Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 336: 117656, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36898236

RESUMO

Temperature is an important near-surface microclimate parameter that plays a key role in hydrological, ecological, and biogeochemical functions. However, the spatio-temporal distribution of temperature on the invisible and inaccessible soil-weathered bedrock continuum, wherein hydrothermal processes are most active, remains poorly understood. Temperature dynamics were monitored at 5 min intervals in the air-soil-epikarst (∼3 m) system at different topographical positions of the karst peak-cluster depression in southwest China. The weathering intensity was characterized based on the physicochemical properties of samples collected through drilling. No significant difference was observed in air temperature across slope positions, which was related to the limited distance and elevation resulting in roughly consistent energy input. The control effect of air temperature on the soil-epikarst was weakened with the decrease in elevation (±0.36 to ±0.25 °C). It is attributed to the enhanced temperature regulation capacity of vegetation cover from the up slope (shrub dominant) to down slope (tree dominant) in a relatively uniform energy environment. Temperature stability is clearly distinguished in two adjacent hillslopes that were differentiated by weathering intensity. For every 1 °C change in the ambient temperature, the amplitude of soil-epikasrt temperature variation on the strongly and weakly weathered hillslopes were ±0.28 and ± 0.32 °C, respectively. The response of soil-epikarst temperature to ambient temperature was more sensitive in the wet season (±0.40 °C) than in the dry season (±0.20 °C), which was related to the cooling effect caused by abundant rainfall. The cooling effect was particularly prominent in the preferential flow development area composed of pipeline cracks, which appear in the hillslope with relatively weak weathering intensity. These demonstrate that soil-epikarst temperature responds more gently to the variability of rainfall and ambient temperature on a relatively strong weathered hillslope. Accordingly, this study highlights that the sensitivity of soil-epikarst temperature to climate change is regulated by vegetation and weathering intensity on karst hillslopes in southwest China.


Assuntos
Microclima , Solo , China , Ecossistema , Solo/química , Temperatura , Tempo (Meteorologia)
2.
New Phytol ; 226(3): 666-671, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31912507

RESUMO

The emergence of critical zone (CZ) science has provided an integrative platform for investigating plant ecophysiology in the context of landscape evolution, weathering and hydrology. The CZ lies between the top of the vegetation canopy and fresh, chemically unaltered bedrock and plays a pivotal role in sustaining life. We consider what the CZ perspective has recently brought to the study of plant ecophysiology. We specifically highlight novel research demonstrating the importance of the deeper subsurface for plant water and nutrient relations. We also point to knowledge gaps and research opportunities, emphasising, in particular, greater focus on the roles of deep, nonsoil resources and how those resources influence and coevolve with plants as a frontier of plant ecophysiological research.


Assuntos
Plantas , Solo , Ecossistema , Hidrologia , Água , Tempo (Meteorologia)
3.
Environ Sci Pollut Res Int ; 31(14): 21356-21369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388979

RESUMO

Earth internal seepage erosion in weathered bedrock under infrequently used hydraulic structures is often overlooked, which causes some solid particles to break away from the solid skeleton, degrading the earth's strength, and even causing unanticipated hydraulic engineering failures. The flood on the Oroville dam spillway in California in 2017 was caused by disturbed water flow due to a crack in the spillway chute caused by internal erosion in poorly weathered bedrock. The abnormal water flow of the spillway in the early stage and subsequent investigation revealed that the main reason for the accident was the insufficient weathered bedrock under the spillway chute. In this study, we formulated a coupled hydro-mechanical mechanism for internal erosion in weathered bedrock during the early stages. Using this model, we conducted an internal erosion numerical simulation at early stage, and the results showed that the physical characteristics of the weathered bedrock were degraded. Our results show the coupling analysis of quantitative computation during the early stage of internal erosion in weathered bedrock, which can provide an early warning method for the occurrence of internal erosion to avoid hydraulic disasters.


Assuntos
Desastres , Geraniaceae , California , Simulação por Computador , Água
4.
Front Plant Sci ; 8: 1651, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018464

RESUMO

For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a) to what extent shallow soil-adapted species rely on exploring rock fractures and (b) what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species (Cyclobalanopsis glauca, Delavaya toxocarpa, and Acer cinnamomifolium) with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ13C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca, percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium, percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast-growing, D. toxocarpa, percentages of root mass in the bedrock and interface layers increased simultaneously under drought conditions, but not under irrigated conditions. This drought-induced rooting plasticity was associated with drought avoidance by this species. Although, root development might have been affected by the simulated microcosm, contrasting results among the three species indicated that efficient use of rock fractures is not a necessary or specialized strategy of shallow-soil adapted species. The establishment and persistence of these species relied on the mutual complementation between their species-specific rooting strategies and drought adaptations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA