Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 498
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(21): 9446-9455, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38748977

RESUMO

Biological pretreatment is a viable method for enhancing biogas production from straw crops, with the improvement in lignocellulose degradation efficiency being a crucial factor in this process. Herein, a metagenomic approach was used to screen core microorganisms (Bacillus subtilis, Acinetobacter johnsonii, Trichoderma viride, and Aspergillus niger) possessing lignocellulose-degrading abilities among samples from three environments: pile retting wheat straw (WS), WS returned to soil, and forest soil. Subsequently, synthetic microbial communities were constructed for fermentation-enzyme production. The crude enzyme solution obtained was used to pretreat WS and was compared with two commercial enzymes. The synthetic microbial community enzyme-producing pretreatment (SMCEP) yielded the highest enzymatic digestion efficacy for WS, yielding cellulose, hemicellulose, and lignin degradation rates of 39.85, 36.99, and 19.21%, respectively. Furthermore, pretreatment of WS with an enzyme solution, followed by anaerobic digestion achieved satisfactory results. SMCEP displayed the highest cumulative biogas production at 801.16 mL/g TS, which was 38.79% higher than that observed for WS, 22.15% higher than that of solid-state commercial enzyme pretreatment and 25.41% higher than that of liquid commercial enzyme pretreatment. These results indicate that enzyme-pretreated WS can significantly enhance biogas production. This study represents a solution to the environmental burden and energy use of crop residues.


Assuntos
Biocombustíveis , Triticum , Triticum/metabolismo , Anaerobiose , Fermentação , Lignina/metabolismo
2.
Environ Res ; 247: 118101, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220080

RESUMO

Anaerobic digestion of agricultural waste can contribute to the European renewable energy needs. The 71% of the 20,000 anaerobic digestion plants in operation already uses these agro-waste as feedstock; part of these plants can be converted into two stage processes to produce hydrogen and methane in the same plant. Biomethane enriched in hydrogen can replace natural gas in grids while contributing to the sector decarbonisation. Straw is the most abundant agricultural residue (156 Mt/y) and its conventional final fate is uncontrolled soil disposal, landfilling, incineration or, in the best cases, composting. The present research work focuses on the fermentation of spent mushroom bed, an agricultural lignocellulosic byproduct, composed mainly from wheat straw. The substrate has been characterized and semi-continuous tests were performed evaluating the effect of the hydraulic retention time on hydrogen and volatile fatty acids production. It was found that all the tests confirmed the feasibility of the process even on this lignocellulosic substrate, and also, it was identified HRT 4.0 d as the best option to optimize the productivity of volatile fatty acids (17.09 gCODVFAs/(KgVS*d)), and HRT 6.0 d for hydrogen (7.98 LH2/(KgVS*d)). The fermentation effluent was used in biomethanation potential tests to evaluate how this process affects a subsequent digestion phase, reporting an increase in the energetical feedstock exploitation up to 30%.


Assuntos
Ácidos Graxos Voláteis , Hidrogênio , Anaerobiose , Fermentação , Metano , Reatores Biológicos , Biocombustíveis
3.
Appl Microbiol Biotechnol ; 108(1): 394, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918217

RESUMO

The present study aimed to investigate whether and how non-invasive biocalorimetric measurements could serve for process monitoring of fungal pretreatment during solid-state fermentation (SSF) of lignocellulosic agricultural residues such as wheat straw. Seven filamentous fungi representing different lignocellulose decay types were employed. Water-soluble sugars being immediately available after fungal pretreatment and those becoming water-extractable after enzymatic digestion of pretreated wheat straw with hydrolysing (hemi)cellulases were considered to constitute the total bioaccessible sugar fraction. The latter was used to indicate the success of pretreatments and linked to corresponding species-specific metabolic heat yield coefficients (YQ/X) derived from metabolic heat flux measurements during fungal wheat straw colonisation. An YQ/X range of about 120 to 140 kJ/g was seemingly optimal for pretreatment upon consideration of all investigated fungi and application of a non-linear Gaussian fitting model. Upon exclusion from analysis of the brown-rot basidiomycete Gloeophyllum trabeum, which differs from all other here investigated fungi in employing extracellular Fenton chemistry for lignocellulose decomposition, a linear relationship where amounts of total bioaccessible sugars were suggested to increase with increasing YQ/X values was obtained. It remains to be elucidated whether an YQ/X range being optimal for fungal pretreatment could firmly be established, or if the sugar accessibility for post-treatment generally increases with increasing YQ/X values as long as "conventional" enzymatic, i.e. (hemi)cellulase-based, lignocellulose decomposition mechanisms are operative. In any case, metabolic heat measurement-derived parameters such as YQ/X values may become very valuable tools supporting the assessment of the suitability of different fungal species for pretreatment of lignocellulosic substrates. KEY POINTS: • Biocalorimetry was used to monitor wheat straw pretreatment with seven filamentous fungi. • Metabolic heat yield coefficients (YQ/X) seem to indicate pretreatment success. • YQ/X values may support the selection of suitable fungal strains for pretreatment.


Assuntos
Fungos , Lignina , Triticum , Lignina/metabolismo , Triticum/microbiologia , Triticum/química , Fungos/metabolismo , Fermentação , Hidrólise , Agricultura/métodos
4.
Ecotoxicol Environ Saf ; 278: 116406, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728941

RESUMO

Cadmium contamination inevitably affects the microbially mediated transformation of nitrogen in soils with wheat straw return. The responses of nitrogen functional microorganisms to cadmium in acidic and alkaline soils under wheat straw returned are still unclear. In this study, quantitative polymerase chain reaction (qPCR) and sequencing of nitrifying and denitrifying bacteria were performed to investigate the effects of wheat straw application on nitrogen conversion in different Cd-contaminated soils during an incubation experiment. Results showed that the presence of Cd decreased the abundance of hao gene catalyzing nitrification and norB gene catalyzing denitrification process, resulting the accumulation of NH4+-N and reduction of NO3--N in the acidic soils. Additionally, Cd-contamination stimulates the nitrification catalyzed by bacterial amoA gene and thus reduced the NH4+-N content in the alkaline soils. Meanwhile, Cd dominated the decrease of NO3--N content by promoting denitrification process catalyzed by nirS gene. Among all nitrifying and denitrifying microorganisms, Nitrosospira are tolerant to Cd stress under alkaline condition but sensitive to acidic condition, which dominantly harbored hao gene in the acidic soils and bacterial amoA gene in the alkaline soils. This study aimed to provide reasonable information for the rational adoption of wheat straw returning strategies to realize nitrogen regulation in Cd-contaminated farmland soil.


Assuntos
Cádmio , Desnitrificação , Nitrificação , Microbiologia do Solo , Poluentes do Solo , Triticum , Cádmio/análise , Cádmio/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Nitrogênio/metabolismo , Solo/química , Bactérias/metabolismo , Bactérias/genética , Ciclo do Nitrogênio
5.
Artigo em Inglês | MEDLINE | ID: mdl-38995362

RESUMO

This study investigated cellobionate production from a lignocellulosic substrate using Neurospora crassa HL10. Utilizing NaOH-pretreated wheat straw as the substrate obviated the need for an exogenous redox mediator addition, as lignin contained in the pretreated wheat served as a natural mediator. The low laccase production by N. crassa HL10 on pretreated wheat straw caused slow cellobionate production, and exogenous laccase addition accelerated the process. Cycloheximide induced substantial laccase production in N. crassa HL10, enabling the strain to yield approximately 57 mM cellobionate from pretreated wheat straw (equivalent to 20 g/L cellulose), shortening the conversion time from 8 to 6 days. About 92% of the cellulose contained in the pretreated wheat straw is converted to cellobionate. In contrast to existing methods requiring pure cellobiose or cellulase enzymes, this process efficiently converts a low-cost feedstock into cellobionate at a high yield without enzyme or redox mediator supplementation.

6.
Bioprocess Biosyst Eng ; 47(2): 289-297, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086976

RESUMO

In this study, the potential of ultrafiltered xylano-pectinolytic enzymatic bleaching approach was investigated, for manufacturing wheat straw-based paper. The enzymatic step was found to be most effective, with xylanase-pectinase dose of 4-1.7 IU/g pulp and time period of 180 min. The absorption spectra of the pulp free filtrate samples obtained after treatment of the pulp with ultrafiltered enzymes showed the removal of more impurities, in comparison to the treatment with crude enzymes. Microscopic analysis also showed the removal of lignin impurities in enzymatically bleached pulp samples. This bleaching approach using enzymes resulted in 27% reduction in ClO2 dose. Ultrafiltered enzymes treated pulp samples also showed improved quality-related parameters, and Gurley porosity, burst index, breaking length, double fold, tear index, and viscosity increased by 19.05, 13.70, 8.18, 29.27, 4.41, and 13.27%, respectively. The lignin content, TDS, TSS, BOD and COD values also decreased in the effluent samples obtained after enzymatic bleaching plus 73% chemical bleaching dose. The BOD and COD values of the effluent samples improved by 23.01 and 23.66%, respectively. Thus, indicating the potential of ultrafiltered xylano-pectinolytic enzymes in reducing pollution during bleaching of wheat straw. This is the first study, mentioning the efficacy of ultrafiltered enzymes in the bleaching of wheat straw-based paper with better optical-strength-related properties and effluent characteristics.


Assuntos
Lignina , Papel , Triticum/química , Endo-1,4-beta-Xilanases/química , Poligalacturonase
7.
Prep Biochem Biotechnol ; : 1-9, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824495

RESUMO

Wheat straw contains a high amount of lignin, hindering the action of cellulase and hemicellulase enzymes, leading to difficulties in nutrient absorption by animals from straw feed. However, currently, the biological treatment of straw relies primarily on fungal degradation and cannot be directly utilized for the preparation of livestock feed. This study focuses on enzymatic co-fermentation of wheat straw to produce high-protein, low-cellulose biological feed, integrating lignin degradation with feed manufacturing, thereby simplifying the feed production process. After the optimization using Box-Behnken Design for the feed formulation, with a glucose oxidase addition of 2.46%, laccase addition of 3.4%, and malonic acid addition of 0.6%, the wheat straw feed prepared in this experiment exhibited a true protein content of 9.35%. This represented a fourfold increase compared to the non-fermented state, and the lignocellulose degradation rate of wheat straw reached 45.42%. These results not only highlight the substantial enhancement in protein content but also underscore the significant advancement in lignocellulose breakdown. This formulation significantly enhanced the palatability and nutritional value of the straw feed, contributing to the industrial development of straw feed.

8.
BMC Microbiol ; 23(1): 70, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922757

RESUMO

BACKGROUND: The nutrient availability of roughages could affect the dietary utilization efficiency of ruminants even in isocaloric and isonitrogenous diets. Here, we analyzed the bacterial composition and their metabolic pathways in the gastrointestinal tracts (GITs) of Hu sheep fed with wheat straw (WS) instead of alfalfa (AL) in isocaloric and isonitrogenous diets, trying to explore the reasons from the perspective of GITs bacterial network structure changes. RESULTS: We employed 16S rRNA gene sequencing in combination with the Kruskal-Wallis test, Spearman correlation analysis, and other statistical methods to describe the microbiota composition in the GITs of Hu sheep. The results showed after the roughage was replaced from AL to WS, the most positive response occurred in the rumen microbiota, resulting in a more obvious microbiological and functional redundancy phenomenon. Whereas extended biogeographic studies of the GITs bacterial community found opposite results for the hindgut microbiota and metabolism networks compared to the forestomach. The abundance of fiber-degrading bacteria such as Prevotella, Oscillospiraceae NK4A214 group, and Treponema was significantly increased in GITs, but low-efficiency crude fiber degradation inhibited energy use efficiency, the pentose phosphate pathway, gluconeogenesis, and volatile acid synthesis. In addition, dietary shifting from AL to WS decreased the abundance of beneficial bacteria such as the Lachnospiraceae NK3A20 group and Alistipes, thereby enhancing the underlying inflammatory response. CONCLUSIONS: These findings suggest that feeding untreated WS affected the structure and function of the bacterial network in the GITs due to limited total digestible nutrients, and in particular increases the complexity of the rumen bacterial network, and limit the abundance of bacteria involved in the crude fiber degradation in the hindgut.


Assuntos
Ração Animal , Fibras na Dieta , Ovinos , Animais , Fibras na Dieta/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Digestão , Dieta/veterinária , Ruminantes , Trato Gastrointestinal/metabolismo , Nutrientes , Rúmen/microbiologia , Triticum , Bactérias/genética , Bactérias/metabolismo , Fermentação
9.
Environ Res ; 216(Pt 1): 114436, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183791

RESUMO

Agro-waste having lignocellulosic biomass is considered most effective (heating value 16 MJ/kg) for energy production through anaerobic digestion (AD). However, recalcitrant lignocellulosic fraction in agro-waste obstructs its biotransformation and is a rate-limiting step of the process. This study investigated the effects of hydrothermal and thermal-alkaline pretreatment on anaerobic co-digestion of wheat straw (WS). The hydrothermal pretreatment of WS revealed that 60 min was the best pretreatment time to achieve the highest substrate solubilization. It was employed for thermal-alkali pretreatment at variable temperatures and NaOH doses. Thermal-alkali pretreatment at 125°C-7% NaOH shows the highest (34%) biogas yield of 662 mL/gVS, followed by 646 mL/gVS biogas yield at 150°C-1% NaOH assay (31% higher) over control. Although the 125°C-7% NaOH assay achieved the highest biogas yield, the 150°C-1% NaOH assay was found more feasible considering the cost of a 6% higher chemical used in the earlier assay. The thermal-alkali pretreatment was observed to reduce the formation of recalcitrant compounds (HMF, Furfural) and increase the buffering capacity of the slurry over hydrothermal pretreatment. Principal component analysis (PCA) of the various pretreatment and AD operational parameters was carried out to study their in-depth correlation. Moreover, a kinetic study of the experimental data was performed to observe the biodegradation trend and compare it with the Modified Gompertz (MG) and First Order (FO) models.


Assuntos
Biocombustíveis , Triticum , Triticum/química , Anaerobiose , Álcalis , Metano , Hidróxido de Sódio , Digestão
10.
J Environ Manage ; 338: 117851, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37019023

RESUMO

To enhance the value of wheat straw derivatives, wheat straw ash (WSA) was used as a reactant for the first time to synthesize spirocyclic alkoxysilane, an important organosilicon raw material, using an energy-saving and environmentally friendly non-carbon thermal reduction method. After spirocyclic alkoxysilane extraction, the biochar in the wheat straw ash prepared an adsorbent for Cu2+. The maximum copper ion adsorption capacity (Qm) of silica-depleted wheat straw ash (SDWSA) was 31.431nullmg/g, far exceeding those of WSA and similar biomass adsorbents. The effects of the pH, adsorbent dose, and contact time on the adsorption behaviour of the SDWSA for Cu2+ adsorption were systematically investigated. The adsorption mechanism of Cu2+ by the SDWSA was investigated using the Langmuir, Freundlich, pseudo-first-order kinetic, pseudo-second-order kinetic, and Weber and Morris models by combining the preliminary experimental data and characterization results. The adsorption isotherm and Langmuir equation matched perfectly. The Weber and Morris model can describe the mass-transfer mechanism of Cu2+ adsorption by SDWSA. Both film and intraparticle diffusion are rapid control steps. Compared to WSA, SDWSA has a larger specific surface area and a higher content of oxygen-containing functional groups. A large specific surface area provides more adsorption sites. Oxygen-containing functional groups react with Cu2+ through electrostatic interactions, surface complexation, and ion exchange, which are the possible adsorption mechanisms for SDWSA. These methods improve the added value of wheat straw derivatives and promote wheat straw ash recovery and centralized treatment. This makes it possible to use the thermal energy of wheat straw and facilitates the treatment of exhaust gases and carbon capture.


Assuntos
Triticum , Poluentes Químicos da Água , Temperatura Alta , Carvão Vegetal/química , Adsorção , Cinética
11.
J Environ Manage ; 334: 117486, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36774898

RESUMO

Wheat straw is rich in organic matter and nutrients and has the potential to replace peat as the primary raw material in organic nurseries. Using straw as a peat substitute can also aid in reducing the CO2 emissions that result from peat mining. Furthermore, this can avoid resource wastage and eliminate the practice of burning wheat straw, thereby causing pollution. The conventional composting treatment has a long cycle and inability to control substrate properties in a targeted manner. Thus, this study analyzed the physicochemical properties, material science properties, and biological toxicity of straw substrate at the end of fermentation to achieve rapid and targeted regulations of the substrate's overall performance. Wheat straw treated with two types of fermentation (aerobic/anaerobic) and five chemical conditioners (1% CH3COOH, 1% H2SO4, 1% NaOH, 1% K2CO3, and H2O) under different temperature conditions was used. Adjusting the pH of straw substrate to acidic levels (4.47-6.51) reduced the organic matter consumption by 0.27-5.82% under anaerobic digestion than under aerobic composting. Meanwhile, aerobic composting retained more nitrogen (0.12-8.23 mg/g) than anaerobic digestion. The co-fermentation of wheat straw pretreated with 1% H2SO4 resulted in 14.18-46.12% hemicellulose degradation. Co-aerobic straw composting with H2SO4 and K2CO3 at 35 °C reduced the crystallinity of the straw substrate by 6.66 and 7.33%, respectively, as compared to other conditioning agents. CH3COOH lowered the electrical conductivity values of the straw substrate at the end of fermentation (2.33-3.49 mS/cm). Overall, the findings revealed that CH3COOH-cooperative aerobic composting pretreatment at 35 °C is a suitable replacement for the traditional composting process as a method of utilizing straw substrate.


Assuntos
Compostagem , Triticum , Triticum/metabolismo , Fermentação , Solo/química , Nitrogênio/análise
12.
J Environ Manage ; 325(Pt B): 116639, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334450

RESUMO

Carbon sequestration with amendments in blue-green infrastructure soils could off-set anthropogenic greenhouse gas emissions to alleviate climate change. In this 3-year study, the effects of wheat straw and its biochar on carbon sequestration in an urban landscaping soil were investigated under realistic outdoor conditions using two large-scale lysimeters. Both amendments were carried out by incorporating pellets at 0-15 cm soil depth with an equivalent initial total carbon input of 2% of the dry soil weight. Soil carbon, carbon isotope ratios, dissolved carbon in leachates, CO2-C emissions, carbon fixed in above ground vegetation, soil water content, soil bulk electrical conductivity, and water infiltration rates, were then compared between the 2 lysimeters. After 3 years, we observed that, despite having a 17.2% lower vegetation growth, soil organic and inorganic carbon content was higher by 28.8% and 41.5%, respectively, in biochar as compared to wheat straw amended soil. Carbon isotope analysis confirmed the greater stability of the added carbon in the biochar amended soil. Water content was on average 23.2% and 13.0% in the straw pellet and biochar amended soil, respectively, whereas water infiltration rates were not significantly different between the two lysimeters. Overall, the incorporation of wheat straw biochar into soil could store an estimated 30 tonnes of carbon per hectare in city blue-green infrastructure spaces. Interviews involving institution stakeholders examined the feasibility of this biochar application. Stakeholders recognized the potential of biochar as an environment-friendly means for carbon offsetting, but were concerned about the practicality of biochar production and application into soil and increased maintenance work. Consequently, additional potential benefits of biochar for environmental management such as improving the quality of polluted run-off in stormwater treatment systems should be emphasized to make biochar an attractive proposition in sustainable urban development.


Assuntos
Solo , Purificação da Água , Solo/química , Carbono , Chuva , Agricultura , Abastecimento de Água , Carvão Vegetal/química , Triticum , Água , Isótopos de Carbono
13.
Molecules ; 28(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005215

RESUMO

To further our understanding of the change in association between lignin and carbohydrates after kraft pulping, isotope-labeled kraft pulp (KP) was prepared using 13C and D double-isotope-labeled wheat straw, and it was subjected to enzymatic hydrolysis and ionic liquid treatment to explore the linkages between lignin and carbohydrate complexes in wheat straw. Isotope abundance determination showed that 13C and D abundances in the experimental groups were substantially higher than those in the control group, indicating that the injected exogenous coniferin-[α-13C], coniferin-[γ-13C], and d-glucose-[6-D2] were effectively absorbed and metabolized during wheat internode growth. Solid-state CP/MAS 13C-NMR spectroscopy showed that lignin was mainly linked to polysaccharides via acetal, benzyl ether, and benzyl ester bonds. Kraft pulp (KP) from the labeled wheat straw was degraded by cellulase. The obtained residue was fractionated using the ionic liquid DMSO/TBAH to separate the cellulose-lignin complex (KP-CLC) and xylan-lignin complex (KP-XLC). X-ray diffractometer determination showed that the KP-CLC regenerated cellulose type II from type I after the ionic liquid conversion. The 13C-NMR spectrum of Ac-En-KP-CLC showed that the cellulose-lignin complex structure was chemically bonded between the lignin and cellulose through acetal and benzyl ether bonds. The 13C-NMR spectrum of En-KP-XLC showed a lignin-hemicellulose complex structure, wherein lignin and xylan were chemically bonded by benzyl ether and acetal bonds. These results indicate that the cross-linking between lignin and carbohydrates exists in lignocellulosic fibers even after kraft pulping.


Assuntos
Líquidos Iônicos , Lignina , Lignina/química , Triticum/química , Xilanos , Acetais , Celulose/química , Isótopos , Hidrólise
14.
J Anim Physiol Anim Nutr (Berl) ; 107(5): 1149-1157, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36541284

RESUMO

Two experiments were carried out to determine the optimal proportion of mixed silage made with wheat straw and tall fescue, and further to evaluate the effects of molasses on fermentation quality. In Experiment 1, wheat straw and tall fescue were mixed at proportions of 10:0 (Control), 8:2 (WT20), 6:4 (WT40) and 4:6 (WT60) on fresh weight (FW) basis. Inclusion of tall fescue significantly (p < 0.05) increased lactic acid, water-soluble carbohydrate contents and ratio of lactic to acetic acid, and significantly (p < 0.05) decreased pH and contents of dry matter, NH3 -N and volatile fatty acids. WT60 had the highest (p < 0.05) lactic acid content, and the lowest (p < 0.05) pH and butyric acid content. In Experiment 2, the mixture of wheat straw and tall fescue (4/6) were treated with 0%, 3%, 4% and 5% molasses on FW basis (defined as control, WTM3, WTM4 and WTM5 respectively). Molasses addition significantly (p < 0.05) increased lactic acid and water-soluble carbohydrate contents, and significantly (p < 0.05) decreased pH and ammonia-nitrogen content as compared with control. Acetic acid content slightly (p > 0.05) decreased during ensiling, while trace amounts of propionic and butyric acids were observed. WTM5 had the lowest pH and the highest (p < 0.05) lactic acid, water-soluble carbohydrate contents and ratio of lactic to acetic acid at end of ensiling. In conclusion, the fermentation quality was maximally improved when the addition rate of molasses was 5% in 40% wheat straw ensiled with 60% tall fescue.


Assuntos
Melaço , Triticum , Animais , Fermentação , Tibet , Silagem/análise , Carboidratos , Ácido Láctico , Ácido Acético
15.
J Nematol ; 55(1): 20230037, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37664002

RESUMO

While the nematicidal effectiveness of mulching against root-knot nematodes (Meloidogyne spp.) is calculated within organic crop protection, underlying mechanisms are not yet fully explored. Laboratory experiments were set up to determine whether mulch-derived substances cause mortality directly, or repel Meloidogyne juveniles from crop rhizosphere. Mortality and area choice tests were conducted with mulch-derived extracts, supported by the measurements on tannic acid content and the pH values of extracts as supplementary examinations. In our study, leaf litter and straw extracts were generally found lethal to the juveniles, which is in line with the results from area preference tests. However, compost extract had no effect on Meloidogyne incognita juveniles. Tannic acid content showed positive correlation with mortality only in the case of straw and sycamore leaf litter extracts. Tannic acid and pH weakly correlated with repellent effect of the applied extracts generally. Our results have inspired further experiments to explore nematicidal components of leaf litters, contributing to the development of a new approach in crop protection based on the repellent effect of these materials.

16.
J Appl Microbiol ; 132(2): 1079-1090, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34424586

RESUMO

AIMS: This study investigated the dose-effect of manganese (Mn) addition on wheat straw (WS) decomposition, and explored the potential mechanisms of Mn involved in the acceleration of WS decomposition in regards to the soil microbial communities and enzyme activities. METHODS AND RESULTS: A 180-day incubation experiment was performed to examine the decomposition of WS under four Mn levels, that is, 0, 0.25, 1 and 2 mg g-1 . The effects of microbial communities and enzyme activities were evaluated using control (0 mg g-1 ) and Mn (0.25 mg g-1 ) treatments. Our results revealed that Mn (0.25 mg g-1 ) addition significantly increased WS decomposition, and enhanced the release of carbon and nitrogen. Optimal Mn addition (0.25 mg g-1 ) also caused significant increases in the activity of neutral xylanase (NEX), laccase (Lac), manganese peroxidase (MnP) and lignin peroxidase (LiP) within the incubation period. Mn (0.25 mg g-1 ) addition also enriched some operational taxonomic units (OTUs) that, in turn, had the potential ability to decompose crop straw, such as secreting lignocellulolytic enzymes. CONCLUSIONS: Mn (0.25 mg g-1 ) could promote WS decomposition through enrichment of the microbial species involved in biomass decomposition, which enhanced the lignocellulose-degrading enzyme activity. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides evidence for Mn to promote WS biodegradation after Mn application, opening new windows to improve the utilization efficiency of crop residues.


Assuntos
Microbiota , Triticum , Biomassa , Lacase , Lignina , Manganês , Solo
17.
Environ Res ; 214(Pt 2): 113946, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35870504

RESUMO

This study developed a closed-circuit biorefinery process for full conversion of lignocellulose into ethanol, biogas and organic fertilizer with zero waste on a pilot scale. In the process, subcritical water pretreatment could effectively break the structure of wheat straw (WS), and ethanol was obtained from pretreated wheat straw (PWS) using two batches of simultaneous saccharification and fermentation (SSF). The pretreatment and ethanol fermentation wastes were reused for biogas and organic fertilizer production by anaerobic digestion (AD), whereas the pretreatment and ethanol conversion efficiency were reduced when supernatant after AD was recovered for next batch pretreatment. The yields of ethanol (0.08-0.09 g/g), biogas (0.05-0.10 L/g) and organic fertilizer (0.55-0.79 g/g) were demonstrated through mass balance. Furthermore, the hidden problems were exposed on pilot-scale conversion process, and several strategies were provided for optimizing the biorefinery process in the future.


Assuntos
Biocombustíveis , Fertilizantes , Etanol , Fermentação , Hidrólise , Lignina
18.
Environ Res ; 215(Pt 2): 114368, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36155153

RESUMO

Amine-modified wheat straw (AMWS) has already been reported as a promising adsorbent for nitrate (NO3) removal due to its cost-effectiveness and high efficiency. However, the NO3 removal mechanism has not been well understood, especially in the presence of co-existing ions. Here, the effect of co-existing anions on NO3 removal by AMWS was investigated and the underlying mechanisms were revealed using a combination of in-situ infrared (IR) spectroscopy and computational modeling. The in-situ IR results indicated that NO3, sulfate (SO4), and phosphate (PO4) are all adsorbed as outer-sphere complexes on AMWS. The two-dimensional-correlation spectroscopy analysis implied the adsorption sequence of SO4 > PO4 > NO3. The adsorption energies obtained from density functional theory calculation range from -0.24 to 0.51 eV (-23.2 to 49.2 kJ/mol), confirming that these anions adsorb on AMWS as outer-sphere complexes. For the first time, this study provides direct spectroscopic evidence of the outer-sphere adsorption of NO3 on AMWS, as well as identifies the adsorption sequence, confirmed by computational modeling. The competitive mechanism of NO3, SO4, and PO4 revealed in this study is helpful to understand and predict the applications of AMWS.


Assuntos
Nitratos , Poluentes Químicos da Água , Adsorção , Aminas , Ânions , Teoria da Densidade Funcional , Cinética , Óxidos de Nitrogênio , Fosfatos/química , Sulfatos/química , Triticum
19.
Environ Res ; 212(Pt C): 113382, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35568237

RESUMO

In this study, four batch assays were performed to ensure the synergic effects of co-digestion and find out the best inoculums to substrate ratio (ISR), carbon to nitrogen ratio (C:N), and total solid (TS) percentage in sequence. The co-digestion of three feedstocks had a 20% higher biogas yield (416 mL/gVS added) than mono-digestion with 21% volatile solids (VS) degradation. The ISR of 2 leads to the highest biogas yield (431 mL/gVS added) and VS removal (30.3%) over other ISRs (0.5, 1.0, 2.5) studied. The lower ISR (<2) tended to have lower pH due to insufficient anaerobes inside the digester. The C:N 35 (with ISR 2) yielded 17.4% higher biogas (443.5 mL/gVS added) than mono-digestion and was the highest among the C:N ratios studied with 36.6% VS removal. The VFA, alkalinity, and pH in C:N 35 assay were more stable than in other C:N assays. In the fourth batch assay, varying TS% (5, 7.5, 10, 12.5) were used with optimized ISR (2) and C:N (35). Higher TS% (10 and 12.5) had some lag phase but later achieved higher biogas production. The 12.5% TS assay achieved 80% higher biogas yield (679 mL/gVS added) over mono-digestion, i.e., highest among the TS% studied, with 48% VS removal. In conclusion, co-digestion of mixed feedstocks with ISR 2, C:N 35, and TS 12.5% could degrade almost half of the substrate available for biodegradation. Further biodegradation may require pretreatment of the recalcitrant WS. Modified Gompertz, first-order, transference, and logistic models were used for kinetic study and curve fitting of experimental data. For the optimized batch assays, the estimated specific rate constants were 0.08, 0.12, 0.083, and 0.084. The data fits well in all the models, with the coefficient of discrimination (R2) ranging from 0.882 to 0.999.


Assuntos
Biocombustíveis , Eliminação de Resíduos , Anaerobiose , Animais , Reatores Biológicos , Bovinos , Digestão , Alimentos , Esterco , Metano , Triticum
20.
Appl Microbiol Biotechnol ; 106(3): 1299-1311, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35075520

RESUMO

Enzymes offer interesting features as biological catalysts for industry: high specificity, activity under mild conditions, accessibility, and environmental friendliness. Being able to produce enzymes in large quantities and having them available in a stable and reusable form reduces the production costs of any enzyme-based process. Agricultural residues have recently demonstrated their potential as substrates to produce ligninolytic enzymes by different white rot fungi. In this study, the biotechnological production of a manganese peroxidase (MnP) by Irpex lacteus was conducted through solid-state fermentation (SSF) with wheat straw as substrate and submerged fermentation (SmF) employing wheat straw extract (WSE). The obtained enzyme cocktail also showed manganese-independent activity (MiP), related to the presence of a short MnP and a dye-decolorizing peroxidase (DyP) which was confirmed by shotgun proteomic analyses. In view of the enhanced production of ligninolytic enzymes in SmF, different parameters such as WSE concentration and nitrogen source were evaluated. The highest enzyme titers were obtained with a medium formulated with glucose and peptone (339 U/L MnP and 15 U/L MiP). The scale-up to a 30 L reactor achieved similar activities, demonstrating the feasibility of enzyme production from the residual substrate at different production scales. Degradation of five emerging pollutants was performed to demonstrate the high oxidative capacity of the enzyme. Complete removal of hormones and bisphenol A was achieved in less than 1 h, whereas almost 30% degradation of carbamazepine was achieved in 24 h, which is a significant improvement compared to previous enzymatic treatments of this compound. KEY POINTS: • Wheat straw extract is suitable for the growth of I. lacteus. • The enzyme cocktail obtained allows the degradation of emerging contaminants. • Mn-dependent and Mn-independent activities increases the catalytic potential.


Assuntos
Basidiomycota , Rios , Basidiomycota/metabolismo , Fermentação , Oxirredutases/metabolismo , Peroxidases/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA