Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 30(9): 1164-1183, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38844344

RESUMO

In recent years, numerous evidence has been accumulated about the extent of A-to-I editing in human RNAs and the key role ADAR1 plays in the cellular editing machinery. It has been shown that A-to-I editing occurrence and frequency are tissue-specific and essential for some tissue development, such as the liver. To study the effect of ADAR1 function in hepatocytes, we have created Huh7.5 ADAR1 KO cell lines. Upon IFN treatment, the Huh7.5 ADAR1 KO cells show rapid arrest of growth and translation, from which they do not recover. We analyzed translatome changes by using a method based on sequencing of separate polysome profile RNA fractions. We found significant changes in the transcriptome and translatome of the Huh7.5 ADAR1 KO cells. The most prominent changes include negatively affected transcription by RNA polymerase III and the deregulation of snoRNA and Y RNA levels. Furthermore, we observed that ADAR1 KO polysomes are enriched in mRNAs coding for proteins pivotal in a wide range of biological processes such as RNA localization and RNA processing, whereas the unbound fraction is enriched mainly in mRNAs coding for ribosomal proteins and translational factors. This indicates that ADAR1 plays a more relevant role in small RNA metabolism and ribosome biogenesis.


Assuntos
Adenosina Desaminase , Hepatócitos , Edição de RNA , Proteínas de Ligação a RNA , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Hepatócitos/metabolismo , Polirribossomos/metabolismo , Polirribossomos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biossíntese de Proteínas , Transcriptoma , Técnicas de Inativação de Genes , Linhagem Celular
2.
Mol Cell ; 71(2): 256-270.e10, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029004

RESUMO

The RNA-binding protein HuD promotes neurogenesis and favors recovery from peripheral axon injury. HuD interacts with many mRNAs, altering both stability and translation efficiency. We generated a nucleotide resolution map of the HuD RNA interactome in motor neuron-like cells, identifying HuD target sites in 1,304 mRNAs, almost exclusively in the 3' UTR. HuD binds many mRNAs encoding mTORC1-responsive ribosomal proteins and translation factors. Altered HuD expression correlates with the translation efficiency of these mRNAs and overall protein synthesis, in a mTORC1-independent fashion. The predominant HuD target is the abundant, small non-coding RNA Y3, amounting to 70% of the HuD interaction signal. Y3 functions as a molecular sponge for HuD, dynamically limiting its recruitment to polysomes and its activity as a translation and neuron differentiation enhancer. These findings uncover an alternative route to the mTORC1 pathway for translational control in motor neurons that is tunable by a small non-coding RNA.


Assuntos
Proteína Semelhante a ELAV 4/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Neurônios Motores/fisiologia , Pequeno RNA não Traduzido/genética , Regiões 3' não Traduzidas , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Animais , Linhagem Celular , Proteína Semelhante a ELAV 4/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Neurônios Motores/metabolismo , Neurogênese/genética , Polirribossomos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo
3.
J Biol Chem ; 299(10): 105225, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673341

RESUMO

Recent advancements in small RNA sequencing have unveiled a previously hidden world of regulatory small noncoding RNAs (sncRNAs) that extend beyond the well-studied small interfering RNAs, microRNAs, and piwi-interacting RNAs. This exploration, starting with tRNA-derived small RNAs, has led to the discovery of a diverse universe of sncRNAs derived from various longer structured RNAs such as rRNAs, small nucleolar RNAs, small nuclear RNAs, Y RNAs, and vault RNAs, with exciting uncharted functional possibilities. In this perspective, we discuss the emerging functional principles of sncRNAs beyond the well-known RNAi-like mechanisms, focusing on those that operate independent of linear sequence complementarity but rather function in an aptamer-like fashion. Aptamers use 3D structure for specific interactions with ligands and are modulated by RNA modifications and subcellular environments. Given that aptamer-like sncRNA functions are widespread and present in species lacking RNAi, they may represent an ancient functional principle that predates RNAi. We propose a rethinking of the origin of RNAi and its relationship with these aptamer-like functions in sncRNAs and how these complementary mechanisms shape biological processes. Lastly, the aptamer-like function of sncRNAs highlights the need for caution in using small RNA mimics in research and therapeutics, as their specificity is not restricted solely to linear sequence.

4.
J Neurochem ; 168(6): 961-976, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38339812

RESUMO

Non-coding RNAs (ncRNAs) are highly plastic RNA molecules that can sequester cellular proteins and other RNAs, serve as transporters of cellular cargo and provide spatiotemporal feedback to the genome. Mounting evidence indicates that ncRNAs are central to biology, and are critical for neuronal development, metabolism and intra- and intercellular communication in the brain. Their plasticity arises from state-dependent dynamic structure states that can be influenced by cell type and subcellular environment, which can subsequently enable the same ncRNA with discrete functions in different contexts. Here, we highlight different classes of brain-enriched ncRNAs, including microRNA, long non-coding RNA and other enigmatic ncRNAs, that are functionally important for both learning and memory and adaptive immunity, and describe how they may promote cross-talk between these two evolutionarily ancient biological systems.


Assuntos
Imunidade Adaptativa , Encéfalo , Aprendizagem , Memória , RNA não Traduzido , Humanos , Animais , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Encéfalo/metabolismo , Encéfalo/imunologia , Imunidade Adaptativa/fisiologia , Memória/fisiologia , Aprendizagem/fisiologia , Sistema Imunitário/metabolismo , Neuroquímica
5.
Biochem Biophys Res Commun ; 723: 150169, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38815487

RESUMO

Among the two Y RNAs in Deinococcus radiodurans, the functional properties of Yrn2 are still not known. Yrn2 although consists of a long stem-loop for Rsr binding, differs from Yrn1 in the effector binding site. An initial study on Yrn2 delineated it to be a UV-induced noncoding RNA. Apart from that Yrn2 has scarcely been investigated. In the current study, we identified Yrn2 as an γ-radiation induced Y RNA, which is also induced upon H2O2 and mitomycin treatment. Ectopically expressed Yrn2 appeared to be nontoxic to the cell growth. An overabundance of Yrn2 was found to ameliorate cell survival under oxidative stress through the detoxification of intracellular reactive oxygen species with a subsequent decrease in total protein carbonylation. A significant accumulation of intracellular Mn(II) with unaltered Fe(II) and Zn(II) with detected while Yrn2 is overabundant in the cells. This study identified the role of a novel Yrn2 under oxidative stress in D. radiodurans.


Assuntos
Deinococcus , Peróxido de Hidrogênio , Estresse Oxidativo , Deinococcus/metabolismo , Deinococcus/genética , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , RNA Bacteriano/metabolismo , RNA Bacteriano/genética , Espécies Reativas de Oxigênio/metabolismo , RNA não Traduzido/metabolismo , RNA não Traduzido/genética , Raios gama
6.
Chembiochem ; 25(5): e202300784, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38116890

RESUMO

Recently, the post-transcriptional modification of RNA with N-glycans was reported, changing the paradigm that RNAs are not commonly N-glycosylated. Moreover, glycan modifications of RNA are investigated for therapeutic targeting purposes. But the glyco-RNA field is in its infancy with many challenges to overcome. One question is how to accurately characterize glycosylated RNA constructs. Thus, we generated glycosylated forms of Y5 RNA mimics, a short non-coding RNA. The simple glycans lactose and sialyllactose were attached to the RNA backbone using azide-alkyne cycloadditions. Using nuclease digestion followed by LC-MS, we confirmed the presence of the glycosylated nucleosides, and characterized the chemical linkage. Next, we probed if glycosylation would affect the cellular response to Y5 RNA. We treated human foreskin fibroblasts in culture with the generated compounds. Key transcripts in the innate immune response were quantified by RT-qPCR. We found that under our experimental conditions, exposure of cells to the Y5 RNA did not trigger an interferon response, and glycosylation of this RNA did not have an impact. Thus, we have identified a successful approach to chemically characterize synthetic glyco-RNAs, which will be critical for further studies to elucidate how the presence of complex glycans on RNA affects the cellular response.


Assuntos
Alcinos , Azidas , Humanos , Glicosilação , Reação de Cicloadição , Nucleosídeos , RNA
7.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35901462

RESUMO

Extracellular vesicles (EVs) carrying various small non-coding RNAs (sncRNAs) play a vital roles in cell communication and diseases. Correct quantification of multiple sncRNA biotypes simultaneously in EVs is a challenge due to the short reads (<30 bp) could be mapped to multiple sncRNA types. To address this question, we developed an optimized reads assignment algorithm (ORAA) to dynamically map multi-mapping reads to the sncRNA type with a higher proportion. We integrated ORAA with reads processing steps into EVAtool Python-package (http://bioinfo.life.hust.edu.cn/EVAtool) to quantify sncRNAs, especially for sncRNA-seq from EV samples. EVAtool allows users to specify interested sncRNA types in advanced mode or use default seven sncRNAs (microRNA, small nucleolar RNA, PIWI-interacting RNAs, small nuclear RNA, ribosomal RNA, transfer RNA and Y RNA). To prove the utilities of EVAtool, we quantified the sncRNA expression profiles for 200 samples from cognitive decline and multiple sclerosis. We found that more than 20% of short reads on average were mapped to multiple sncRNA biotypes in multiple sclerosis. In cognitive decline, the proportion of Y RNA is significantly higher than other sncRNA types. EVAtool is a flexible and extensible tool that would benefit to mine potential biomarkers and functional molecules in EVs.


Assuntos
Vesículas Extracelulares , MicroRNAs , Esclerose Múltipla , Pequeno RNA não Traduzido , Biomarcadores , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , MicroRNAs/genética , RNA Ribossômico , RNA Interferente Pequeno , RNA Nuclear Pequeno , Pequeno RNA não Traduzido/genética , RNA de Transferência , Análise de Sequência de RNA
8.
Mol Cell Biochem ; 479(2): 297-311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37059894

RESUMO

Many advances in small RNA-seq technology and bioinformatics pipelines have been made recently, permitting the discovery of novel miRNAs in the embryonic day 15.5 (E15.5) mouse brain. We aimed to improve miRNA discovery in this tissue to expand our knowledge of the regulatory networks that underpin normal neurodevelopment, find new candidates for neurodevelopmental disorder aetiology, and deepen our understanding of non-coding RNA evolution. A high-quality small RNA-seq dataset of 458 M reads was generated. An unbiased miRNA discovery pipeline identified fifty putative novel miRNAs, six of which were selected for further validation. A combination of conservation analysis and target functional prediction was used to determine the authenticity of novel miRNA candidates. These findings demonstrate that miRNAs remain to be discovered, particularly if they have the features of other small RNA species.


Assuntos
MicroRNAs , Animais , Camundongos , MicroRNAs/genética , Biologia Computacional , RNA-Seq , Encéfalo
9.
Genes Dev ; 29(19): 1998-2003, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26443846

RESUMO

We demonstrate that the Y3/Y3** noncoding RNAs (ncRNAs) bind to the CPSF (cleavage and polyadenylation specificity factor) and that Y3** associates with the 3' untranslated region (UTR) of histone pre-mRNAs. The depletion of Y3** impairs the 3' end processing of histone pre-mRNAs as well as the formation and protein dynamics of histone locus bodies (HLBs), the site of histone mRNA synthesis and processing. HLB morphology is also disturbed by knockdown of the CPSF but not the U7-snRNP components. In conclusion, we propose that the Y3** ncRNA promotes the 3' end processing of histone pre-mRNAs by enhancing the recruitment of the CPSF to histone pre-mRNAs at HLBs.


Assuntos
Histonas/genética , Processamento de Terminações 3' de RNA/genética , Precursores de RNA/metabolismo , RNA Longo não Codificante/genética , RNA não Traduzido/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Células HEK293 , Humanos , Precursores de RNA/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido/genética
10.
RNA Biol ; 19(1): 468-480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35354369

RESUMO

Y RNAs (84-112 nt) are non-coding RNAs transcribed by RNA polymerase III and are characterized by a distinctive secondary structure. Human Y RNAs interact with the autoimmune proteins SSB and RO60 that together form a ribonucleoprotein (RNP) complex termed RoRNP and Y RNAs also perform regulatory roles in DNA and RNA replication and stability, which has major implications for diseases including cancer. During cellular stress and apoptosis, Y RNAs are cleaved into 3' and 5' end fragments termed Y RNA-derived small RNAs (ysRNAs). Although some ysRNA functions in stress, apoptosis and cancer have been reported, their fundamental biogenesis has not been described. Here we report that 3' end RNY5 cleavage is structure dependent. In high throughput mutagenesis experiments, cleavage occurred between the 2nd and 3rd nt above a double stranded stem comprising high GC content. We demonstrate that an internal loop above stem S3 is critical for producing 3' end ysRNAs (31 nt) with mutants resulting in longer or no ysRNAs. We show a UGGGU sequence motif at position 22 of RNY5 is critical for producing 5' end ysRNAs (22-25 nt). We show that intact RO60 is critical for ysRNA biogenesis. We conclude that ribonuclease L (RNASEL) contributes to Y RNA cleavage in mouse embryonic fibroblasts but is not the only endoribonuclease important in human cells.


Assuntos
RNA não Traduzido , Ribonucleoproteínas , Animais , Fibroblastos/metabolismo , Camundongos , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA , RNA não Traduzido/genética , Ribonucleoproteínas/metabolismo
11.
Crit Rev Biochem Mol Biol ; 54(2): 133-152, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31084369

RESUMO

Ro60, also known as SS-A or TROVE2, is an evolutionarily conserved RNA-binding protein that is found in most animal cells, approximately 5% of sequenced prokaryotic genomes and some archaea. Ro60 is present in cells as both a free protein and as a component of a ribonucleoprotein complex, where its best-known partners are members of a class of noncoding RNAs called Y RNAs. Structural and biochemical analyses have revealed that Ro60 is a ring-shaped protein that binds Y RNAs on its outer surface. In addition to Y RNAs, Ro60 binds misfolded and aberrant noncoding RNAs in some animal cell nuclei. Although the fate of these defective Ro60-bound noncoding RNAs in animal cells is not well-defined, a bacterial Ro60 ortholog functions with 3' to 5' exoribonucleases to assist structured RNA degradation. Studies of Y RNAs have revealed that these RNAs regulate the subcellular localization of Ro60, tether Ro60 to effector proteins and regulate the access of other RNAs to its central cavity. As both mammalian cells and bacteria lacking Ro60 are sensitized to ultraviolet irradiation, Ro60 function may be important during exposure to some environmental stressors. Here we summarize the current knowledge regarding the functions of Ro60 and Y RNAs in animal cells and bacteria. Because the Ro60 RNP is a clinically important target of autoantibodies in patients with rheumatic diseases such as Sjogren's syndrome, systemic lupus erythematosus, and neonatal lupus, we also discuss potential roles for Ro60 RNPs in the initiation and pathogenesis of systemic autoimmune rheumatic disease.


Assuntos
Autoimunidade , RNA não Traduzido/imunologia , Ribonucleoproteínas/imunologia , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Humanos , Lúpus Eritematoso Sistêmico/congênito , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Estabilidade de RNA , RNA não Traduzido/análise , RNA não Traduzido/metabolismo , Ribonucleoproteínas/análise , Ribonucleoproteínas/metabolismo
12.
Biochem Biophys Res Commun ; 557: 104-109, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33862452

RESUMO

Cel7 RNA is a member of the Caenorhabditis elegans stem-bulge RNAs (sbRNAs) that are classified into the Y RNA family based on their structural similarity. We identified a 15-nucleotide-shorter form of Cel7 RNA and designated it Cel7s RNA. Both Cel7 and Cel7s RNAs increased during the development of worms from L1 to adult. Cel7s RNA was notably more abundant in embryos than in L1 to L3 larvae. Cel7 RNA in embryo was less than those in L2 to adult. The ratio of cellular level of Cel7 RNA to that of Cel7s RNA was higher in L1 to L4, but reversed in embryos and adults. In rop-1 mutants, in which the gene for the C. elegans Ro60 homolog, ROP-1, was disrupted, Cel7s RNA decreased similar to CeY RNA, another C. elegans Y RNA homolog. Surprisingly, Cel7 RNA, existed stably in the absence of ROP-1, unlike Cel7s and CeY RNAs. Gel-shift assays demonstrated that Cel7 and Cel7s RNAs bound to ROP-1 in a similar manner, which was much weaker than CeY RNA. The 5'-terminal 15-nt of Cel7 RNA could be folded into a short stem-loop structure, probably contributing to the stability of Cel7 RNA in vivo and the distinct expression patterns of the 2 RNAs.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Processamento Pós-Transcricional do RNA , RNA/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Isoformas de Proteínas , RNA/química , RNA/genética , Ribonucleoproteínas/genética
13.
Eur J Clin Microbiol Infect Dis ; 40(1): 141-149, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32814996

RESUMO

Emerging evidence highlights the role of non-coding small RNAs in host-influenza interaction. We have identified a Y RNA-derived small RNA, miR-1975, which is upregulated upon influenza A virus infection in A549 cells. The aim of this study is to investigate whether miR-1975 serves as an indicator of clinical severity upon influenza infection. We investigate the abundance of miR-1975 in sera from clinical patients and its correlation with hypoxemia status. We quantified its amounts in sera from influenza virus-infected patients and healthy volunteers by means of stem-loop RT-PCR. Median values of miR-1975 were significantly higher in influenza virus-infected patients, especially in hypoxemic patients. miR-1975 levels at the acute stage of the disease were highly correlated with the fraction of inspired oxygen used by the patients and total ventilator days. Receiver operator characteristic curve analysis revealed that miR-1975 levels in combination with days of fever before presenting to hospital had significant predictive value for hypoxemia and respiratory failure for patients infected with influenza virus. Our results reveal that circulating miR-1975 has great potential to serve as a biomarker for predicting prognosis in patients infected with influenza virus.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/virologia , Adulto , Feminino , Humanos , Influenza Humana/sangue , Masculino , MicroRNAs/análise , Pessoa de Meia-Idade , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Adulto Jovem
14.
Curr Oncol Rep ; 23(6): 66, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33855607

RESUMO

PURPOSE OF REVIEW: Many prognostic and predictive biomarkers have been proposed for chronic lymphocytic leukaemia (CLL). Here, we aim to discuss the evidence showing a prognostic potential for extracellular vesicles (EV) and their associated microRNAs (miRNAs). RECENT FINDINGS: EV are produced by several cells in the body as a physiological event; however, there is evidence suggesting that an elevated EV concentration is present in the circulation of CLL patients. Moreover, some studies have associated EV concentration with advanced Rai stage and unmutated CLL while others have demonstrated its potential as an independent prognostic factor for TTFT and OS. Finally, some studies have shown that CLL EV shared some dysregulated microRNAs with CLL cells and plasma. On the other hand, it was found that CLL EV has a distinctive microRNA expression profile. Until now, EV-associated miR-155 is the most studied miRNA. Despite methodological diversity and limitations in study design, unanimity in CLL EV concentration behaviour and miRNA content has been found.


Assuntos
Vesículas Extracelulares/fisiologia , Leucemia Linfocítica Crônica de Células B/mortalidade , MicroRNAs/fisiologia , Biomarcadores Tumorais , Humanos , Leucemia Linfocítica Crônica de Células B/etiologia , Leucemia Linfocítica Crônica de Células B/genética , MicroRNAs/análise , Prognóstico , Receptores de Antígenos de Linfócitos B/fisiologia
15.
Adv Exp Med Biol ; 1229: 327-342, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32285422

RESUMO

In recent years, progress in the field of high-throughput sequencing technology and its application to a wide variety of biological specimens has greatly advanced the discovery and cataloging of a diverse set of non-coding RNAs (ncRNAs) that have been found to have unexpected biological functions. Y RNAs are an emerging class of highly conserved, small ncRNAs. There is a growing number of reports in the literature demonstrating that Y RNAs and their fragments are not just random degradation products but are themselves bioactive molecules. This review will outline what is currently known about Y RNA including biogenesis, structure and functional roles. In addition, we will provide an overview of studies reporting the presence and functions attributed to Y RNAs in the cardiovascular system.


Assuntos
Sistema Cardiovascular , Pequeno RNA não Traduzido , Humanos , Pequeno RNA não Traduzido/biossíntese , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/metabolismo
16.
J Cell Sci ; 130(7): 1239-1250, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28235841

RESUMO

Non-coding Y RNAs are essential for the initiation of chromosomal DNA replication in vertebrates, yet their association with chromatin during the cell cycle is not characterised. Here, we quantify human Y RNA levels in soluble and chromatin-associated intracellular fractions and investigate, topographically, their dynamic association with chromatin during the cell cycle. We find that, on average, about a million Y RNA molecules are present in the soluble fraction of a proliferating cell, and 5-10-fold less are in association with chromatin. These levels decrease substantially during quiescence. No significant differences are apparent between cancer and non-cancer cell lines. Y RNAs associate with euchromatin throughout the cell cycle. Their levels are 2-4-fold higher in S phase than in G1 phase or mitosis. Y RNAs are not detectable at active DNA replication foci, and re-associate with replicated euchromatin during mid and late S phase. The dynamics and sites of Y1 RNA association with chromatin are in concordance with those of the origin recognition complex (ORC). Our data therefore suggest a functional role of Y RNAs in a common pathway with ORC.


Assuntos
Replicação do DNA/genética , Eucromatina/metabolismo , Complexo de Reconhecimento de Origem/genética , RNA não Traduzido/genética , Linhagem Celular Tumoral , Proliferação de Células , Fase G1 , Humanos , Neoplasias/genética , Neoplasias/patologia , Fase S
17.
RNA ; 23(11): 1660-1671, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28808124

RESUMO

Mammalian cells respond to double-stranded RNA (dsRNA) by activating a translation-inhibiting endoribonuclease, RNase L. Consensus in the field indicates that RNase L arrests protein synthesis by degrading ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs). However, here we provide evidence for a different and far more efficient mechanism. By sequencing abundant RNA fragments generated by RNase L in human cells, we identify site-specific cleavage of two groups of noncoding RNAs: Y-RNAs, whose function is poorly understood, and cytosolic tRNAs, which are essential for translation. Quantitative analysis of human RNA cleavage versus nascent protein synthesis in lung carcinoma cells shows that RNase L stops global translation when tRNAs, as well as rRNAs and mRNAs, are still intact. Therefore, RNase L does not have to degrade the translation machinery to stop protein synthesis. Our data point to a rapid mechanism that transforms a subtle RNA cleavage into a cell-wide translation arrest.


Assuntos
Endorribonucleases/metabolismo , Biossíntese de Proteínas , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Sítios de Ligação/genética , Linhagem Celular , Sequência Consenso , Células HeLa , Humanos , Modelos Biológicos , Clivagem do RNA , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
18.
J Biomed Sci ; 26(1): 58, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31416454

RESUMO

BACKGROUND: Multiple interplays between viral and host factors are involved in influenza virus replication and pathogenesis. Several small RNAs have recently emerged as important regulators of host response to viral infections. The aim of this study was to characterize the functional role of hsa-miR-1975, a Y5 RNA-derived small RNA, in defending influenza virus and delineate the mechanisms. METHODS: We performed high throughput sequencing of small RNAs in influenza virus-infected cells to identify up- or down- regulated small RNA species. The expression of the most abundant RNA species (hsa-miR-1975) was validated by stem-loop reverse transcription-polymerase chain reaction (RT-PCR). Antiviral effects of hsa-miR-1975 were confirmed by Western Blot, RT-PCR and plaque assay. In vitro perturbation of hsa-miR-1975 combined with exosomes isolation was used to elucidate the role and mechanism of hsa-miR-1975 in the context of antiviral immunity. RESULTS: Small RNA sequencing revealed that hsa-miR-1975 was the most up-regulated small RNA in influenza virus-infected cells. The amount of intracellular hsa-miR-1975 increased in the late stage of the influenza virus replication cycle. The increased hsa-miR-1975 was at least partially derived from degradation of Y5RNA as a result of cellular apoptosis. Unexpectedly, hsa-miR-1975 mimics inhibited influenza virus replication while hsa-miR-1975 sponges enhanced the virus replication. Moreover, hsa-miR-1975 was secreted in exosomes and taken up by the neighboring cells to induce interferon expression. CONCLUSIONS: Our findings unravel a critical role of Y-class small RNA in host's defense against influenza virus infection and reveal its antiviral mechanism through exosome delivery. This may provide a new candidate for targeting influenza virus.


Assuntos
Exossomos/fisiologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/fisiologia , MicroRNAs/fisiologia , Replicação Viral , Células A549 , Animais , Cães , Humanos , Células Madin Darby de Rim Canino , MicroRNAs/genética
19.
RNA Biol ; 16(3): 330-339, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30666901

RESUMO

Non-coding Y RNAs and stem-bulge RNAs are homologous small RNAs in vertebrates and nematodes, respectively. They share a conserved function in the replication of chromosomal DNA in these two groups of organisms. However, functional homologues have not been found in insects, despite their common early evolutionary history. Here, we describe the identification and functional characterization of two sbRNAs in Drosophila melanogaster, termed Dm1 and Dm2. The genes coding for these two RNAs were identified by a computational search in the genome of D. melanogaster for conserved sequence motifs present in nematode sbRNAs. The predicted secondary structures of Dm1 and Dm2 partially resemble nematode sbRNAs and show stability in molecular dynamics simulations. Both RNAs are phylogenetically closer related to nematode sbRNAs than to vertebrate Y RNAs. Dm1, but not Dm2 sbRNA is abundantly expressed in D. melanogaster S2 cells and adult flies. Only Dm1, but not Dm2 sbRNA can functionally replace Y RNAs in a human cell-free DNA replication initiation system. Therefore, Dm1 is the first functional sbRNA described in insects, allowing future investigations into the physiological roles of sbRNAs in the genetically tractable model organism D. melanogaster.


Assuntos
Drosophila melanogaster/genética , RNA não Traduzido/genética , Animais , Drosophila melanogaster/classificação , Perfilação da Expressão Gênica , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , RNA não Traduzido/química , Transcriptoma
20.
RNA Biol ; 13(4): 367-72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26909464

RESUMO

In metazoan the 3'-end processing of histone mRNAs is a conserved process involving the concerted action of many protein factors and the non-coding U7 snRNA. Recently, we identified that the processing of histone pre-mRNAs is promoted by an additional ncRNA, the Y3-derived Y3** RNA. U7 modulates the association of the U7 snRNP whereas Y3** promotes recruitment of CPSF (cleavage and polyadenylation specific factor) proteins to nascent histone transcripts at histone locus bodies (HLBs) in mammals. This enhances the 3'-end cleavage of nascent histone pre-mRNAs and modulates HLB assembly. Here we discuss new insights in the role of ncRNAs in the spatiotemporal control of histone synthesis. We propose that ncRNAs scaffold the formation of functional protein-RNA complexes and their sequential deposition on nascent histone pre-mRNAs at HLBs. These findings add to the multiple roles of ncRNAs in controlling gene expression and may provide new avenues for targeting histone synthesis in cancer.


Assuntos
Histonas/metabolismo , RNA não Traduzido/fisiologia , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA