Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 72(2): 161-165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296558

RESUMO

YM-1, an allosteric modulator of heat-shock 70 kDa protein (Hsp70), inhibits cancer cell growth, but the mechanism is not yet fully understood. Here, we show that YM-1 induces the degradation of bromodomain containing 4 (BRD4), which mediates oncogene expression. Overall, our results indicate that YM-1 promotes the binding of HSP70 to BRD4, and this in turn promotes the ubiquitination of BRD4 by C-terminus of Hsc70-interacting protein (CHIP), an E3 ubiquitin ligase working in concert with Hsp70, leading to proteasomal degradation of BRD4. This YM-1-induced decrease of BRD4 would contribute at least in part to the inhibition of cancer cell growth.


Assuntos
Doxorrubicina/análogos & derivados , Proteínas de Choque Térmico , Proteínas Nucleares , Proteínas de Choque Térmico/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ligação Proteica
2.
Rinsho Ketsueki ; 65(7): 693-701, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-39098021

RESUMO

My colleagues and I previously found a subset of neutrophil-like Ly6Chi monocytes, named "regulatory monocytes", that expand in the bone marrow during the late phase of inflammation. Regulatory monocytes migrate to injured tissue where they promote tissue repair. Unlike classical Ly6Chi monocytes, regulatory monocytes arise from GMP through proNeu1, which was previously thought to be committed to becoming neutrophils. G-CSF not only stimulates neutrophil differentiation but also drives the expansion of regulatory monocytes in the absence of inflammatory stimuli. The human parallel to mouse regulatory monocytes was found in the peripheral blood CD14hiCD16lo monocyte fraction. These monocytes can be distinguished from classical CD14hiCD16lo monocytes by neutrophil marker CXCR1 expression. Like mouse regulatory monocytes, human CXCR1+ monocytes arise from neutrophil progenitors in response to G-CSF. CXCR1+CD14hiCD16lo monocytes suppressed the proliferation of syngeneic T cells in vitro, which suggests an immunosuppressive phenotype. Overall, these findings indicate that the process of differentiation of regulatory monocytes from progenitors of neutrophil lineage is maintained across humans and mice, and may aid in resolution of excess inflammation.


Assuntos
Diferenciação Celular , Monócitos , Neutrófilos , Monócitos/imunologia , Monócitos/citologia , Animais , Neutrófilos/imunologia , Humanos , Camundongos
3.
Ren Fail ; 41(1): 733-741, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31424299

RESUMO

Aim: Supplemental oxygen is often used to treat neonates with respiratory disorders. Human and animal studies have demonstrated that neonatal hyperoxia increases oxidative stress and induces damage and collagen deposition in kidney during the perinatal period. Cathelicidin LL-37 is one important group of human antimicrobial peptides which exhibits antioxidant activity and its overexpression resists hyperoxia-induced oxidative stress. This study was designed to evaluate the protective effects of cathelicidin in hyperoxia-induced kidney injury in newborn rats. Methods: Sprague-Dawley rat pups were reared in either room air (RA) or hyperoxia (85% O2) and were randomly treated with low-dose (4 mg/kg) and high-dose (8 mg/kg) cathelicidin in normal saline (NS) administered intraperitoneally on postnatal days 1-6. The following six groups were obtained: RA + NS, RA + low-dose cathelicidin, RA + high-dose cathelicidin, O2 + NS, O2 + low-dose cathelicidin, and O2 + high-dose cathelicidin. Kidneys were taken for Western blot and histological analyses on postnatal day 7. Results: The hyperoxia-reared rats exhibited significantly lower body weights and anti-inflammatory M2 macrophages, but the kidney injury scores, oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG)-positive cells, pro-inflammatory M1 macrophages, collagen deposition, and NF-κB expression were higher than did the RA-reared rats. Conclusions: Cathelicidin treatment attenuated kidney injury as evidenced by lower kidney injury scores, 8-OHdG-positive cells, collagen deposition, and reversion of hyperoxia-induced M1/M2 macrophage polarization. The role of Cathelicidin in ameliorates kidney injury of the hyperoxia newborn rats was accompanied by decreased NF-κB expression, which probably through the modulating NF-κB activity in the kidney.


Assuntos
Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Hiperóxia/complicações , Nefropatias/prevenção & controle , Oxigenoterapia/efeitos adversos , Oxigênio/efeitos adversos , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Injeções Intraperitoneais , Rim/efeitos dos fármacos , Rim/crescimento & desenvolvimento , Rim/patologia , Nefropatias/etiologia , Nefropatias/patologia , Ativação de Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/administração & dosagem , Oxigenoterapia/métodos , Gravidez , Ratos , Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Transdução de Sinais/efeitos dos fármacos , Catelicidinas
4.
Tumour Biol ; 37(3): 3197-204, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26432330

RESUMO

Cross-contamination during or early after establishment of a new cell line could result in the worldwide spread of a misidentified cell line. Therefore, newly established cell lines need to be authenticated by a reference standard method. This study was conducted to investigate the authenticity of a newly established epithelial cell line of human esophageal squamous cell carcinoma (ESCC) called YM-1 using short tandem repeat (STR) DNA profiling method. Primary human ESCC epithelial cells were cultured from the fresh tumor tissue of an adult female patient. Growth characteristics and epithelial originality of YM-1 cells were studied. Genomic DNA was isolated from YM-1 cells harvested at passage 22 and ESCC donor tumor sample on two different days to prevent probable DNA contamination. STR profiling was performed using AmpFℓSTR® Identifiler® Plus PCR Amplification Kit. To address whether YM-1 cells undergo genetic alteration as the passage number increases, STR profiling was performed again on harvested cells at passage 51. YM-1 cells grew as a monolayer with a population doubling time of 40.66 h. Epithelial originality of YM-1 cells was confirmed using ICC/IF staining of cytokeratins AE1/AE3. The STR profile of the ESCC donor tumor sample was the same with YM-1 cells at passage 22. However, STR profile of the donor tumor sample showed an off-ladder (OL) allele in their D7S820 locus. Also, re-profiling of YM-1 cells at passage 51 showed a loss of heterozygosity (LOH) at D18S51 locus. This suggests that long-term culture of cell lines may alter their DNA profile. Comparison of the DNA fingerprinting results in DSMZ, and ATCC STR profiling databases confirmed unique identity of YM-1 cell line. This study provides an easy, fast, and reliable procedure for authentication of newly established cell lines, which helps in preventing the spread of misidentified cells and improving the reproducibility and validity of experiments, consequently.


Assuntos
Carcinoma de Células Escamosas/genética , Impressões Digitais de DNA/métodos , DNA de Neoplasias/genética , Neoplasias Esofágicas/genética , Repetições de Microssatélites/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Impressões Digitais de DNA/normas , DNA de Neoplasias/normas , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Feminino , Humanos , Queratinas/metabolismo , Perda de Heterozigosidade , Pessoa de Meia-Idade , Padrões de Referência , Reprodutibilidade dos Testes , Fatores de Tempo , Células Tumorais Cultivadas
5.
Glia ; 63(7): 1166-84, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25691003

RESUMO

Interleukin-10 (IL-10) is a cytokine that plays a crucial role in regulating the inflammatory response and immune reactions. In the central nervous system (CNS), IL-10 is mainly produced by astrocytes and microglia and it is upregulated after various insults, such as experimental autoimmune encephalomyelitis, middle cerebral artery occlusion, excitotoxicity and traumatic brain injury. To better understand the effects of IL-10 in the normal and injured CNS, we generated transgenic mice (termed GFAP-IL-10Tg) that expressed the murine IL-10 gene under the transcriptional control of the glial fibrillary acidic protein (GFAP) promoter. Previous studies demonstrated marked changes in the microglial phenotype in these mice under basal conditions. The objective of the present study was to investigate the effects of local astrocyte-targeted IL-10 production on glial activation, neuronal degeneration and leukocyte recruitment after axotomy. GFAP-IL-10Tg mice had marked changes in the phenotype of activated microglial cells, as well as in the number of microglial clusters and in microglial cell density. These microglial changes are accompanied by a twofold increase in lymphocyte infiltration in GFAP-IL-10Tg mice and around twofold decrease in neuronal cell death at 21 dpi. Altogether, our findings suggested that astrocyte-targeted production of IL-10 impacted the microglial response and lymphocyte recruitment and culminated in a beneficial effect on neuronal survival.


Assuntos
Astrócitos/metabolismo , Morte Celular/fisiologia , Traumatismos do Nervo Facial/fisiopatologia , Interleucina-10/metabolismo , Microglia/fisiologia , Neurônios Motores/fisiologia , Animais , Astrócitos/patologia , Axotomia , Modelos Animais de Doenças , Nervo Facial/patologia , Nervo Facial/fisiopatologia , Traumatismos do Nervo Facial/patologia , Feminino , Proteína Glial Fibrilar Ácida , Interleucina-10/genética , Linfócitos/patologia , Linfócitos/fisiologia , Masculino , Camundongos Transgênicos , Neurônios Motores/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/metabolismo
6.
Anaerobe ; 36: 65-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26439644

RESUMO

Improvement in the butanol production selectivity or enhanced butanol:acetone ratio (B:A) is desirable in acetone-butanol-ethanol (ABE) fermentation by Clostridium strains. In this study, artificial electron carriers were added to the fermentation medium of a new isolate of Clostridium acetobutylicum YM1 in order to improve the butanol yield and B:A ratio. The results revealed that medium supplementation with electron carriers changed the metabolism flux of electron and carbon in ABE fermentation by YM1. A decrease in acetone production, which subsequently improved the B:A ratio, was observed. Further improvement in the butanol production and B:A ratios were obtained when the fermentation medium was supplemented with butyric acid. The maximum butanol production (18.20 ± 1.38 g/L) was gained when a combination of methyl red and butyric acid was added. Although the addition of benzyl viologen (0.1 mM) and butyric acid resulted in high a B:A ratio of 16:1 (800% increment compared with the conventional 2:1 ratio), the addition of benzyl viologen to the culture after 4 h resulted in the production of 18.05 g/L butanol. Manipulating the metabolic flux to butanol through the addition of electron carriers could become an alternative strategy to achieve higher butanol productivity and improve the B:A ratio.


Assuntos
Acetona/metabolismo , Butanóis/metabolismo , Clostridium acetobutylicum/metabolismo , Técnicas de Cultura Celular por Lotes , Benzil Viologênio/metabolismo , Ácido Butírico/metabolismo , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/crescimento & desenvolvimento , Clostridium acetobutylicum/isolamento & purificação , Meios de Cultura/química , Meios de Cultura/metabolismo , Elétrons , Fermentação , Microbiologia do Solo
7.
Sci Rep ; 14(1): 13383, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862610

RESUMO

At present, liquid storage is the most efficient method for pig semen preservation. This approach relies upon reducing sperm metabolism, allowing for the maintenance of cell lifespan. In this context, the study of proteins that could protect sperm during liquid storage is of high relevance. The 70 kDa Heat Shock Protein (HSP70) is an anti-apoptotic protein that has been reported to be relevant to sperm survival. Thus, we explored the role of HSP70 during prolonged storage of pig semen at 17 °C. Six semen pools were incubated with YM-1 (0, 0.05, 0.1 and 0.2 µM), an HSP70 inhibitor, and stored at 17 °C for 21 days. On days 0, 4, 10, 14 and 21, sperm quality and function were evaluated through flow cytometry and Computer-Assisted Sperm Analysis (CASA), and HSP70 activity and chromatin condensation were also determined. While inhibition of HSP70 increased progressive motility, Ca2+ and Reactive Oxygen Species (ROS) levels, and mitochondrial activity during the first 10 days of storage, it had a detrimental effect on sperm motility after 14 and 21 days. In spite of this, sperm viability was not altered. We can conclude that HSP70 contributes to the liquid storage of pig semen because it keeps mitochondrial activity low, which is needed for the maintenance of sperm function.


Assuntos
Proteínas de Choque Térmico HSP70 , Espécies Reativas de Oxigênio , Preservação do Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Animais , Masculino , Proteínas de Choque Térmico HSP70/metabolismo , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária , Suínos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Análise do Sêmen , Sobrevivência Celular/efeitos dos fármacos , Cálcio/metabolismo
8.
Sci Bull (Beijing) ; 69(7): 949-967, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395651

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) is a major hindrance to the success of cardiac reperfusion therapy. Although increased neutrophil infiltration is a hallmark of MIRI, the subtypes and alterations of neutrophils in this process remain unclear. Here, we performed single-cell sequencing of cardiac CD45+ cells isolated from the murine myocardium subjected to MIRI at six-time points. We identified diverse types of infiltrating immune cells and their dynamic changes during MIRI. Cardiac neutrophils showed the most immediate response and largest changes and featured with functionally heterogeneous subpopulations, including Ccl3hi Neu and Ym-1hi Neu, which were increased at 6 h and 1 d after reperfusion, respectively. Ym-1hi Neu selectively expressed genes with protective effects and was, therefore, identified as a novel specific type of cardiac cell in the injured heart. Further analysis indicated that neutrophils and their subtypes orchestrated subsequent immune responses in the cardiac tissues, especially instructing the response of macrophages. The abundance of Ym-1hi Neu was closely correlated with the therapeutic efficacy of MIRI when neutrophils were specifically targeted by anti-Lymphocyte antigen 6 complex locus G6D (Ly6G) or anti-Intercellular cell adhesion molecule-1 (ICAM-1) neutralizing antibodies. In addition, a neutrophil subtype with the same phenotype as Ym-1hi Neu was detected in clinical samples and correlated with prognosis. Ym-1 inhibition exacerbated myocardial injury, whereas Ym-1 supplementation significantly ameliorated injury in MIRI mice, which was attributed to the tilt of Ym-1 on the polarization of macrophages toward the repair phenotype in myocardial tissue. Overall, our findings reveal the anti-inflammatory phenotype of Ym-1hi Neu and highlight its critical role in myocardial protection during the early stages of MIRI.


Assuntos
Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Molécula 1 de Adesão Intercelular/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio , Neutrófilos
9.
Elife ; 122024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194250

RESUMO

Spontaneous protein crystallization is a rare event, yet protein crystals are frequently found in eosinophil-rich inflammation. In humans, Charcot-Leyden crystals (CLCs) are made from galectin-10 (Gal10) protein, an abundant protein in eosinophils. Although mice do not encode Gal10 in their genome, they do form pseudo-CLCs, made from the chitinase-like proteins Ym1 and/or Ym2, encoded by Chil3 and Chil4 and made by myeloid and epithelial cells respectively. Here, we investigated the biological effects of pseudo-CLCs since their function is currently unknown. We produced recombinant Ym1 crystals which were shown to have identical crystal packing and structure by X-ray crystallography as in vivo native crystals derived from murine lung. When administered to the airways of mice, crystalline but not soluble Ym1 stimulated innate and adaptive immunity and acted as a type 2 immune adjuvant for eosinophilic inflammation via triggering of dendritic cells (DCs). Murine Ym1 protein crystals found at sites of eosinophilic inflammation reinforce type 2 immunity and could serve as a surrogate model for studying the biology of human CLCs.


Assuntos
Imunidade Adaptativa , Quitinases , Animais , Humanos , Camundongos , Adjuvantes Imunológicos , Cristalização , Inflamação
10.
Protein Sci ; 32(4): e4620, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36883357

RESUMO

Ym1 (chitinase-like 3, Chil3) expressed in mice is a nonenzymatic chitinase-like protein, which shows 67% identity with mouse acidic chitinase (Chia). Similar to Chia, Ym1 is overexpressed in asthma and parasitic infections in mouse lungs. Due to the lack of chitin-degrading activity, the biomedical role of Ym1 under these pathophysiological conditions remains to be determined. In this study, we investigated what region and amino acid changes in Ym1 resulted in the loss of enzymatic activity. Replacing two amino acids at the catalytic motif to obtain a Chia-like sequence (N136D and Q140E; MT-Ym1) did not activate the protein. We conducted a comparative study of Ym1 and Chia. We found that three protein segments-(i) the catalytic motif residues, (ii) exons 6 and 7, and (iii) exon 10-are responsible for chitinase activity loss in Ym1. We show that replacing each of these three segments in Chia that are also involved in substrate recognition and binding by the Ym1 sequence can fully abolish the enzymatic activity. In addition, we show that there have been extensive gene duplication events at the Ym1 locus specific to the rodent lineages. Consistent with this result, Ym1 orthologs from the rodent genome were under positive selection when analyzed through the CODEML program. These data suggest that numerous amino acid substitutions in the regions involved in the chitin recognition, binding, and degradation ability of the ancestor Ym1 molecule lead to the irreversible inactivation of the protein.


Assuntos
Quitinases , Animais , Camundongos , Substituição de Aminoácidos , Evolução Biológica , Quitina/química , Quitinases/química
11.
Chemosphere ; 341: 140092, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678592

RESUMO

A novel bacterial strain, Bacillus sp. YM1, was isolated from compost for the efficient degradation of oily food waste under salt stress. The strain's lipase activity, oil degradation ability, and tolerance to salt stress were evaluated in a liquid medium. Additionally, the molecular mechanisms (including key genes and functional processes) underlying the strain's salt-resistant degradation of oil were investigated based on RNA-Seq technology. The results showed that after 24 h of microbial degradation, the degradation rate of triglycerides in soybean oil was 80.23% by Bacillus sp. YM1 at a 30 g L-1 NaCl concentration. The metabolizing mechanism of long-chain triglycerides (C50-C58) by the YM1 strain, especially the biodegradation rate of triglycerides (C18:3/C18:3/C18:3), could reach 98.65%. The most substantial activity of lipase was up to 325.77 U·L-1 at a salinity of 30 g L-1 NaCl. During salt-induced stress, triacylglycerol lipase was identified as the crucial enzyme involved in oil degradation in Bacillus sp. YM1, and its synthesis was regulated by the lip gene (M5E02_13495). Bacillus sp. YM1 underwent adaptation to salt stress through various mechanisms, including the accumulation of free amino acids, betaine synthesis, regulation of intracellular Na+/K+ balance, the antioxidative response, spore formation, and germination. The key genes involved in Bacillus sp. YM1's adaptation to salt stress were responsible for the synthesis of glutamate 5-kinase, superoxide dismutase, catalase, Na+/H+ antiporter, general stress protein, and sporogenic proteins belonging to the YjcZ family. Results indicated that the isolated strain of Bacillus sp. YM1 could significantly degrade oil in a short time under salt stress. This study would introduce new salt-tolerant strains for coping with the biodegradation of oily food waste and provide gene targets for use in genetic engineering.


Assuntos
Bacillus , Compostagem , Eliminação de Resíduos , Bacillus/genética , Alimentos , Cloreto de Sódio/farmacologia , Redes e Vias Metabólicas
12.
Cell Rep ; 42(3): 112165, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36862552

RESUMO

Inflammatory stimuli cause a state of emergency myelopoiesis leading to neutrophil-like monocyte expansion. However, their function, the committed precursors, or growth factors remain elusive. In this study we find that Ym1+Ly6Chi monocytes, an immunoregulatory entity of neutrophil-like monocytes, arise from progenitors of neutrophil 1 (proNeu1). Granulocyte-colony stimulating factor (G-CSF) favors the production of neutrophil-like monocytes through previously unknown CD81+CX3CR1lo monocyte precursors. GFI1 promotes the differentiation of proNeu2 from proNeu1 at the cost of producing neutrophil-like monocytes. The human counterpart of neutrophil-like monocytes that also expands in response to G-CSF is found in CD14+CD16- monocyte fraction. The human neutrophil-like monocytes are discriminated from CD14+CD16- classical monocytes by CXCR1 expression and the capacity to suppress T cell proliferation. Collectively, our findings suggest that the aberrant expansion of neutrophil-like monocytes under inflammatory conditions is a process conserved between mouse and human, which may be beneficial for the resolution of inflammation.


Assuntos
Monócitos , Neutrófilos , Camundongos , Animais , Humanos , Monócitos/fisiologia , Mielopoese , Diferenciação Celular , Fator Estimulador de Colônias de Granulócitos
13.
Sci Total Environ ; 810: 152218, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890665

RESUMO

Atenolol is a widely prescribed beta-blocker that has been detected in wastewater at concentrations up to 300 µg/L. The parent compound and its transformation products pose risks to aquatic organisms. Efficient atenolol degrading microorganism has yet to be identified, and its biodegradation pathway is unknown. In this study, Hydrogenophaga sp. YM1 isolated from activated sludge can degrade atenolol efficiently (286.1 ± 4.0 µg/g dry wt/h in actual wastewater), where atenolol acid, and four newly detected products (4-hydroxyphenylacetic acid, 3-(isopropylamino)-1,2-propanediol, 3-amino-1,2-propanediol and 4-(1-amino-2-hydroxy-3-propoxy) benzeneacetic acid) were the main intermediates. Key genes involved in atenolol degradation were proposed based on RNA-seq and validated by RT-qPCR. The ether bond cleavage of atenolol acid was the rate-limiting step likely catalyzed by the α-ketoglutarate dependent 2,4-dichlorophenoxyacetate dioxygenase. The further degradation of 4-hydroxyphenylacetic acid followed the homoprotocatechuate degradation pathway, enabling complete conversion to CO2. Acetate addition (39-156 mg COD/L) under aerobic condition enhanced atenolol degradation by 29-37% and decreased the accumulation of atenolol acid, likely because acetate oxidation provided α-ketoglutarate and additional reducing power. Activated sludge core microorganisms have limited atenolol mineralization potentials. Enriching Hydrogenophaga-like populations and/or providing such as acetate can drive more complete conversion of atenolol in natural and engineered biosystems.


Assuntos
Comamonadaceae , Esgotos , Atenolol , Biodegradação Ambiental , Águas Residuárias
14.
Front Immunol ; 13: 891220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967383

RESUMO

Ym1 is a rodent-specific chitinase-like protein (CLP) lacking catalytic activity, whose cellular origins are mainly macrophages, neutrophils and other cells. Although the detailed function of Ym1 remains poorly understood, Ym1 has been generally recognized as a fundamental feature of alternative activation of macrophages in mice and hence one of the prevalent detecting targets in macrophage phenotype distinguishment. Studies have pointed out that Ym1 may have regulatory effects, which are multifaceted and even contradictory, far more than just a mere marker. Allergic lung inflammation, parasite infection, autoimmune diseases, and central nervous system diseases have been found associations with Ym1 to varying degrees. Thus, insights into Ym1's role in diseases would help us understand the pathogenesis of different diseases and clarify the genuine roles of CLPs in mammals. This review summarizes the information on Ym1 from the gene to its expression and regulation and focuses on the association between Ym1 and diseases.


Assuntos
Doença , Lectinas , Macrófagos , beta-N-Acetil-Hexosaminidases , Animais , Quitinases/genética , Quitinases/imunologia , Doença/genética , Imunidade/genética , Imunidade/imunologia , Lectinas/genética , Lectinas/imunologia , Macrófagos/imunologia , Mamíferos/genética , Mamíferos/imunologia , Camundongos , Neutrófilos/imunologia , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/imunologia
15.
Front Immunol ; 13: 1056477, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605195

RESUMO

Introduction: Differentially polarized macrophages, especially YM1+ and MHCII+ macrophages, play an important role in asthma development. The origin of these polarized macrophages has not been elucidated yet. We therefore aimed to investigate how proliferation, monocyte recruitment, and/or switching of polarization states contribute to this specific pool of polarized interstitial and alveolar macrophages during development of house dust mite (HDM)-induced allergic lung inflammation in mice. Methods: Male and female mice were first treated intranasally with PKH26 to label lung-resident macrophages and were then exposed to either HDM or phosphate-buffered saline (PBS) for two weeks. Different myeloid immune cell types were quantified in lung tissue and blood using flow cytometry. Results: We found that macrophage polarization only starts up in the second week of HDM exposures. Before this happened, unpolarized alveolar and interstitial macrophages transiently increased in HDM-exposed mice. This transient increase was mostly local proliferation of alveolar macrophages, while interstitial macrophages also contained unlabeled macrophages suggesting monocyte contribution. After two weeks of exposures, the number of interstitial and alveolar macrophages was similar between HDM and PBS-exposed mice, but the distribution of polarization states was remarkably different. HDM-exposed mice selectively developed YM1+ alveolar macrophages and MHCII-hi interstitial macrophages while nonpolarized macrophages were lost compared to PBS-exposed mice. Discussion: In this HDM model we have shown that development of a polarized macrophage pool during allergic inflammation is first dependent on proliferation of nonpolarized tissue-resident macrophages with some help of infiltrating unlabeled cells, presumably circulating monocytes. These nonpolarized macrophages then acquire their polarized phenotype by upregulating YM1 on alveolar macrophages and MHCII on interstitial macrophages. This novel information will help us to better understand the role of macrophages in asthma and designing therapeutic strategies targeting macrophage functions.


Assuntos
Asma , Pneumonia , Eosinofilia Pulmonar , Feminino , Masculino , Camundongos , Animais , Pulmão , Macrófagos , Macrófagos Alveolares , Pyroglyphidae , Dermatophagoides pteronyssinus
16.
Front Oncol ; 11: 665420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959512

RESUMO

Although many cancer patients are administered radiotherapy for their treatment, the interaction between tumor cells and macrophages in the tumor microenvironment attenuates the curative effects of radiotherapy. The enhanced activation of mTOR signaling in the tumors promotes tumor radioresistance. In this study, the effects of rapamycin on the interaction between tumor cells and macrophages were investigated. Rapamycin and 3BDO were used to regulate the mTOR pathway. In vitro, tumor cells cocultured with macrophages in the presence of each drug under normoxic or hypoxic conditions were irradiated with γ-rays. In vivo, mice were irradiated with γ-radiation after injection with DMSO, rapamycin and 3BDO into tumoral regions. Rapamycin reduced the secretion of IL-4 in tumor cells as well as YM1 in macrophages. Mouse recombinant YM1 decreased the enhanced level of ROS and the colocalized proportion of both xCT and EEA1 in irradiated tumor cells. Human recombinant YKL39 also induced results similar to those of YM1. Moreover, the colocalized proportion of both xCT and LC3 in tumor tissues was elevated by the injection of rapamycin into tumoral regions. Overall, the suppression of mTOR signaling in the tumor microenvironment might be useful for the improvement of tumor radioresistance.

17.
Biomed Pharmacother ; 143: 112225, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649353

RESUMO

Heat shock protein beta-1 (HSPB1) is a multifaceted protein that controls cellular stress, modulates cell differentiation and development, and inhibits apoptosis of cancer cells. Increased HSPB1 expression is highly associated with poor outcomes in lung cancer by enhancing cell migration and invasion; therefore, targeting HSPB1 may be a promising therapeutic for lung cancer and fibrosis. Although the HSPB1 inhibitor J2 has been reported to exhibit potent antifibrotic effects, it remains unclear whether and how J2 directly modulates inflammatory immune responses in pulmonary fibrosis. In this study, we found that J2 potently attenuated irradiation or bleomycin-induced pulmonary fibrosis by significantly inhibiting the infiltration and activation of T cells and macrophages. J2 inhibited T-cell proliferation and subsequently suppressed T helper cell development. Although there was no significant effect of J2 on cell proliferation of M1 and M2 macrophages, J2 specifically increased the expression of Ym1 in M2 macrophages without affecting the expression of other M2 markers. Interestingly, J2 increased lysosomal degradation of HSPB1 and inhibited HSPB1-induced repression of signal transducer and activator of transcription 6 (STAT6), which simultaneously increased STAT6 and Ym1 expression. Ym1 production and secretion by J2-treated M2 macrophages substantially decreased IL-8 production by airway epithelial cells in vitro and in vivo, resulting in attenuation of airway inflammation. Taken together, we suggest that J2 has potential as a therapeutic agent for pulmonary fibrosis with increased HSPB1 expression through direct immune suppression by Ym1 production by M2 macrophages as well as T-cell suppression.


Assuntos
Anti-Inflamatórios/farmacologia , Antifibróticos/farmacologia , Proteínas de Choque Térmico/antagonistas & inibidores , Lectinas/metabolismo , Pulmão/efeitos dos fármacos , Chaperonas Moleculares/antagonistas & inibidores , Comunicação Parácrina , Pneumonia/prevenção & controle , Fibrose Pulmonar/prevenção & controle , beta-N-Acetil-Hexosaminidases/metabolismo , Animais , Bleomicina , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Pneumonia/etiologia , Pneumonia/imunologia , Pneumonia/metabolismo , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/metabolismo , Células RAW 264.7 , Doses de Radiação , Transdução de Sinais
18.
J Clin Med ; 10(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669652

RESUMO

Dimethyl fumarate (DMF) is an oral agent for relapsing-remitting multiple sclerosis (RRMS). In this study, we investigated the therapeutic mechanism of DMF using experimental autoimmune encephalomyelitis (EAE). DMF treatment decreased the proliferation of T cells and the production of IL-17A and GM-CSF. DMF treatment also decreased the development and/or infiltration of macrophages in the central nervous system (CNS), and reduced the ratio of iNOS+ pro-inflammatory macrophage versus Ym1+ immunomodulatory macrophages. Furthermore, DMF treatment suppressed the deposition of complement C3 (C3) and development of reactive C3+ astrocytes. The decrease in iNOS+ macrophages, C3+astrocytes, and C3 deposition in the CNS resulted in the reduction in demyelination and axonal loss. This study suggests that the beneficial effects of DMF involve the suppression of iNOS+ pro-inflammatory macrophages, C3+ astrocytes, and deposition of C3 in the CNS.

19.
ACS Biomater Sci Eng ; 6(2): 933-945, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33464836

RESUMO

Biomaterial-associated infections often arise from contaminating bacteria adhering to an implant surface that are introduced during surgical implantation and not effectively eradicated by antibiotic treatment. Whether or not infection develops from contaminating bacteria depends on an interplay between bacteria contaminating the biomaterial surface and tissue cells trying to integrate the surface with the aid of immune cells. The biomaterial surface plays a crucial role in defining the outcome of this race for the surface. Tissue integration is considered the best protection of a biomaterial implant against infectious bacteria. This paper aims to determine whether and how macrophages aid osteoblasts and human mesenchymal stem cells to adhere and spread over gold nanoparticle (GNP)-coatings with different hydrophilicity and roughness in the absence or presence of contaminating, adhering bacteria. All GNP-coatings had identical chemical surface composition, and water contact angles decreased with increasing roughness. Upon increasing the roughness of the GNP-coatings, the presence of contaminating Staphylococcus epidermidis in biculture with cells gradually decreased surface coverage by adhering and spreading cells, as in the absence of staphylococci. More virulent Staphylococcus aureus fully impeded cellular adhesion and spreading on smooth gold- or GNP-coatings, while Escherichia coli allowed minor cellular interaction. Murine macrophages in monoculture tended toward their pro-inflammatory "fighting" M1-phenotype on all coatings to combat the biomaterial, but in bicultures with contaminating, adhering bacteria, macrophages demonstrated Ym1 expression, indicative of polarization toward their anti-inflammatory "fix-and-repair" M2-phenotype. Damage repair of cells by macrophages improved cellular interactions on intermediately hydrophilic/rough (water contact angle 30 deg/surface roughness 118 nm) GNP-coatings in the presence of contaminating, adhering Gram-positive staphylococci but provided little aid in the presence of Gram-negative E. coli. Thus, the merits on GNP-coatings to influence the race for the surface and prevent biomaterial-associated infection critically depend on their hydrophilicity/roughness and the bacterial strain involved in contaminating the biomaterial surface.


Assuntos
Ouro , Macrófagos , Nanopartículas Metálicas , Animais , Adesão Celular , Movimento Celular , Escherichia coli , Humanos , Camundongos , Propriedades de Superfície
20.
Front Immunol ; 11: 575451, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329540

RESUMO

CNS autoantigens conjugated to oxidized mannan (OM) induce antigen-specific T cell tolerance and protect mice against autoimmune encephalomyelitis (EAE). To investigate whether OM-peptides treat EAE initiated by human MHC class II molecules, we administered OM-conjugated murine myelin oligodendrocyte glycoprotein peptide 35-55 (OM-MOG) to humanized HLA-DR2b transgenic mice (DR2b.Ab°), which are susceptible to MOG-EAE. OM-MOG protected DR2b.Ab° mice against MOG-EAE by both prophylactic and therapeutic applications. OM-MOG reversed clinical symptoms, reduced spinal cord inflammation, demyelination, and neuronal damage in DR2b.Ab° mice, while preserving axons within lesions and inducing the expression of genes associated with myelin (Mbp) and neuron (Snap25) recovery in B6 mice. OM-MOG-induced tolerance was peptide-specific, not affecting PLP178-191-induced EAE or polyclonal T cell proliferation responses. OM-MOG-induced immune tolerance involved rapid induction of PD-L1- and IL-10-producing myeloid cells, increased expression of Chi3l3 (Ym1) in secondary lymphoid organs and characteristics of anergy in MOG-specific CD4+ T cells. The results show that OM-MOG treats MOG-EAE in a peptide-specific manner, across mouse/human MHC class II barriers, through induction of a peripheral type 2 myeloid cell response and T cell anergy, and suggest that OM-peptides might be useful for suppressing antigen-specific CD4+ T cell responses in the context of human autoimmune CNS demyelination.


Assuntos
Axônios/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Imunossupressores/farmacologia , Células Mieloides/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Adulto , Animais , Axônios/imunologia , Axônios/metabolismo , Axônios/patologia , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Regulação da Expressão Gênica , Grécia , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Humanos , Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Medula Espinal/imunologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA