RESUMO
BACKGROUND: The diagnostic value of carotid plaque characteristics based on higher-resolution vessel wall MRI (HRVW-MRI) combined with white matter lesion (WML) burden for the risk of ischemic stroke is unclear. PURPOSE: To combine carotid plaque features and WML burden to construct a hybrid model for evaluating ischemic stroke severity and prognosis in patients with symptomatic carotid artery stenosis. STUDY TYPE: Retrospective. SUBJECTS: One hundred and ninty-three patients with least one confirmed carotid atherosclerotic stenosis ≥30% and cerebrovascular symptoms within the last 2 weeks (136 in the training cohort and 57 in the test cohort). FIELD STRENGTH/SEQUENCE: 3.0T, T2-weighted fluid attenuated inversion recovery (T2-FLAIR) and diffusion-weighted imaging (DWI); HRVW-MRI: 3D T1-weighted variable flip angle fast spin-echo sequences (VISTA), T2-weighted VISTA, simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP), and contrast-enhanced T1-VISTA. ASSESSMENT: The following features of the plaques or vessel wall were assessed by three MRI readers independently: calcification (CA), intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), ulceration, plaque enhancement (PE), maximum vessel diameter (Max VD), maximum wall thickness (Max WT), total vessel area (TVA), lumen area (LA), plaque volume, and lumen stenosis. WMLs were graded visually and categorized as absent-to-mild WMLs (Fazekas score 0-2) or moderate-severe WMLs (Fazekas score 3-6). WML volumes were quantified using a semiautomated volumetric analysis program. Modified Rankin scores (mRS) were assessed at 90 days, following an outpatient interview, or by telephone. STATISTICAL TESTS: LASSO-logistic regression analysis was performed to construct a model. The performance of the model was evaluated using receiver operating characteristic (ROC) curve analyses, calibration curves, decision curve analyses, and clinical imaging curves. Conditional logistic regression analysis was used to explore the associations between the hybrid model-derived score and the modified Rankin Scale (mRS) score at 90 days. RESULTS: The model was constructed using five selected features, including IPH, plaque enhancement, ulceration, NWI, and total Fazekas score in deep WMLs (DWMLs). The hybrid model yielded an area under the curve of 0.92 (95% confidence interval [CI] 0.87-0.97) in the training cohort and 0.88 (0.80-0.96) in the test cohort. Furthermore, the hybrid model-derived score (odds ratio = 1.28; 95% CI 1.06-1.53) was independently associated with the mRS score 90 days after stroke. DATA CONCLUSIONS: The hybrid model constructed using MRI plaque characteristics and WML burden has potential to be an effective noninvasive method of assessing ischemic stroke severity. The model-derived score has promising utility in judging neurological function recovery. TECHNICAL EFFICACY: Stage 2.
RESUMO
Genetic leukoencephalopathies (gLEs) are a highly heterogeneous group of rare genetic disorders. The spectrum of gLEs varies among patients of different ages. Distinct from the relatively more abundant studies of gLEs in children, only a few studies that explore the spectrum of adult gLEs have been published, and it should be noted that the majority of these excluded certain gLEs. Thus, to date, no large study has been designed and conducted to characterize the genetic and phenotypic spectra of gLEs in adult patients. We recruited a consecutive series of 309 adult patients clinically suspected of gLEs from Beijing Tiantan Hospital between January 2014 and December 2021. Whole-exome sequencing, mitochondrial DNA sequencing and repeat analysis of NOTCH2NLC, FMR1, DMPK and ZNF9 were performed for patients. We describe the genetic and phenotypic spectra of the set of patients with a genetically confirmed diagnosis and summarize their clinical and radiological characteristics. A total of 201 patients (65%) were genetically diagnosed, while 108 patients (35%) remained undiagnosed. The most frequent diseases were leukoencephalopathies related to NOTCH3 (25%), NOTCH2NLC (19%), ABCD1 (9%), CSF1R (7%) and HTRA1 (5%). Based on a previously proposed pathological classification, the gLEs in our cohort were divided into leukovasculopathies (35%), leuko-axonopathies (31%), myelin disorders (21%), microgliopathies (7%) and astrocytopathies (6%). Patients with NOTCH3 mutations accounted for 70% of the leukovasculopathies, followed by HTRA1 (13%) and COL4A1/2 (9%). The leuko-axonopathies contained the richest variety of associated genes, of which NOTCH2NLC comprised 62%. Among myelin disorders, demyelinating leukoencephalopathies (61%)-mainly adrenoleukodystrophy and Krabbe disease-accounted for the majority, while hypomyelinating leukoencephalopathies (2%) were rare. CSF1R was the only mutated gene detected in microgliopathy patients. Leukoencephalopathy with vanishing white matter disease due to mutations in EIF2B2-5 accounted for half of the astrocytopathies. We characterized the genetic and phenotypic spectra of adult gLEs in a large Chinese cohort. The most frequently mutated genes were NOTCH3, NOTCH2NLC, ABCD1, CSF1R and HTRA1.
Assuntos
Leucoencefalopatias , Criança , Humanos , Adulto , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Mutação/genética , Bainha de Mielina/patologia , Análise de Sequência de DNA , Receptor Notch3/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Proteína do X Frágil da Deficiência IntelectualRESUMO
Aim: To explore whether immune checkpoint inhibitors (ICIs) increase the incidence of radiation-induced brain injury in lung cancer patients with brain metastases. Methods: According to whether they received ICIs within 6 months before and after cranial radiotherapy (CRT), all patients were divided into two groups: ICIs + CRT group and CRT + non-ICIs group. Results: The incidence of radiation necrosis (RN) in the CRT + ICIs group was 14.3%, while that in the CRT + non-ICIs group was 5.8% (p = 0.090). If ICIs were used within 3 months of CRT, there was statistical significance. A maximum diameter of brain metastasis >3.3 cm and cumulative radiation dose of metastatic lesions >75.7 Gy were risk factors for RN. Conclusion: ICIs could increase the risk of RN, especially when used within 3 months of CRT.
Assuntos
Lesões Encefálicas , Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Estudos Retrospectivos , Neoplasias Pulmonares/patologia , Neoplasias Encefálicas/secundário , Imunoterapia/efeitos adversosRESUMO
BACKGROUND: The Fazekas scale is one of the most commonly used visual grading systems for white matter hyperintensity (WMH) for brain disorders like dementia from T2-fluid attenuated inversion recovery magnetic resonance (MR) images (T2-FLAIRs). However, the visual grading of the Fazekas scale suffers from low-intra and inter-rater reliability and high labor-intensive work. Therefore, we developed a fully automated visual grading system using quantifiable measurements. METHODS: Our approach involves four stages: (1) the deep learning-based segmentation of ventricles and WMH lesions, (2) the categorization into periventricular white matter hyperintensity (PWMH) and deep white matter hyperintensity (DWMH), (3) the WMH diameter measurement, and (4) automated scoring, following the quantifiable method modified for Fazekas grading. We compared the performances of our method and that of the modified Fazekas scale graded by three neuroradiologists for 404 subjects with T2-FLAIR utilized from a clinical site in Korea. RESULTS: The Krippendorff's alpha across our method and raters (A) versus those only between the radiologists (R) were comparable, showing substantial (0.694 vs. 0.732; 0.658 vs. 0.671) and moderate (0.579 vs. 0.586) level of agreements for the modified Fazekas, the DWMH, and the PWMH scales, respectively. Also, the average of areas under the receiver operating characteristic curve between the radiologists (0.80 ± 0.09) and the radiologists against our approach (0.80 ± 0.03) was comparable. CONCLUSIONS: Our fully automated visual grading system for WMH demonstrated comparable performance to the radiologists, which we believe has the potential to assist the radiologist in clinical findings with unbiased and consistent scoring.
Assuntos
Encefalopatias , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encefalopatias/patologiaRESUMO
Diabetes mellitus (DM) is a major risk factor for stroke and exacerbates white-matter damage in focal cerebral ischemia. Our previous study showed that the sigma-1 receptor agonist PRE084 ameliorates bilateral common-carotid-artery occlusion-induced brain damage in mice. However, whether this protective effect can extend to white matter remains unclear. In this study, C57BL/6 mice were treated with high-fat diets (HFDs) combined with streptozotocin (STZ) injection to mimic type 2 diabetes mellitus (T2DM). Focal cerebral ischemia in T2DM mice was established via injection of the vasoconstrictor peptide endothelin-1 (ET-1) into the hippocampus. Three different treatment plans were used in this study. In one plan, 1 mg/kg of PRE084 (intraperitoneally) was administered for 7 d before ET-1 injection; the mice were sacrificed 24 h after ET-1 injection. In another plan, PRE084 treatment was initiated 24 h after ET-1 injection and lasted for 7 d. In the third plan, PRE084 treatment was initiated 24 h after ET-1 injection and lasted for 21 d. The Y-maze, novel object recognition, and passive avoidance tests were used to assess neurobehavioral outcomes. We found no cognitive dysfunction or white-matter damage 24 h after ET-1 injection. However, 7 and 21 d after ET-1 injection, the mice showed significant cognitive impairment and white-matter damage. Only PRE084 treatment for 21 d could improve this white-matter injury; increase axon and myelin density; decrease demyelination; and increase the expressions of myelin regulator 2'-3'-cyclic nucleotide 3'-phosphodiesterase (CNpase) and myelin oligodendrocyte protein (MOG) (which was expressed by mature oligodendrocytes), the number of nerve/glial-antigen 2 (NG2)-positive cells, and the expression of platelet-derived growth factor receptor-alpha (PDGFRα), all of which were expressed by oligodendrocyte progenitor cells in mice with diabetes and focal cerebral ischemia. These results indicate that maybe there was more severe white-matter damage in the focal cerebral ischemia of the diabetic mice than in the mice with normal blood glucose levels. Long-term sigma-1 receptor activation may promote oligodendrogenesis and white-matter functional recovery in patients with stroke and with diabetes.
Assuntos
Isquemia Encefálica , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Acidente Vascular Cerebral , Substância Branca , Camundongos , Animais , Substância Branca/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral , Modelos Animais de Doenças , Receptor Sigma-1RESUMO
Oligodendrocytes are vulnerable to genetic and environmental insults and its injury leads to demyelinating diseases. The roles of ErbB receptors in maintaining the CNS myelin integrity are largely unknown. Here, we overactivate ErbB receptors that mediate signaling of either neuregulin (NRG) or epidermal growth factor (EGF) family growth factors and found their synergistic activation caused deleterious outcomes in white matter. Sustained ErbB activation induced by the tetracycline-dependent mouse tool Plp-tTA resulted in demyelination, axonal degeneration, oligodendrocyte precursor cell (OPC) proliferation, astrogliosis, and microgliosis in white matter. Moreover, there was hypermyelination before these inflammatory pathologic events. In contrast, sustained ErbB activation induced by another tetracycline-dependent mouse tool Sox10+/rtTA caused hypomyelination in the corpus callosum and optic nerve, which appeared to be a developmental deficit and did not associate with OPC regeneration, astrogliosis, or microgliosis. By tracing the differentiation states of cells expressing tetracycline-controlled transcriptional activator (tTA)/reverse tTA (rtTA)-dependent transgene or pulse-labeled reporter proteins in vitro and in vivo, we found that Plp-tTA targeted mainly mature oligodendrocytes (MOs), whereas Sox10+/rtTA targeted OPCs and newly-formed oligodendrocytes (NFOs). The distinct phenotypes of mice with ErbB overactivation induced by Plp-tTA and Sox10+/rtTA consolidated their nonoverlapping targeting preferences in the oligodendrocyte lineage, and enabled us to demonstrate that ErbB overactivation in MOs induced necroptosis that caused inflammatory demyelination, whereas in OPCs induced apoptosis that caused noninflammatory hypomyelination. Early interference with aberrant ErbB activation ceased oligodendrocyte deaths and restored myelin development in both mice. This study suggests that aberrant ErbB activation is an upstream pathogenetic mechanism of demyelinating diseases, providing a potential therapeutic target.SIGNIFICANCE STATEMENT Primary oligodendropathy is one of the etiologic mechanisms for multiple sclerosis, and oligodendrocyte necroptosis is a pathologic hallmark in the disease. Moreover, the demyelinating disease is now a broad concept that embraces schizophrenia, in which white matter lesions are an emerging feature. ErbB overactivation has been implicated in schizophrenia by genetic analysis and postmortem studies. This study suggests the etiologic implications of ErbB overactivation in myelin pathogenesis and elucidates the pathogenetic mechanisms.
Assuntos
Doenças Desmielinizantes/patologia , Receptores ErbB/metabolismo , Neurogênese/fisiologia , Células Precursoras de Oligodendrócitos/patologia , Oligodendroglia/patologia , Animais , Apoptose/fisiologia , Doenças Desmielinizantes/metabolismo , Feminino , Masculino , Camundongos , Necroptose/fisiologia , Oligodendroglia/metabolismo , Substância Branca/patologiaRESUMO
BACKGROUND: Schizophrenia is a psychiatric disorder including multiple clinical symptoms such as severe psychosis and cognitive dysfunction. DHF-7 is a novel dihydroflavanone derivative that was designed and synthesized to treat schizophrenia. This study aimed to investigate the effects and mechanisms of DHF-7 in a mouse model of schizophrenia induced by a combination of cuprizone and MK-801. METHODS: After intragastric administration of DHF-7 for 7 weeks, open field, Y-maze, and novel object recognition tests were performed to detect behavioral changes in the mouse model. White matter lesions and myelin loss were determined using transmission electron microscopy and oil red O staining. Western blotting and immunohistochemistry were used to detect the expression of the related proteins. RESULTS: The results showed that DHF-7 treatment significantly improved cognitive impairment and positive symptoms in the model mice. Moreover, DHF-7 alleviated white matter lesions and demyelination and promoted the differentiation and maturation of oligodendrocytes for remyelination in the corpus callosum of model mice. The mechanistic study showed that DHF-7 increased the expression of brain-derived neurotrophic factor and phosphorylated Fyn, thus activating the tyrosine kinase receptor B (Trk B)/Fyn/N-methyl-D-aspartate receptor subunit 2 B (NMDAR2B) and Raf/mitogen-activated protein kinase (MEK)/ extracellular signal-related kinase (ERK) signaling pathways. CONCLUSIONS: Our results provide an experimental basis for the development of DHF-7 as a novel therapeutic agent for schizophrenia.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Proteínas Proto-Oncogênicas c-fyn , Esquizofrenia , Substância Branca , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cuprizona/toxicidade , Modelos Animais de Doenças , Maleato de Dizocilpina/toxicidade , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Substância Branca/metabolismoRESUMO
BACKGROUND: Iron rims (IRs) surrounding white matter lesions (WMLs) are suggested to predict a more severe disease course. Only small longitudinal cohorts of patients with and without iron rim lesions (IRLs) have been reported so far. OBJECTIVE: To assess whether the presence and number of IRLs in patients with clinically isolated syndrome (CIS) and multiple sclerosis (MS) are associated with long-term disability or progressive disease. METHODS: Ninety-one CIS/MS patients were recruited between 2008 and 2013 and scanned with 7 T magnetic resonance imaging (MRI). Expanded Disability Status Scale (EDSS) was used to calculate Age-related Multiple Sclerosis Severity Score (ARMSS) at the time of scan and at the latest clinical follow-up after 9 years. WMLs were assessed for the presence of IRL using Susceptibility weighted imaging (SWI)-filtered phase images. RESULTS: In all, 132 IRLs were detected in 42 patients (46%); 9% of WMLs had IRs; 54% of the cohort had no rims, 30% had 1-3 rims and 16% had ⩾4. Patients with IRL had a higher EDSS and ARMSS. Presence of IRL was also a predictor of long-term disability, especially in patients with ⩾4 IRLs. IRLs have a greater impact on disability compared to the WML number and volume. CONCLUSION: The presence and number of perilesional IR on MRI hold prognostic value for long-term clinical disability in MS.
Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Humanos , Criança , Esclerose Múltipla/diagnóstico por imagem , Ferro , Estudos Longitudinais , Doenças Desmielinizantes/diagnóstico por imagem , Progressão da DoençaRESUMO
Postoperative cognitive dysfunction (POCD) is a common complication of the central nervous system after surgery, especially in elderly patients. Many factors can influence POCD, one of which is white matter lesion. Nowadays, stellate ganglion block (SGB) is considered as an effective intervention for postoperative cognitive dysfunction and SIRT1 may play a role in that, but the exact mechanism remains unclear. Therefore, the underlying mechanisms that SGB improves postoperative cognitive dysfunction through SIRT1 in aged rats and its association with white matter lesion are yet to be elucidated. The role of SIRT1 in the process that stellate ganglion block improves the cognitive impairment, and its association with white matter lesion was investigated using splenectomy-induced POCD model. To investigate this result further, we performed transection of the cervical sympathetic trunk on the basis of POCD model, and the role of SIRT1 was then verified again by intraperitoneal injection of EX527 (5 mg/kg) five min before surgery. Data show that SGB treatment has neuroprotective effects in POCD rats. SGB treatment can ameliorate cognitive impairment, neuroinflammation and neuronal apoptosis in white matter. Moreover, SGB treatment enhanced the expression of SIRT1 in the hippocampus and white matter, decreased NF-κB activity in the hippocampus and white matter. It also increased the levels of inflammatory factor in serum and white matter, primarily at the level of anti-inflammatory factor. These findings indicated that SIRT1-mediate white matter repair could be a new therapeutic target for neurodegenerative illnesses.
Assuntos
Disfunção Cognitiva , Complicações Cognitivas Pós-Operatórias , Substância Branca , Ratos , Animais , Complicações Cognitivas Pós-Operatórias/tratamento farmacológico , Sirtuína 1/metabolismo , Substância Branca/metabolismo , Gânglio Estrelado/metabolismo , Hipocampo/metabolismo , Disfunção Cognitiva/metabolismoRESUMO
Spinal cord involvement is a hallmark feature of multiple sclerosis, neuromyelitis optica with AQP4 antibodies and MOG-antibody disease. In this cross-sectional study we use quantitative spinal cord MRI to better understand these conditions, differentiate them and associate with relevant clinical outcomes. Eighty participants (20 in each disease group and 20 matched healthy volunteers) underwent spinal cord MRI (cervical cord: 3D T1, 3D T2, diffusion tensor imaging and magnetization transfer ratio; thoracic cord: 3D T2), together with disability, pain and fatigue scoring. All participants had documented spinal cord involvement and were at least 6 months post an acute event. MRI scans were analysed using publicly available software. Those with AQP4-antibody disease showed a significant reduction in cervical cord cross-sectional area (P = 0.038), thoracic cord cross-sectional area (P = 0.043), cervical cord grey matter (P = 0.011), magnetization transfer ratio (P ≤ 0.001), fractional anisotropy (P = 0.004) and increased mean diffusivity (P = 0.008). Those with multiple sclerosis showed significantly increased mean diffusivity (P = 0.001) and reduced fractional anisotropy (P = 0.013), grey matter volume (P = 0.002) and magnetization transfer ratio (P = 0.011). In AQP4-antibody disease the damage was localized to areas of the cord involved in the acute attack. In multiple sclerosis this relationship with lesions was absent. MOG-antibody disease did not show significant differences to healthy volunteers in any modality. However, when considering only areas involved at the time of the acute attack, a reduction in grey matter volume was found (P = 0.023). This suggests a predominant central grey matter component to MOG-antibody myelitis, which we hypothesize could be partially responsible for the significant residual sphincter dysfunction. Those with relapsing MOG-antibody disease showed a reduction in cord cross-sectional area compared to those with monophasic disease, even when relapses occurred elsewhere (P = 0.012). This suggests that relapsing MOG-antibody disease is a more severe phenotype. We then applied a principal component analysis, followed by an orthogonal partial least squares analysis. MOG-antibody disease was discriminated from both AQP4-antibody disease and multiple sclerosis with moderate predictive values. Finally, we assessed the clinical relevance of these metrics using a multiple regression model. Cervical cord cross-sectional area associated with disability scores (B = -0.07, P = 0.0440, R2 = 0.20) and cervical cord spinothalamic tract fractional anisotropy associated with pain scores (B = -19.57, P = 0.016, R2 = 0.55). No spinal cord metric captured fatigue. This work contributes to our understanding of myelitis in these conditions and highlights the clinical relevance of quantitative spinal cord MRI.
Assuntos
Esclerose Múltipla/patologia , Neuromielite Óptica/patologia , Medula Espinal/patologia , Adulto , Autoanticorpos/imunologia , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Glicoproteína Mielina-Oligodendrócito/imunologia , Neuromielite Óptica/diagnóstico por imagem , Medula Espinal/diagnóstico por imagemRESUMO
White matter lesions have been implicated in the setting of stroke, dementia, intracerebral haemorrhage, several other cerebrovascular conditions, migraine, various neuroimmunological diseases like multiple sclerosis, disorders of metabolism, mitochondrial diseases and others. While much is understood vis a vis neuroimmunological conditions, our knowledge of the pathophysiology of these lesions, and their role in, and implications to, management of cerebrovascular diseases or stroke, especially in the elderly, are limited. Several clinical assessment tools are available for delineating white matter lesions in clinical practice. However, their incorporation into clinical decision-making and specifically prognosis and management of patients is suboptimal for use in standards of care. This article sought to provide an overview of the current knowledge and recent advances on pathophysiology, as well as clinical and radiological assessment, of white matter lesions with a focus on its development, progression and clinical implications in cerebrovascular diseases. Key indications for clinical practice and recommendations on future areas of research are also discussed. Finally, a conceptual proposal on putative mechanisms underlying pathogenesis of white matter lesions in cerebrovascular disease has been presented. Understanding of pathophysiology of white matter lesions and how they mediate outcomes is important to develop therapeutic strategies.
Assuntos
Transtornos Cerebrovasculares , Acidente Vascular Cerebral , Substância Branca , Idoso , Hemorragia Cerebral , Transtornos Cerebrovasculares/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagemRESUMO
BACKGROUND: Subcortical ischemic vascular dementia, one of the major subtypes of vascular dementia, is characterized by lacunar infarcts and white matter lesions caused by chronic cerebral hypoperfusion. In this study, we used a mouse model of bilateral common carotid artery stenosis (BCAS) to investigate the role of B-cell translocation gene 2 (BTG2), an antiproliferation gene, in the white matter glial response to chronic cerebral hypoperfusion. METHODS: Btg2-/- mice and littermate wild-type control mice underwent BCAS or sham operation. Behavior phenotypes were assessed by open-field test and Morris water maze test. Brain tissues were analyzed for the degree of white matter lesions and glial changes. To further confirm the effects of Btg2 deletion on proliferation of glial cells in vitro, BrdU incorporation was investigated in mixed glial cells derived from wild-type and Btg2-/- mice. RESULTS: Relative to wild-type mice with or without BCAS, BCAS-treated Btg2-/- mice exhibited elevated spontaneous locomotor activity and poorer spatial learning ability. Although the severities of white matter lesions did not significantly differ between wild-type and Btg2-/- mice after BCAS, the immunoreactivities of GFAP, a marker of astrocytes, and Mac2, a marker of activated microglia and macrophages, in the white matter of the optic tract were higher in BCAS-treated Btg2-/- mice than in BCAS-treated wild-type mice. The expression level of Gfap was also significantly elevated in BCAS-treated Btg2-/- mice. In vitro analysis showed that BrdU incorporation in mixed glial cells in response to inflammatory stimulation associated with cerebral hypoperfusion was higher in Btg2-/- mice than in wild-type mice. CONCLUSION: BTG2 negatively regulates glial cell proliferation in response to cerebral hypoperfusion, resulting in behavioral changes.
Assuntos
Circulação Cerebrovascular/genética , Deleção de Genes , Proteínas Imediatamente Precoces/deficiência , Proteínas Imediatamente Precoces/genética , Neuroglia/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Substância Branca/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/patologia , Substância Branca/patologiaRESUMO
Cerebral white matter lesions (WML) encompass axonal loss and demyelination and are assumed to be associated with small vessel disease (SVD)-related ischaemia. However, our previous study in the parietal lobe white matter revealed that WML in Alzheimer's disease (AD) are linked with degenerative axonal loss secondary to the deposition of cortical AD pathology. Furthermore, neuroimaging data suggest that pathomechanisms for the development of WML differ between anterior and posterior lobes with AD-associated degenerative mechanism driving posterior white matter disruption, and both AD-associated degenerative and vascular mechanisms contributed to anterior matter disruption. In this pilot study, we used human post-mortem brain tissue to investigate the composition and aetiology of frontal WML from AD and non-demented controls to determine if frontal WML are SVD-associated and to reveal any regional differences in the pathogenesis of WML. Frontal WML tissue sections from 40 human post-mortem brains (AD, n = 19; controls, n = 21) were quantitatively assessed for demyelination, axonal loss, cortical hyperphosphorylated tau (HPτ) and amyloid-beta (Aß) burden, and arteriolosclerosis as a measure of SVD. Biochemical assessment included Wallerian degeneration-associated protease calpain and the myelin-associated glycoprotein to proteolipid protein ratio as a measure of ante-mortem ischaemia. Arteriolosclerosis severity was found to be associated with and a significant predictor of frontal WML severity in both AD and non-demented controls. Interesting, frontal axonal loss was also associated with HPτ and calpain levels were associated with increasing Aß burden in the AD group, suggestive of an additional degenerative influence. To conclude, this pilot data suggest that frontal WML in AD may result from both increased arteriolosclerosis and AD-associated degenerative changes. These preliminary findings in combination with previously published data tentatively indicate regional differences in the aetiology of WML in AD, which should be considered in the clinical diagnosis of dementia subtypes: posterior WML maybe associated with degenerative mechanisms secondary to AD pathology, while anterior WML could be associated with both SVD-associated and degenerative mechanisms.
Assuntos
Doença de Alzheimer/patologia , Doenças de Pequenos Vasos Cerebrais/patologia , Lobo Frontal/patologia , Substância Branca/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Arteriosclerose Intracraniana/patologia , Masculino , Projetos PilotoRESUMO
Incomplete relapse recovery contributes to disability accrual and earlier onset of secondary progressive multiple sclerosis. We sought to investigate the effect of age on relapse recovery. We identified patients with multiple sclerosis from two longitudinal prospective studies, with an Expanded Disability Status Scale (EDSS) score within 30 days after onset of an attack, and follow-up EDSS 6 months after attack. Adult patients with multiple sclerosis (n = 632) were identified from the Comprehensive Longitudinal Investigations in Multiple Sclerosis at Brigham study (CLIMB), and paediatric patients (n = 132) from the US Network of Paediatric Multiple Sclerosis Centers (NPMSC) registry. Change in EDSS was defined as the difference in EDSS between attack and follow-up. Change in EDSS at follow-up compared to baseline was significantly lower in children compared to adults (P = 0.001), as were several functional system scores. Stratification by decade at onset for change in EDSS versus age found for every 10 years of age, EDSS recovery is reduced by 0.15 points (P < 0.0001). A larger proportion of children versus adults demonstrated improvement in EDSS following an attack (P = 0.006). For every 10 years of age, odds of EDSS not improving increase by 1.33 times (P < 0.0001). Younger age is associated with improved recovery from relapses. Age-related mechanisms may provide novel therapeutic targets for disability accrual in multiple sclerosis.
Assuntos
Pessoas com Deficiência , Esclerose Múltipla Crônica Progressiva/diagnóstico , Esclerose Múltipla Crônica Progressiva/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Adolescente , Adulto , Criança , Estudos de Coortes , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Recidiva , Adulto JovemRESUMO
Dementia and hearing loss share radiologic and biologic findings that might explain their coexistence, especially in the elderly population. Brain atrophy has been observed in both conditions, as well as the presence of areas of gliosis. The brain atrophy is usually focal; it is located in the temporal lobe in patients with hearing loss, while it involves different part of brain in patients with dementia. Radiological studies have shown white matter hyperintensities (WMHs) in both conditions. WMHs have been correlated with the inability to correctly understand words in elderly persons with normal auditory thresholds and, the identification of these lesion in brain magnetic resonance imaging studies has been linked with an increased risk of developing cognitive loss. In addition to WMHs, some anatomopathological studies identified the presence of brain gliosis in the elderly's brain. The cause-effect link between hearing loss and dementia is still unknown, despite they might share some common findings. The aim of this systematic review is to analyze radiologic and biomolecular findings that these two conditions might share, identify a common pathological basis, and discuss the effects of hearing aids on prevention and treatment of cognitive decline in elderly patients with hearing loss.
Assuntos
Disfunção Cognitiva , Demência , Perda Auditiva , Idoso , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Disfunção Cognitiva/patologia , Demência/diagnóstico por imagem , Demência/patologia , Perda Auditiva/diagnóstico por imagem , Perda Auditiva/patologia , Humanos , Imageamento por Ressonância MagnéticaRESUMO
Impaired myelination is a key feature in neonatal hypoxia/ischemia (HI), the most common perinatal/neonatal cause of death and permanent disabilities, which is triggered by the establishment of an inflammatory and hypoxic environment during the most critical period of myelin development. This process is dependent on oligodendrocyte precursor cells (OPCs) and their capability to differentiate into mature oligodendrocytes. In this study, we investigated the vulnerability of fetal and adult OPCs derived from neural stem cells (NSCs) to inflammatory and HI insults. The resulting OPCs/astrocytes cultures were exposed to cytokines to mimic inflammation, or to oxygen-glucose deprivation (OGD) to mimic an HI condition. The differentiation of both fetal and adult OPCs is completely abolished following exposure to inflammatory cytokines, while only fetal-derived OPCs degenerate when exposed to OGD. We then investigated possible mechanisms involved in OGD-mediated toxicity: (a) T3-mediated maturation induction; (b) glutamate excitotoxicity; (c) glucose metabolism. We found that while no substantial differences were observed in T3 intracellular content regulation and glutamate-mediated toxicity, glucose deprivation lead to selective OPC cell death and impaired differentiation in fetal cultures only. These results indicate that the biological response of OPCs to inflammation and demyelination is different in fetal and adult cells, and that the glucose metabolism perturbation in fetal central nervous system (CNS) may significantly contribute to neonatal pathologies. An understanding of the underlying molecular mechanism will contribute greatly to differentiating myelination enhancing and neuroprotective therapies for neonatal and adult CNS white matter lesions.
Assuntos
Células-Tronco Adultas/metabolismo , Sobrevivência Celular/fisiologia , Glucose/metabolismo , Células-Tronco Neurais/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/patologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Hipóxia Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/farmacologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/patologia , Oxigênio/metabolismoRESUMO
The survival rate of patients with ischemic heart disease (IHD) is increasing. However, survivors experience increased risk for neurological complications. The mechanisms for this increased risk are unknown. We tested the hypothesis that patients with IHD have greater carotid and cerebrovascular stiffness, and these indexes predict white matter small vessel disease. Fifty participants (age, 40-78 yr), 30 with IHD with preserved ejection fraction and 20 healthy age-matched controls, were studied using ultrasound imaging of the common carotid artery (CCA) and middle cerebral artery (MCA), as well as magnetic resonance imaging (T1, T2-FLAIR), to measure white matter lesion volume (WMLv). Carotid ß-stiffness provided the primary measure of peripheral vascular stiffness. Carotid-cerebral pulse wave transit time (ccPWTT) provided a marker of cerebrovascular stiffness. Pulsatility index (PI) and resistive index (RI) of the MCA were calculated as measures of downstream cerebrovascular resistance. When compared with controls, patients with IHD exhibited greater ß-stiffness [8.5 ± 3.3 vs. 6.8 ± 2.2 arbitrary units (AU); P = 0.04], MCA PI (1.1 ± 0.20 vs. 0.98 ± 0.18 AU; P = 0.02), and MCA RI (0.66 ± 0.06 vs. 0.62 ± 0.07 AU; P = 0.04). There was no difference in WMLv between IHD and control groups (0.95 ± 1.2 vs. 0.86 ± 1.4 mL; P = 0.81). In pooled patient data, WMLv correlated with both ß-stiffness (R = 0.34, P = 0.02) and cerebrovascular ccPWTT (R = -0.43, P = 0.02); however, ß-stiffness and ccPWTT were not associated (P = 0.13). In multivariate analysis, WMLv remained independently associated with ccPWTT (P = 0.02) and carotid ß-stiffness (P = 0.04). Patients with IHD expressed greater ß-stiffness and cerebral microvascular resistance. However, IHD did not increase risk of WMLv or cerebrovascular stiffness. Nonetheless, pooled data indicate that both carotid and cerebrovascular stiffness are independently associated with WMLv.NEW & NOTEWORTHY This study found that patients with ischemic heart disease (IHD) with preserved ejection fraction and normal blood pressures exhibit greater carotid ß-stiffness, as well as middle cerebral artery pulsatility and resistive indexes, than controls. White matter lesion volume (WMLv) was not different between vascular pathology groups. Cerebrovascular pulse wave transit time (ccPWTT) and carotid ß-stiffness independently associate with WMLv in pooled participant data, suggesting that regardless of heart disease history, ccPWTT and ß-stiffness are associated with structural white matter damage.
Assuntos
Artéria Carótida Primitiva/diagnóstico por imagem , Artéria Cerebral Média/diagnóstico por imagem , Isquemia Miocárdica/diagnóstico por imagem , Rigidez Vascular/fisiologia , Substância Branca/diagnóstico por imagem , Adulto , Idoso , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/fisiologia , Artéria Carótida Primitiva/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Artéria Cerebral Média/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Volume Sistólico , Ultrassonografia , Substância Branca/fisiopatologiaRESUMO
Chronic active and slowly expanding lesions with smouldering inflammation are neuropathological correlates of progressive multiple sclerosis pathology. T1 hypointense volume and signal intensity on T1-weighted MRI reflect brain tissue damage that may develop within newly formed acute focal inflammatory lesions or in chronic pre-existing lesions without signs of acute inflammation. Using a recently developed method to identify slowly expanding/evolving lesions in vivo from longitudinal conventional T2- and T1-weighted brain MRI scans, we measured the relative amount of chronic lesion activity as measured by change in T1 volume and intensity within slowly expanding/evolving lesions and non-slowly expanding/evolving lesion areas of baseline pre-existing T2 lesions, and assessed the effect of ocrelizumab on this outcome in patients with primary progressive multiple sclerosis participating in the phase III, randomized, placebo-controlled, double-blind ORATORIO study (n = 732, NCT01194570). We also assessed the predictive value of T1-weighted measures of chronic lesion activity for clinical multiple sclerosis progression as reflected by a composite disability measure including the Expanded Disability Status Scale, Timed 25-Foot Walk and 9-Hole Peg Test. We observed in this clinical trial population that most of total brain non-enhancing T1 hypointense lesion volume accumulation was derived from chronic lesion activity within pre-existing T2 lesions rather than new T2 lesion formation. There was a larger decrease in mean normalized T1 signal intensity and greater relative accumulation of T1 hypointense volume in slowly expanding/evolving lesions compared with non-slowly expanding/evolving lesions. Chronic white matter lesion activity measured by longitudinal T1 hypointense lesion volume accumulation in slowly expanding/evolving lesions and in non-slowly expanding/evolving lesion areas of pre-existing lesions predicted subsequent composite disability progression with consistent trends on all components of the composite. In contrast, whole brain volume loss and acute lesion activity measured by longitudinal T1 hypointense lesion volume accumulation in new focal T2 lesions did not predict subsequent composite disability progression in this trial at the population level. Ocrelizumab reduced longitudinal measures of chronic lesion activity such as T1 hypointense lesion volume accumulation and mean normalized T1 signal intensity decrease both within regions of pre-existing T2 lesions identified as slowly expanding/evolving and in non-slowly expanding/evolving lesions. Using conventional brain MRI, T1-weighted intensity-based measures of chronic white matter lesion activity predict clinical progression in primary progressive multiple sclerosis and may qualify as a longitudinal in vivo neuroimaging correlate of smouldering demyelination and axonal loss in chronic active lesions due to CNS-resident inflammation and/or secondary neurodegeneration across the multiple sclerosis disease continuum.
Assuntos
Progressão da Doença , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Substância Branca/diagnóstico por imagem , Adulto , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Método Duplo-Cego , Feminino , Humanos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Estudos Longitudinais , Imageamento por Ressonância Magnética/tendências , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Substância Branca/efeitos dos fármacosRESUMO
BACKGROUND: The presence of white matter hyperintensities (WMHs) can impact on normal brain function by altering normal signal transmission and determining different symptoms. AIM: To evaluate the relationship between the presence of brain WMHs and the scores of speech perception test (SPT) in a sample of normal-hearing patients under 70 years of age. MATERIAL AND METHOD: Prospective study. One hundred eleven patients underwent audiological screening with pure tone audiometry (PTA), tympanometry, speech perception testing (SPT), and brain magnetic resonance imaging (MRI). T2 sequences were analyzed to identify the presence of WMH that, if identified, were scored using the Fazekas score. Statistical multiple regression analysis was performed to understand the relationship between PTA and SPT score; the Pearson's and Spearman's tests were used to evaluate the correlation between Fazekas scores and SPT. Chi-square test was used to analyze the difference between gender. RESULTS: The results of PTA were not predictive of the SPT score. A negative statistically significant correlation (Spearman's, p = 0.0001; Pearson's, p < 0.001) was identified between the Fazekas score and the results of SPT. No statistically significant differences were identified in the correlation of WMH and SPT between males and females. CONCLUSION: Multiple WMHs in the brain can worsen word recognition in patients with normal auditory threshold; this may be related to the impact that these lesions have on the memory ability. Spread of lesions into the brain might reduce the brain capacity to remember words, despite the sound is correctly perceived by the ear.
Assuntos
Percepção da Fala , Substância Branca , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estudos Prospectivos , Substância Branca/diagnóstico por imagemRESUMO
Moyamoya disease is a chronic cerebral vascular disease characterized by progressive occlusion of the cerebral arteries and resulting in the development of abnormal collateral circulation. We report a case of moyamoya disease in a 3-year-old Chinese girl with partly reversible white matter lesions. This case indicates that, in pediatric moyamoya disease, white matter lesions may be associated with cerebral ischemia, and they may be reversible after treatment.