 days at lower concentrations (20, 10, and 1 µg L- 1, respectively). The ATX-a biodegradation rate was also influenced by the initial toxin concentration, reaching its maximum value (12.5 µg L- 1 day- 1) at the highest initial toxin concentrations (50 & 100 µg L- 1). Temperature and pH also had an impact on the rate of ATX-a biodegradation, with the highest rates occurring at 25 and 30 ºC and pH 7 and 8. This nontoxic bacterial strain could be immobilized within a biofilm on sand filters and/or sludge for the degradation and removal of ATX-a and other cyanotoxins during water treatment processes, following the establishment of mesocosm experiments to assess the potential effects of this bacterium on water quality.


Assuntos
Bacillus subtilis , Biodegradação Ambiental , Toxinas de Cianobactérias , Cianobactérias , Eutrofização , Lagos , Tropanos , Lagos/microbiologia , Tropanos/metabolismo , Cianobactérias/metabolismo , Cianobactérias/isolamento & purificação , Bacillus subtilis/metabolismo , Bacillus subtilis/isolamento & purificação , Bacillus subtilis/genética , Arábia Saudita , Toxinas Bacterianas/metabolismo
12.
Nanotechnology ; 35(33)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38759634

RESUMO

Crystalline copper oxide (CuO) nanostructures with micro, nano, and micro-nano surface roughness were grown on Cu sheet substrates by a facile, scalable, low-cost, and low-temperature hot water treatment (HWT) method that simply involved immersing Cu sheet in DI water at 75 °C for 24 h without any chemical additives. Various morphological features and sizes of CuO nanostructures were tuned by using different surface pretreatment techniques including acid treatment, sandblasting, or a combination of those two. The surface morphology of the prepared samples was analyzed by scanning electron microscopy. The crystal structure of the CuO nanostructures was investigated by x-ray diffraction XRD and Raman spectroscopy. To study the pseudocapacitive behavior, their potential supercapacitor performance, and equivalent series resistance, electrochemical analysis was done by cyclic voltammetry and electrochemical impedance spectroscopy for all the CuO/Cu samples in 1 M of Na2SO4electrolyte. Among all, the best supercapacitive performance was achieved for CuO/Cu samples pretreated with Sandblasting followed by Acid treatment resulting in a specific capacitance of about 104 F g-1. The electrode with the sandblasted + acid pretreated sample showed a maximum of ∼69% capacitive retention after 2000 consecutive cycles. Our results indicate that CuO nanostructures on Cu substrates prepared with different surface pretreatment conditions and grown by HWT can be promising electrodes for supercapacitor device applications.

13.
Environ Sci Technol ; 58(32): 14575-14584, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39094193

RESUMO

The chromogenic reaction between 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and ferrate [Fe(VI)] has long been utilized for Fe(VI) content measurement. However, the presence of electron-rich organic compounds has been found to significantly impact Fe(VI) detection using the ABTS method, leading to relative errors ranging from ∼88 to 100%. Reducing substances consumed ABTS•+ and resulted in underestimated Fe(VI) levels. Moreover, the oxidation of electron-rich organics containing hydroxyl groups by Fe(VI) could generate a phenoxyl radical (Ph•), promoting the transformation of Fe(VI) → Fe(V) → Fe(IV). The in situ formation of Fe(IV) can then contribute to ABTS oxidation, altering the ABTS•+:Fe(VI) stoichiometry from 1:1 to 2:1. To overcome these challenges, we introduced Mn(II) as an activator and 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogenic agent for Fe(VI) detection. This Mn(II)/TMB method enables rapid completion of the chromogenic reaction within 2 s, with a low detection limit of approximately 4 nM and a wide detection range (0.01-10 µM). Importantly, the Mn(II)/TMB method exhibits superior resistance to reductive interference and effectively eliminates the impact of phenoxyl-radical-mediated intermediate valence iron transfer processes associated with electron-rich organic compounds. Furthermore, this method is resilient to particle interference and demonstrates practical applicability in authentic waters.


Assuntos
Elétrons , Oxirredução , Ferro/química , Compostos Orgânicos/química , Benzotiazóis/química , Ácidos Sulfônicos
14.
Environ Sci Technol ; 58(31): 14005-14012, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39039842

RESUMO

Significant efforts have recently been exerted toward construction of singlet oxygen (1O2)-dominated catalytic oxidation systems for selective removal of organic contaminants from wastewater, with peroxides serving as the chemical source. However, the relevance of 1O2 in the removal of pollutants remains ambiguous and requires elucidation. In this study, we scrupulously exclude the significant role of 1O2 in contaminant degradation in various peroxymonosulfate (PMS) activation systems. Multiple experimental results indicate that the activation of PMS catalyzed by CuO, MnO2, Fe-doped g-C3N4 (Fe-CN), or N-doped graphite does not predominantly follow the 1O2 pathway. More importantly, the reactivity of 1O2 is remarkably overestimated in the literature, given its inferior capacity in degradation of a range of heterocyclic contaminants and aromatic compounds possessing electron-withdrawing groups. In addition, the strong physical quenching effect of water, coupled with the low oxidizing ability of 1O2, would notably reduce the utilization efficiency of peroxide, which is particularly apparent in the degradation of micropollutants. We reckon that this study is expected to end the long-running dispute associated with the relevance of 1O2 in pollutant removal.


Assuntos
Oxirredução , Oxigênio Singlete , Oxigênio Singlete/química , Peróxidos/química , Poluentes Químicos da Água/química , Catálise , Águas Residuárias/química
15.
Environ Sci Technol ; 58(13): 5899-5910, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502922

RESUMO

The established benefits of ozone on microbial pathogen inactivation, natural organic matter degradation, and inorganic/organic contaminant oxidation have favored its application in drinking water treatment. However, viable bacteria are still present after the ozonation of raw water, bringing a potential risk to membrane filtration systems in terms of biofilm accumulation and fouling. In this study, we shed light on the role of the specific ozone dose (0.5 mg-O3/mg-C) in biofilm accumulation during long-term membrane ultrafiltration. Results demonstrated that ozonation transformed the molecular structure of influent dissolved organic matter (DOM), producing fractions that were highly bioavailable at a specific ozone dose of 0.5, which was inferred to be a turning point. With the increase of the specific ozone dose, the biofilm microbial consortium was substantially shifted, demonstrating a decrease in richness and diversity. Unexpectedly, the opportunistic pathogen Legionella was stimulated and occurred in approximately 40% relative abundance at the higher specific ozone dose of 1. Accordingly, the membrane filtration system with a specific ozone dose of 0.5 presented a lower biofilm thickness, a weaker fluorescence intensity, smaller concentrations of polysaccharides and proteins, and a lower Raman activity, leading to a lower hydraulic resistance, compared to that with a specific ozone dose of 1. Our findings highlight the interaction mechanism between molecular-level DOM composition, biofilm microbial consortium, and membrane filtration performance, which provides an in-depth understanding of the impact of ozonation on biofilm accumulation.


Assuntos
Ozônio , Purificação da Água , Membranas Artificiais , Ultrafiltração , Biofilmes
16.
Environ Sci Technol ; 58(1): 683-694, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38102081

RESUMO

The coculture theory that promotes denitrification relies on effectively utilizing the resources of low-efficiency denitrification microbes. Here, the strains Streptomyces sp. PYX97 and Streptomyces sp. TSJ96 were isolated and showed lower denitrification capacity when cultured individually. However, the coculture of strains PYX97 and TSJ96 enhanced nitrogen removal (removed 96.40% of total nitrogen) and organic carbon reduction (removed 92.13% of dissolved organic carbon) under aerobic conditions. Nitrogen balance analysis indicated that coculturing enhanced the efficiency of nitrate converted into gaseous nitrogen reaching 70.42%. Meanwhile, the coculturing promoted the cell metabolism capacity and carbon source metabolic activity. The coculture strains PYX97 and TSJ96 thrived in conditions of C/N = 10, alkalescence, and 150 rpm shaking speed. The coculturing reduced total nitrogen and CODMn in the raw water treatment by 83.32 and 84.21%, respectively. During this treatment, the cell metabolic activity and cell density increased in the coculture strains PYX97 and TSJ96 reactor. Moreover, the coculture strains could utilize aromatic protein and soluble microbial products during aerobic denitrification processes in raw water treatment. This study suggests that coculturing inefficient actinomycete strains could be a promising approach for treating polluted water bodies.


Assuntos
Actinobacteria , Desnitrificação , Aerobiose , Actinobacteria/metabolismo , Actinomyces/metabolismo , Carbono , Técnicas de Cocultura , Nitratos/metabolismo , Nitrogênio , Nitrificação
17.
Environ Sci Technol ; 58(12): 5279-5289, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38488515

RESUMO

The sensitivity of enteroviruses to disinfectants varies among genetically similar variants and coincides with amino acid changes in capsid proteins, although the effect of individual substitutions remains unknown. Here, we employed reverse genetics to investigate how amino acid substitutions in coxsackievirus B5 (CVB5) capsid proteins affect the virus' sensitivity to free chlorine and heat treatment. Of ten amino acid changes observed in CVB5 variants with free chlorine resistance, none significantly reduced the chlorine sensitivity, indicating a minor role of the capsid composition in chlorine sensitivity of CVB5. Conversely, a subset of these amino acid changes located at the C-terminal region of viral protein 1 led to reduced heat sensitivity. Cryo-electron microscopy revealed that these changes affect the assembly of intermediate viral states (altered and empty particles), suggesting that the mechanism for reduced heat sensitivity could be related to improved molecular packing of CVB5, resulting in greater stability or altered dynamics of virus uncoating during infection.


Assuntos
Proteínas do Capsídeo , Cloro , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Cloro/farmacologia , Microscopia Crioeletrônica , Substituição de Aminoácidos , Enterovirus Humano B/genética , Aminoácidos
18.
Environ Sci Technol ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39329389

RESUMO

Advanced reduction processes (ARPs) are promising for pollutant removal in drinking water treatment. In this study, we demonstrated highly efficient reduction of bromate, a harmful disinfection byproduct, by coupling ARPs with an iron nanoparticles-intercalated graphene oxide (GO@FeNPs) catalytic membrane. In the presence of 1.0 mM sulfite (S(IV)), the GO@FeNPs membrane/S(IV) system achieved nearly complete removal of 80 µg/L bromate in 3 min. The first-order reaction rate constant for bromate removal in this system was 420 ± 42 min-1, up to 5 orders of magnitude faster than previously reported ARPs. The GO@FeNPs catalytic membrane may offer potential advantages of nanoconfinement and facilitated electron shuttling in addition to the high surface area of the fine FeNPs, leading to the remarkable ARP performance. The GO@FeNPs membrane showed excellent stability, maintaining >97.0% bromate removal over 20 cycles of repeated runs. The membrane can also be applied for fast catalytic reduction of other oxyanions, showing >98.0% removal of nitrate and chlorate. This work may present a viable option for utilizing high-performance reductive catalytic membranes for water decontamination.

19.
Environ Sci Technol ; 58(27): 11958-11969, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38922292

RESUMO

This study presents an updated analysis spanning over two decades (1999-2023) of climate, water quality, and operational data from two drinking water facilities in Atlantic Canada that previously experienced gradual increases in the natural organic matter (NOM) concentration and brownification. The goal was to assess the impact of recent extreme weather events on acute NOM concentration increases and drinking water treatment processes. In 2023, a dry spring combined with a warm and wet summer caused NOM in the water supplies to increase by >67% (as measured by color). To mitigate increased NOM concentration, the alum dose nearly doubled in 2023 compared to that in 2022. Disinfection byproducts were elevated following the event but remained within the compliance levels. From 1999 to 2023, the two plants responded to gradual climate change impacts and brownification, with alum dose increases of between 4.1 and 8.3 times. Equivalent CO2 emissions were estimated for alum usage, which increased by 3 to 7-fold in 2023 compared to when the plants were commissioned decades prior. The plants were not only adversely impacted by climate change but also contributed to the global CO2 burden. Thus, a paradigm shift toward sustainable alternatives for NOM removal is required in the water sector, and climate change adaptation and mitigation principles are urgently needed.


Assuntos
Mudança Climática , Água Potável , Purificação da Água , Água Potável/química , Abastecimento de Água , Qualidade da Água , Canadá
20.
Environ Sci Technol ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264176

RESUMO

As regulatory standards for per- and polyfluoroalkyl substances (PFAS) become increasingly stringent, innovative water treatment technologies are urgently demanded for effective PFAS removal. Reported sorbents often exhibit limited affinity for PFAS and are frequently hindered by competitive background substances. Recently, fluorinated sorbents (abbreviated as fluorosorbents) have emerged as a potent solution by leveraging fluorine-fluorine (F···F) interactions to enhance selectivity and efficiency in PFAS removal. This review delves into the designs and applications of fluorosorbents, emphasizing how F···F interactions improve PFAS binding affinity. Specifically, the existence of F···F interactions results in removal efficiencies orders of magnitude higher than other counterpart sorbents, particularly under competitive conditions. Furthermore, we provide a detailed analysis of the fundamental principles underlying F···F interactions and elucidate their synergistic effects with other sorption forces, which contribute to the enhanced efficacy and selectivity. Subsequently, we examine various fluorosorbents and their synthesis and fluorination techniques, underscore the importance of accurately characterizing F···F interactions through advanced analytical methods, and emphasize the significance of this interaction in developing selective sorbents. Finally, we discuss challenges and opportunities associated with employing advanced techniques to guide the design of selective sorbents and advocate for further research in the development of sustainable and cost-effective treatment technologies leveraging F···F interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA